
Citation: Strömbom, D.; Tulevech, G.;

Giunta, R.; Cullen, Z. Asymmetric

Interactions Induce Bistability and

Switching Behavior in Models of

Collective Motion. Dynamics 2022, 2,

462–472. https://doi.org/10.3390/

dynamics2040027

Academic Editor: Christos Volos

Received: 24 October 2022

Accepted: 13 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Asymmetric Interactions Induce Bistability and Switching
Behavior in Models of Collective Motion
Daniel Strömbom * , Grace Tulevech, Rachel Giunta and Zachary Cullen

Department of Biology, Lafayette College, Easton, PA 18042, USA
* Correspondence: stroembp@lafayette.edu

Abstract: Moving animal groups often spontaneously change their group structure and dynamics, but
standard models used to explain collective motion in animal groups are typically unable to generate
changes of this type. Recently, a model based on attraction, repulsion and asymmetric interactions
designed for specific fish experiments was shown capable of producing such changes. However, the
origin of the model’s ability to generate them, and the range of this capacity, remains unknown. Here
we modify and extend this model to address these questions. We establish that its ability to generate
groups exhibiting changes depends on the size of the blind zone parameter β. Specifically, we show
that for small β swarms and mills are generated, for larger β polarized groups forms, and for a region
of intermediate β values there is a bistability region where continuous switching between milling
and polarized groups occurs. We also show that the location of the bistability region depends on
group size and the relative strength of velocity alignment when this interaction is added to the model.
These findings may contribute to advance the use of self-propelled particle models to explain a range
of disruptive phenomena previously thought to be beyond the capabilities of such models.

Keywords: collective motion; disruptive phenomena; bistability; flocking; self-propelled particles;
asymmetric interactions; polarized groups; milling; velocity alignment

1. Introduction

Animals that move together, e.g., flocks of birds, schools of fish and herds of sheep, can
arrange themselves to form a variety of group shapes exhibiting different dynamics [1–3];
for example, swarms characterized by disorganized motion within the group, mills where
the individuals rotate around a common center, and polarized groups where the individuals
are all moving with the same heading [4]. A group’s structure or heading can also change as
a result of external environmental factors such as predator attacks [5–9], or spontaneously
without apparent cause as observed in starling flocks [10] and schools of fish [11–13].

To understand and explain collective motion in moving animal groups, so called
self-propelled particle (spp) models have been used over the past decades [4,14–25]. In
these models, particles represent the individual animals and the particles interact with
other nearby particles via local interaction rules. Common choices for the interaction rules
include combinations of attraction, repulsion and velocity alignment. Models incorporating
these interaction rules successfully describe collective behavior across species [14,26–28].
In particular, these models explain how various group types may arise from the inter-
individual interaction rules, and a large number of different models of this type can
produce stable swarms, mills and polarized groups [14]. However, until recently it was
thought that these types of models may be fundamentally unable to generate disruptive
phenomena, such as spontaneous switches between two or more distinct group structures,
that are ubiquitous in real flocks, schools and herds [10–13]. Specific arguments for the
inability of these models to generate such changes in group structure included the inevitable
dampening of perturbations proposed to result from the inclusion of velocity alignment [29]
and “the averaging of interactions that takes place in most spp models” [30], suggesting,
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in particular, that the spp model would not be able to model the switching observed in
the seminal golden shiner fish experiments [12]. In these experiments, groups of 30, 70,
150 and 300 gloden shiners (Notemigonus crysoleucas) were placed in an empty rectangular
arena and left alone to school in the absence of external interference or disturbances. The
main observation was that for all group sizes the system exhibited bistability, in the sense
that the schools formed both mills and polarized groups without any apparent changes in
conditions, and that the schools regularly switched between these two states, with switch
rate decreasing with group size (See videos S1–S4 in [12]). Recently, it was shown that
a standard model based on attraction, repulsion, and asymmetric interactions via blind
zones designed to model this specific experiment is capable of generating continuous
switching between two distinct states, specifically between milling and polarized groups,
that is consistent with the experimental observations [31]. (See videos referred to in [31]).
However, the mechanism behind the model’s ability to generate these switches using only
standard components (attraction, repulsion, and blind zones) found in a large number of
other models is not known and the range of its capacity to do so has not been quantified.

