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Abstract: The transport of information packets in complex networks is a prototype system for the
study of traffic jamming, a nonlinear dynamic phenomenon that arises with increased traffic load
and limited network capacity. The underlying mathematical framework helps to reveal how the
macroscopic jams build-up from microscopic dynamics, depending on the posting rate, navigation
rules, and network structure. We investigate the time series of traffic loads before congestion occurs
on two networks with structures that support efficient transport at low traffic or higher traffic density,
respectively. Each node has a fixed finite queue length and uses next-nearest-neighbour search to
navigate the packets toward their destination nodes and the LIFO queueing rule. We find that when
approaching the respective congestion thresholds in these networks, the traffic load fluctuations
show a similar temporal pattern; it is described by dominant cyclical trends with multifractal features
and the broadening of the singularity spectrum regarding small-scale fluctuations. The long-range
correlations captured by the power spectra show a power-law decay with network-dependent
exponents. Meanwhile, the short-range correlations dominate at the onset of congestion. These
findings reveal inherent characteristics of traffic jams inferred from traffic load time series as warning
signs of congestion, complementing statistical indicators such as increased travel time and prolonged
queuing in different transportation networks.

Keywords: information transport on complex networks; critical dynamics; traffic jamming; multifractal
fluctuations; long-range correlations; power spectra

1. Introduction: Traffic of Information Packets on Complex Networks

Studies of the diffusion of information packets on the Internet (see [1–3] and refer-
ences therein) provide a theoretical framework towards understanding traffic jamming.
Jamming is a fascinating nonlinear dynamic phenomenon occurring in different systems,
from granular flow in materials to large-scale transportation systems such as city vehicles
traffic and aerospace transport [4–10]. A line of research consists of macroscopic density
dynamic models [4,11,12] originally designed to describe urban vehicles transport and
understand the global dynamic properties of jamming. On the other hand, microscopic
modelling and simulations of traffic on different network topologies have provided ways
to see how local properties of traffic and queueing at nodes lead to macroscopic dynamic
phenomena [13–15]. In this context, the traffic of information packets in complex networks
is a prototypal system for the theoretical study of traffic congestion phenomena arising
with increased traffic load but limited network capacities to process it [13–16]. It has
been understood that the occurrence of traffic jamming can be related to the network’s
structural properties, queuing rules, and the routing strategies that the nodes apply to
transmit packets towards their predefined destinations. Therefore, to postpone the onset of
jams, different methods have been investigated. Specifically, they aim at enhancing routing
strategies [13,17–22] and changing the role of network’s elements (nodes, edges, layers,
communities) in the transmission process [3,19,23–27], as well as introducing different
prioritising rules among packets [28,29].
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Substantial research activity in the last two decades has been devoted to modelling the
traffic of information packets with finite network capacities. It aims to develop a minimal
model that can capture the mechanisms of traffic flow in different regimes: free flow,
jamming transition and congested phases, respectively. Here, we restrict the discussion
to our model originally developed and studied in [1,13,14,17]. In the model, each packet
is monitored as it moves from the source node to its destination address as another node
on the network, where it is delivered and removed from the process. When more than
one packet appears at a node, the packets form a queue by order of arrival at that node.
Each node has a finite queue length, and the packet at the top of the queue is processed
first (LIFO queueing discipline). The node performs an in-depth search for the packet’s
destination address to transmit a packet. If the address is found in the searched depth,
the packet is transmitted to the top of the queue of its neighbour along the shortest path
towards the destination. Otherwise, it is sent to a random neighbour, who then repeats
the search; see Section 2.2 for a more detailed description. In this context, the network
structure is essential for how the searched depth covers the network’s information horizon.
For example, the efficiency of the next-neighbourhood search on the correlated scale-free
graph leads to superdiffusion in the low-density traffic, as shown in [13]. The model
implementation allows variants with different searched depths, the FIFO rule, and the
constant density traffic, as shown in refs. [13,30] and [1], respectively.

By increasing the posting rate R, more packets are found in the traffic, leading to
increased queue lengths and total traffic load. However, the average delivery balances the
packet input until a critical rate Rc is reached, at which this balance is lost and congestion
occurs. It manifests in the steady increase in the network load and dramatic increase in the
waiting times and travel times of packets, eventually resulting in packet loss (divergent
travel time). As stated above, the critical rate Rc and the nature of the transition to the
congested phase strongly depend on the network structure and the efficiency of the search
rule on that structure [1,13,14,30]. For example, with the above-described navigation rules
with next-neighbour search, the congestion occurs via an abrupt change of the order parameter,
defined as the time derivative of the network load averaged over different time windows [1].
Preceding the congested state, traffic load arises gradually, depending on the posting rate,
navigation rules, and network structure. The maximum queue length in the networks with
hubs is first reached on the hubs and is then gradually spread to their neighbouring nodes.
The congested traffic is then characterised by a dramatic slowing down, where one packet
leaves the hub’s queue and only then can another one arrive at it. Therefore, exploring
the nature of the fluctuations of a traffic load time series in pre-congested phases is of
paramount importance and could be used as a warning sign of the approaching jamming
transition. Such time series data are easily accessible in many real systems. Previous studies
(see [1,13,14] and references therein) have shown how various statistical features, which
are based on the individual packet’s transport, change with the increased traffic load on
different networks and search rules. Hence, the increasing traffic density manifests in the
modified distributions of the travel time and waiting times of packets along their paths
and changed distributions of the avalanches of active nodes. Another aspect of traffic
jamming was captured by the geometrical representation of the traffic time series in [31],
suggesting that the jamming is accompanied by complex transformations of the structure
of the system’s phase space.

Here, we focus on the nature of fluctuations in the network load time series for
several posting rates preceding the traffic congestion, simulated on two different network
structures. These representative network topologies are described below and in [1]; they
appear to have efficient traffic flow for low (Webgraph) and high (Statnet) traffic density
before the congestion occurs at the respective critical densities. Our analysis reveals certain
persistent features of the traffic load fluctuations in the jamming regime on both network
types, which are described by cyclic trends. Their multifractal fluctuations are described
by the spectrum of generalised Hurst exponents with a similar broadening at the side of
small fluctuations as the system approaches its respective jamming transition. At the same
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time, such oscillations are accompanied by gradually-lost coherence in the network activity
and the prevalence of the short-range correlations in the power spectra. These traffic-load
time series features are early warning signs of approaching congestion, complementing the
statistics of individual packets’ queueing and travel times.

2. Substrate Networks and Traffic Model Rules
2.1. Properties of Two Prototypal Networks

We consider the traffic of information packets on two network structures shown in
Figure 1. Their structural characteristics are given below and in [1], appearing to be
well-optimised for efficient low-density traffic (Webgraph) and high-density traffic (Statnet),
respectively. As described in [1], both networks are generated using the same sets of
probabilities for the preferential linking and preferential rewiring, with the crucial difference
that the Webgraph is a growing network, while Statnet is a fixed-size network with links
added among pairs of nodes under the condition, preventing multiple links. The number
of nodes N = 1000 and edges per node ratio is E/N = 1 in both networks.
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Figure 1. Networks’ giant clusters on which traffic simulations are performed: Webgraph (left) and
Statnet (right). See the text for these networks’ properties. Lower panels: Distribution of the shortest-
path distances P(d) vs. distance d between pairs of nodes, and hyperbolicity parameter δmax vs.
minimal distance dmin, see text, on these two graphs, as indicated in the legend.

The outcome is that the Webgraph is a correlated scale-free graph, the structure is statisti-
cally similar to the Web considered as a directed graph; see the original work in [32]. In ad-
dition, the Webgraph possesses disassortative degree correlations; see [1] for details. Mean-
while, the Statnet appears to have a much weaker organisation, a stretched-exponential
profile of the node’s degree ranking distribution, and the absence of any degree–degree
correlations [1]. For completeness, some standard graph properties that might be relevant
to the traffic on these networks are summarised below in Table 1. In addition, we determine
the distributions of the shortest path distances between all node pairs in the related giant
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clusters, as shown in the bottom panels in Figure 1, where we also demonstrate that these
are hyperbolic graphs in the sense of the Gromov hyperbolicity criterion [33,34]. These
figures show that the most probable distance between pairs of nodes on the Webgraph is
d = 3, compared to d = 4 or 5 on the Statnet, and with a different hyperbolocity, as dis-
cussed below. Overall, despite a comparable average degree, the Statnet possesses a larger
network diameter and a larger average shortest path, as well as a much smaller number of
triangles and clustering coefficients than the Webgraph, cf. Table 1.