Asymmetric interactions implemented via a blind zone is a common component in
spp models that is included to represent the limited perceptual fields of many animals [32].
While it has not been directly linked to spontaneous changes in group structure and
dynamics within individual simulations, it is known to induce initial condition-dependent
bistability in several models, and have a strong distruptive effect on group formation and
resulting dynamics when varied [13,18,32–34]. For example, [13] found that large blind
zones in models designed for fish contribute to the emergence of polarized groups and
that reducing the blind zones led to an increase in group splits or disbandedness, and [33]
included variation in the size of the blind zones (from 0 to 0.2π only) and found that milling
behavior degraded with increased blind zone ranges.

Given that asymmetric interactions are known to induce drastic changes in models
when varied and lead to initial condition-dependent bistability, this component of the
model in [31] is a natural starting point for seeking an explanation for the capacity in this
model to generate groups that switch between group types within individual simulations.
If it turns out that asymmetric interactions implemented via blind zones can be shown to
drive robust bistability and switching in this model, this would suggest that there may be
other published spp models that also have this capacity, but it has yet to be detected in
them. Further investigations in this direction could potentially result in a new generation of
spp model work capable of explaining disruptive collective motion just as well as previous,
and current, spp models have been in explaining stable collective motion.

2. Materials and Methods

Here we extended the model presented in [31] to include an explicit alignment interac-
tion from [17] that will be used for the second half of our study. In this model, particles
move in a bounded planar region and update their headings depending on their neighbors
positions. All particles that are located within a distance of R from a particular particle are
neighbors of that particle. All neighbors contribute to the repulsive force on the particle,
but only neighbors that are not located in a blind zone specified by a blind angle β behind
the particle contributes to the attractive and aligning forces on the particle. In each timestep
t the new heading of particle i, denoted by D̂i,t+1, is given by the linear combination

D̄i,t+1 = D̂i,t + cĈi,t + aÂi,t + rF̄i,t + eε̂i,t, (1)

where D̂i,t is particle i’s current heading, Ĉi,t is the normalized direction towards the local
center of mass of its neighbors except those in the blind zone, Âi,t is the normalized average
heading of its neighbors, F̄i,t is a local distance dependent repulsion term, ε̂i,t is a heading
noise term, and the parameters a, c, e and r specifies the relative strengths of the interaction
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terms. For a detailed description of all terms except the alignment term, see [29]. The
alignment term is the standard Vicsek velocity alignment [17] and is defined by

Âi,t =
1
|Nn| ∑

j∈Nn

D̂j,t (2)

where Nn represents the set of neighbors and D̂j,t is the normalized current heading of
neighbor j. The position in the next timestep P̄i,t+1 of each particle is calculated through

P̄i,t+1 = P̄i,t + δ∆tD̂i,t, (3)

where δ is the speed and ∆t is the timestep.

2.1. Measures

We rely on the same two measures that were used in [12,31] to quantify the group
types produced in the simulations: the polarization Op and the rotation, or normalized
angular momentum, Or. If we denote the number of particles by N, the current normalized
heading of particle i by D̂i,t, and the normalized vector from the center of mass of all
particles towards particle i by V̂i,t, then the polarization is defined by

Op =
1
N

∣∣∣∣∣ N

∑
i=1

D̂i,t

∣∣∣∣∣,
and the rotation by

Or =
1
N

∣∣∣∣∣ N

∑
i=1

D̂i,t × V̂i,t

∣∣∣∣∣.
These measures can be used to distinguish polarized groups and mills, because po-

larized groups will have high polarization and low rotation, and mills will have low
polarization and high rotation. More specifically, an ideal polarized group will have Op = 1
and Or = 0, and an ideal milling group will have Op = 0 and Or = 1.