The network’s hyperbolicity [35], or negative curvature in the graph’s metric space (short-
est paths), is highly relevant for different transport processes and more general diffusion phe-
nomena [36,37]. In this context, the graphs with a small Gromov hyperbolicity parameter δmax
are particularly interesting [38]. Among them are some of the most efficient naturally evolved
structures, from networks mapping the human brain structure [39,40], metabolic networks [41]
and chemical graph structures [42,43], to online social graphs [44,45]. For a finite graph G,
the hyperbolicity parameter δmax is determined [36,39,46] by sampling a large number of
4-tuples of nodes {A, B, C, D} and considering the ordered sums of their distances, for ex-
ample, S ≡ d(A, B) + d(C, D) ≤M ≡ d(A, C) + d(B, D) ≤ L ≡ d(A, D) + d(B, C). For a
δ-hyperbolic graph, there is δ(G) such that any four nodes of the graph satisfy the condi-
tion δ(A, B, C, D) ≡ L−M2 ≤ δ(G) From the triangle equality, we have that (L−M)/2 is
bounded from above by dmin, the minimal distance dmin ≡ min{d(A, B), d(C, D)} in the
smallest sum S , which is then used to compute δmax as the largest δ(G) found in all 4-tuples.
The two networks considered in this work appear to belong to this category of graphs, cf.
Figure 1 bottom right. The value of δmax = 2.5 in the Statnet suggests the occurrence of
larger characteristic cycles [47] compared to δmax = 2 in the Webgraph.

Table 1. Network properties: the average degree < k >, clustering coefficient < Cc >, and path
length < ` >, the number of triangles, modularity, the network’s diameter D and the Gromov
hyperbolicity parameter δmax.

Network < k > < Cc > No. Triang < ` > mod D δmax

Webgraph 3.439 0.175 192 3.196 0.497 9 2.0
Statnet 3.593 0.010 24 4.563 0.546 11 2.5

2.2. Traffic of Information Packets: Model Rules

As mentioned in the Introduction, the relevant parameters of the packet traffic model
are the posting rate R, the maximum queue length of each node H, and the searched depth;
here, we fix it with the next-neighbourhood (2-depth) search. In simulations, each packet is
an object, the properties of which change in time; precisely, at each time step, the current
location node of each packet is monitored, along with its position in the current queue
and the waiting time before it leaves that node. The travel time of a packet is counted as
the sum of waiting times at nodes along its path, and the corresponding distributions are
determined; see the results in [1,14,30]. For this work, we sample time series, in particular,
the number of posted packets np(t), the number of active nodes moving a packet na(t),
and the total number of packets still in the traffic (the network load) Np(t). It is given
by the sum of all queue lengths Qi(t) at time t, i.e., Np(t) = ∑i Qi(t), i = 1, 2, · · · , N.
Another relevant time series is the number of packets delivered nd(t) at time step t. Then
the network’s delivery rate is given as the time average 〈nd(t)〉. For the above-described
networks, we use H = 1000 and increase the posting rate R to reach Rc for the existing
network; see below. The long time series up to 6× 105 steps are produced, particularly for
R . Rc, to ensure that the network is not congested.

The simulation of packet traffic starts with inserting the network structure as its
adjacency matrix and setting the empty node’s queue lengths Qi(t = 0) = 0, at each node
i = 1, 2, · · · , N. Then, the information packets are created and navigated through the
network according to the model rules [1,13,14,17,48], consisting of:
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• Posting: At each time step t, each node can create a new packet with the probability
R; another randomly selected node sets the packet’s destination on the network’s
connected component; the created packet is added to the top of the node’s queue;

• Queueing: If more than one packet is present at a node, they make a queue by order of
arrival at that node, with a new arrival appearing at the top of the queue. The node’s
queue length at the time t is Qi(t) ∈ [0, H], where H represents the maximum possible
queue length of each node;

• Navigation: Each node with a nonempty queue tries to move the top packet in its
queue, i.e., we apply LIFO (last-in-first-out) queueing rule. The node performs a
next-neighbourhood search for the destination address of the packet; if the address
is found in the searched depth, the packet is delivered to the neighbour along the
shortest path to the destination, else it is transferred to a random neighbour. If the
neighbour queues are full, the packet waits for the next transmission opportunity;

• Delivery: Upon arrival at its destination, the packet is removed from the traffic.

An example of these time series on Webgraph is depicted in Figure 2 for the posting rate
that exceeds the jamming transition. The figure shows that, despite the network’s activity,
the posting rate outbalances the delivery rate, resulting in the predominant increase of
the total load Np(t). Consequently, these time series exhibit characteristic fluctuations,
as shown in the right panel of Figure 2 with their standard deviation functions F2(n) ∼ nH2