2.2. Simulations

Following previous experimental [12] and modeling [31] work involving this system,
we performed simulations for each of the group sizes 30, 70, 150 and 300. However,
unlike previous models [29,31] that used a single fixed blind angle of β = π, here we ran
simulations for each value of the blind angle β from 0 to 2π in increments of 0.1 to create
density plots showing the recorded polarization and orientation values in simulations
of 106 timesteps for each β value and for each groups size. This was then repeated for
each group size for three different alignment parameter values a = 0, a = 0.5 and a = 1
to investigate how adding alignment influences the model behavior as a function of β.
In all simulations except those described in the next sentence, the particles move in a
bounded rectangular area of size 210× 120 units of length, mimicking the setup in [12,31].
To determine if varying the size of the region critically affects the behavior under study
here, we also ran simulations with 70 particles with the dimensions of the region being
scaled by 1/3, 2/3, 4/3, 5/3, 2,5 and 10. The same slip boundary conditions used in [31]
were used here, that is, if a particle’s preliminary positional update in a timestep would
make it cross the boundary, it aligns its heading with the boundary in the direction that
deviates the least from its approach angle. Each particle was assigned a random position
and heading at the start of each simulation (random initial conditions) and all auxiliary
parameters were kept as in [22], i.e., “d = c = r = 1, e = 1/5, R = 6, δ = 10, ∆t = 1/75”.
To determine whether the initial conditions affect the behavior under study here, we also
ran 12 different 106 timesteps in simulations with 70 particles to compare the outcome of
one simulation and the average of the 12 simulations.
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2.3. Analysis

To analyze the simulations, we adapted the approach in [31,35] and created density
plots of all 106 Op and Or values recorded for each value of β for each group size, alignment
condition, and region’s size condition when relevant. These density plots for each β value,
that can be thought of as relative frequency histograms of the measurement values for each
β, were then combined to create the final plots showing the polarization Op and rotation Or
as a function of β for each group size and alignment condition. From the data used to create
the density plots, we also created corresponding plots showing the median polarization
for each group size and alignment condition as a function of β to illustrate the average
behavior. To compare the variation in outcome over 12 different simulations, we present the
density plots of one simulation, the average of 12 simulations, and the standard deviation
over 12 simulations.

Estimating the Number of Switches and Lifetime of the Phases for Each Group Size as a
Function of Blind Angle

To estimate the number of switches occurring in the 106 timestep simulations, and
the lifetimes of the mills and polarized groups produced, we used the time series of Op
and Or values recorded for each value of β and each group size. First a rolling average
smoothing procedure was applied to remove sporadic large fluctuations and transitions
in the timeseries. Then the number of switches and lifetimes of the groups present were
calculated by creating two new vectors of length 106 obtained by a thresholding procedure
on the measures. One vector M̄ identifying when mills are present, and one vector Π̄
when polarized groups are present defined as follows. Let Os

p(t) and Os
r(t) denote the

smoothed measurement time series value at time t, then the t:th element of the polarized
group vector Π̄(t) = 1 if Os

p(t) > 0.5 and Os
r(t) < 0.5, and Π̄ = 0 otherwise. Similarly,

the t:th element of the milling group vector M̄(t) = 1 if Os
p(t) < 0.5 and Os

r(t) > 0.5, and
M(t) = 0 otherwise. Once these vectors had been created, we go through the Π̄ vector from
t = 1 to t = 106 and count the number of consecutive timesteps that recorded a polarized
group (i.e., consecutive 1s) and created a new vector Π̃ recording the number of timesteps
each polarized group survived before being interrupted by a switch. The same procedure
was then performed on the mill vector M to create a vector M̃ recording the number of
timesteps each mill survived before being interrupted by a switch. This procedure was
performed for each β near the bistability region (1.9–3.6) and each group size, and the
number of switches, and average lifetimes of mills and polarized groups were calculated
for each β and plots were created to display the results.

3. Results

The size of the blind zone dictates the resulting group structure and we find stable
versions of all three standard groups: swarm (Figure 1a), mill (Figure 1b), polarized group
(Figure 1c) in different β ranges. See Figure 2. For β ≈ 0, we observe swarms characterized
by low polarization and rotation for all group sizes. As β increases milling groups form
that exhibit an increasingly stable rotation up to a β value when polarized groups start
to form (Op large, Or small), and the exact β value for which the model stops reliably
producing mills and start producing polarized groups increases with group size. Finally,
once β becomes large (close to 2π), particles fail to aggregate and no group forms.
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Figure 1. The group types observed in the model. (a) Swarm (Op and Or low). (b) Mill (Op low and
Or intermediate to high). (c) Polarized group (Op high and Or low).

Figure 2. Polarization and rotation densities for each β from 0 to 2π for each group size 20, 70, 150
and 300. For each β, the proportion of simulation timesteps that returned particular rotation (Or)
and polarization (Op) values are shown in color code. Yellow means that a high proportion of the
timesteps returned that value, whereas blue means that a low proportion of timesteps returned that
value. Across all group sizes, we see the same general trend: For β ≈ 0, both polarization and
rotation is low, indicating that the model generates swarms there. As β increases up towards π, the
polarization remains low but the rotation increases, indicating that milling groups are present. Then
as β approaches π, we observe that the rotation drops and the polarization approaches 1, indicating
that polarized groups are present. Finally, as β increases towards 2π both polarization and rotation
approach values indicating that no group has formed.

There is a range of β values over which the model generates bistability with continuous
switching between polarized groups and mills. See red rectangles in Figure 3. We observe
that bistability is present because both the polarization and rotation measure show two
bands of returned values for each β value in these ranges. For example, around β = π
for 150 particles we see a band near Op = 1 (polarized group) and another band near
Op = 0 (mill), and in the corresponding rotation plot we see one band near Or = 0
(polarized group) and another one around Or = 0.75 (mill). We note that as β increases in
the bistability regions the proportion of timesteps where polarized groups were detected
increases, and that as β decreases the proportion of milling increases. We also note that
the location of the bistability region is shifted towards higher β values with increasing
group size. More specifically, for 30 particles the region range is β = 2.0–2.8, 70 particles
β = 2.6–3.2, 150 particles β = 2.8–3.3, 300 particles β = 2.9–3.4. Figure 4 shows the number
of switches and the average lifetimes of polarized groups and mills as a function of β near



Dynamics 2022, 2 467

the bistability region for each group size and confirms that switching is taking place and
provides quantitative estimates of the β and group size-dependent switching rates, group
type lifetimes, and location of the switching regions.

Figure 3. Polarization and rotation near the bistability region. Zooming in on the β region from 1.9
to 3.6 in Figure 2 shows that a region of bistability is present. In the red rectangles, we notice that
the simulations are generating groups with distinct properties within individual simulation runs. In
particular, we see that in some simulation timesteps the group exhibits very high polarization and
in others very low polarization, and in the corresponding rotation plots we see that some timesteps
yield very low rotation (polarized groups) and in other timesteps higher rotation (mills).

Figure 4. Number of switches and lifetimes of the mills and polarized groups as a function of β

near the bistability region. The top plot shows that the maximum number of switches over the
106 timesteps decreases, and the β at which this maximum is reached, increases with group size.
The average lifetime plots show that as β increases over the bistability region the average lifetime
of mills is decreasing and the average lifetime of polarized increases, and in the middle there are β

intervals for each group size where switching is taking place and the polarized and milling groups
have moderate lifetimes.

The capacity of the model to generate bistability and switching is not inhibited by the
addition of alignment. Figure 5 shows the polarization density plots for each group size and
each alignment condition, and note that the region of bistability is shifted towards lower β
values for all group sizes as the relative strength of alignment increases. The presence of
polarized groups increases for lower β values and the presence of milling groups decreases
for larger β values as the alignment is increased. This is what we expect from adding
alignment, promoting polarized groups at the expense of milling groups. We also note
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that increasing alignment leads to more intermediate polarization values being recorded,
resulting in a progressively less clear separation of the phases in the bistability region. This
is particularly striking for the largest 300 particle group, where at a = 0 there is a distinct
polarized group phase visible in the upper right corner, but as alignment is increased the
polarization diffuses out towards lower polarization values. So, while the model produces
polarized groups earlier as alignment is increased and promotes polarization in this sense,
the polarization of the groups produced tends to be lower on average, especially for the
large group sizes, as Figure 6 also shows.

Figure 5. Effects of including velocity alignment on the polarization in the bistability region. Here we
see the polarization densities throughout simulations of 106 timesteps for each β from 1.9 to 3.6 for
each group size 20, 70, 150 and 300 and each alignment condition a = 0, a = 0.5 and a = 1. The red
rectangle indicates the region of bistability and we note that for each group size the bistability region
is shifted towards lower β values with increasing alignment. We also note that the polarization of
polarized groups decreases with increased alignment, especially for larger groups.

Figure 6. Median polarization curves for each group size and each alignment condition. We note that
as alignment increases the median polarization starts to increase for lower β values for each group
size, and that for the larger groups (150 and 300) the polarization of polarized groups generated
with β values above π decreases significantly with increasing alignment. In each plot, the blue
curve corresponds to the no alignment condition (a = 0) and the red curve to the highest alignment
condition (a = 1), showing that adding alignment decreases the average polarization of polarized
groups, most prominent in the blue and red curves for the 300 particle plot.
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4. Discussion

The finding that varying the size of the blind zone alone in this attraction repulsion
model allows the three standard groups (swarms, mills, and polarized groups) produced by
spp models to form (Figure 2) is important. While a large number of studies have included
blind zones in spp models and observed their effect, e.g., [4,13,18,32,33,36], the main focus
has typically been on other interactions and parameters; for example, size of the orientation
zone [4], relative strength of attraction [18], alignment or attraction-repulsion [36], etc.,
including analysis of only one [18,36], or a few [13,32,33], fixed sizes of the blind zone.
Systematic investigations of the full range of blind angles from 0 to 2π for an otherwise
fixed model are rare; the only exception we can find is [34], and to our knowledge no other
spp model has been shown to generate all three standard groups by only varying the blind
zone parameter. This indicates that the blind zone may be as important for group formation
in these models as the interactions, e.g., attraction, repulsion and velocity alignment, that
tend to be the focus in most studies.

The fact that the bistability and spontaneous switching between polarized and milling
groups occur over a range of blind zone parameter values in combination with attraction
and repulsion across all group sizes shows that the capacity of this model to generate
these phenomena exceeds those presented in [31] and may provide a robust mechanism to
induce them in a large number of classical spp models that include attraction, repulsion
and asymmetric interactions. We now not only know that the suggestion that the averaging
of interactions that takes place in spp models might preclude them from generating these
phenomena [30] is incorrect, but also that they are more readily reproducible over a range
of parameters and conditions than [31] has previously established. Furthermore, combining
the results presented in [31] showing that the model exhibits bistability and switching in
two free space situations, with the quantitative results here showing that varying the size
of the available space from 2/3 to 10 times that available to the real fish in the experiments
in [12] does not critically affect the group types produced or the characteristics near the
transition region; this shows that this model’s capacity to induce bistability and switching
is robust. See Figures S1 and S2.

The finding that adding velocity alignment does not prevent the model from gener-
ating bistability and switching provides further evidence that the argument made in [29],
that the inclusion of alignment in models of this type may render them unable to produce
disruptive phenomena such as switching between group types, is inaccurate. While this
was previously known in special cases from the attraction, alignment and asymmetric
interactions model work in [37], the systematic analysis presented here across group sizes
and the full blind zone range solidifies the point that the inclusion of alignment does not
appear to inhibit bistability and switching. However, our analysis does show that adding
alignment affects the dynamics in partially unexpected ways. In particular, we found that
adding alignment increases the range over which polarized groups form, but lowers the
polarization of polarized groups for larger group sizes. The former observation is expected;
the latter observation is not. Including velocity alignment in the spp model was a necessity
in order to produce polarized groups before a range of other polarization-inducing mecha-
nisms were recently discovered [20,31,35,38–40] and increasing the influence of alignment
relative to other included interactions universally had the effect that polarization increased;
see e.g., [4]. How can adding more alignment here lead to less polarized groups? In [22],
eight different mechanisms for inducing polarized groups were compared and it was noted
that the final polarization value of a polarized group depended on which mechanism
had generated it (Figure 4 in [22]). In particular, polarized groups generated by velocity
alignment alone ended up with a higher polarization than groups generated by explicit
alignment and attraction, and both of these formed faster than polarized groups generated
by attraction and blind zones. Perhaps the reason that we observe that the polarization of
polarized groups is decreasing with increasing alignment is that the different mechanisms,
all of which can induce polarization on their own, interfere with the polarization-inducing
effects of each other, rather than reinforce them, when present at the same time. This may
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be useful to consider in analysis of spp models that include blind zones and where both
attraction and velocity alignment are present, e.g., [4].

Combined, our findings suggest that detailed investigation of the effects of the blind
zone across the full spectrum of values in any spp model that contains this component in
combination with attraction, repulsion, and potentially velocity alignment, may reveal that
it indeed has the capacity to generate bistability, switching and other types of disruptive
phenomena, despite previous suggestions to the contrary [29,30]. In particular, we suspect
that the standard attraction, repulsion, and alignment model in [4] that was originally
used to model the bistability in [12] may also be capable of reproducing the spontaneous
switching for blind angle values beyond those used in [12]. Similarly, if the analysis of the
attraction and repulsion model in [33] was extended beyond blind angles from 0 to 0.2π
bistability and switching may present itself. Furthermore, from the results and materials
presented in [34] we cannot conclude that this model is not already capable of producing
bistability and switching. This is an alignment only model (Vicsek model [17]) with a blind
zone added, and they establish that milling occurs over a range of blind zones, and mention
that ’bands’ of particles also form. Therefore, in this minimal model, without attraction and
repulsion, idealized versions of both key phases, mills and polarized groups, appear to be
present. Unfortunately, they only quantify milling as a function of blind angle, not groups
that they refer to as ’non-milling’ groups, so it is unclear whether milling and polarized
groups are producible for the same blind angle (i.e., bistability). In addition, their analysis
approach of only running short 2000 timestep simulations may not be long enough for
switching to occur, and taking the average over the last 500 timesteps of the simulations
for their measures would fail to detect any switching between the types. We expect that
investigations in this direction may lead to new model-based explanations for a range of
disruptive phenomena that were previously thought beyond the scope of spp models, and
hope that ultimately spp models may become as successful in explaining these disruptive
phenomena as they have been in explaining stable collective phenomena in the past.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/dynamics2040027/s1, Figure S1: Effects of varying the box size
on the polarization and rotation measures for 70 particles. This figure was constructed in exactly
the same way as Figure 2 for 70 particles but with different box sizes. The panels entitled ’Regular
box size’ is the exact plots shown in Figure 2 for 70 particles. We note that as the box size decreases
the blind angle range that produce polarized groups shrinks, and for the smallest box size (1/3) it is
effectively non-existent. This is because the group effectively fill up the available space, so even if
polarized groups could form they have no space to move to and will therefore, depending on the
parameters, either assume a mill shape or swarm phase exhibiting disorganized motion. As the box
size increases the range of β values that produce polarized groups increases, but there are no drastic
changes; Figure S2: Polarization and rotation near the bistability region in Figure S1 shows that a
region of bistability is present. In the red rectangles we notice that the simulations are generating
groups with distinct properties within individual simulation runs. In particular, we see that in some
simulation time steps the group exhibits very high polarization and in other very low polarization,
and in the corresponding rotation plots we see that some time steps yield very low rotation (polarized
groups) and in other time steps higher rotation (mills); Figure S3: Effects of initial conditions on
the polarization and rotation measures for 70 particles. Comparing the result of one 106 time step
simulation with the average of 12 different 106 simulations shows that the difference between them
is both qualitatively and quantitatively marginal, indicating that initial conditions do not critically
affect our results.
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