plotted vs. the interval length n, where H2 stands for the standard Hurst exponent. As ex-
plained above, the posting rate is a random process; meanwhile, we have H2 ∼ 1 for the
increasing traffic load time series. At the same time, we see that the network’s activity time
series and the delivery rate change the slope towards a random process, H2 ∼ 0.5, sug-
gesting a loss of the network’s coherence when the jamming occurs. As was shown in [1],
for these two networks and the 2-depth search rule that we also use here, the transition to
the congested phase occurs via a jump (first-order phase transition) of the order parameter,
defined as the time-averaged changes of the load O ≡ 〈dNp(t)/dt〉. The critical values are
Rc h 0.4 and Rc h 0.8 for the Webgraph and Statnet, respectively. In the following, we will
analyse the power spectra and multifractal features of the traffic load time series for the
posting rates preceding the respective critical rates. As stated above, the idea is to find some
universal characteristics that can be used as signatures of the approaching abrupt transition
to the congested phase.
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Figure 2. Example of time series of the number of created, active, still in traffic, and delivered packets
monitored during the simulations of transport on Webgraph for the posting rate R = 0.4 & Rc (left).
The standard deviations F2(n) fluctuation function of Equation (2) for q = 2, vs. time interval n for
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3. Traffic Cycles and the Power Spectra of Load Time Series on Webgraph and Statnet

By increasing the posting rate in the range R < Rc on a given network and using the
same navigation rules, the average traffic load of packets gradually increases, with fluctu-
ations compatible with the stationary time series, as shown in Figure 3 for the Webgraph,
and Figure 4 for the Statnet structure. Due to a larger critical value Rc in the Statnet, the cor-
responding network loads are higher than in the Webgraph before its congestion. On the
other hand, the Webgraph equipped with the hubs and nodes correlation exhibits a cooper-
ative transport for low posting rates, which is quantified with a power-law distribution
of the avalanches of active sites [31]. On approaching the critical rate Rc, however, this
cooperative functioning is gradually lost, and the size of active-site avalanches reduces to
the one characteristic for a random process; see the detailed analysis in [31]. These changes
of the network activity also manifest in the power spectra of the traffic load; cf. Figure 3
top left. In particular, the power spectral density exhibitis a decay with the frequency f
according to the power-law,

S( f ) ∼ f−φ , (1)

where the exponent φ has a value slightly exceeding φ = 1 for very low (but finite) posting
rates. As shown in Figure 3, top left, the exponent increases and eventually reaches φ = 2
when the steady increase of the load occurs. On the other hand, the power spectra of the
loads on the network without hubs, cf. Figure 4, top left, possess two slopes even at low-
density traffic; a short-range correlated part with φ = 2 occurs in the high-frequency region
and extends to the entire range of frequencies when the congestion occurs. Meanwhile,
the low-frequency part exhibits an increasing exponent, eventually reaching φ = 2.
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Figure 3. Traffic on the Webgraph: Time series of the network load (bottom left) and their power
spectra (top left) for different values of the posting rate R indicated in the top panel. The bottom
right panel shows a close-up of the traffic load time series for the posting rate R = 0.35 with its cyclic
trend (red line) and the detrended signal (cyan); the corresponding power spectra of these signals are
shown in the top right panel, as indicated in the legend.
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Figure 4. Same as Figure 3 but for the traffic load on the Statnet. The corresponding values of the
posting rate R are indicated in the top left panel. The traffic time series in the bottom right panel is
for the posting rate R = 0.7, showing its cyclic trend (red line), the detrended signal (cyan), and the
corresponding power spectra in the top right panel.

Another striking feature of these traffic load fluctuations preceding the jamming
transition is the occurrence of an irregular cyclical trend, as is shown in Figure 3, bot-
tom right, for the case of Webgraph, and in Figure 4, bottom right, for the traffic on Stat-
net. To determine these trends, we use the local adaptive detrending algorithm [49–51].
Specifically, based on the original work in [49] treating sunspot time series, the algorithm
was adapted to treat different types of time series, from social network activity to the
magnetisation fluctuations on the hysteresis loop [50,51]. The actual time series of the
length Tmax is divided into segments of the length 2m + 1, which overlap over m + 1
points. These intervals are enumerated as k = 0, 1, 2, · · · , kmax = Tmax/m− 1. The poly-
nomial fits y(k)(mk + `) over ` = 0, 1, 2, · · · ; 2m points in each segment are determined.
For 0 < k < kmax, the trend yc(mk + i) over the overlapping points is determined by bal-
ancing the contribution of the polynomial in segment k with that of segment k + 1 as
yc(mk + i) = i

m y(k+1)(mk + i) + m−i
m y(k)(m(k + 1) + i), where i = 0, 1, 2 · · · , m. Thus,

the corresponding polynomial contribution in the overlapped region decreases linearly
with the distance from the segment’s centre. Meanwhile, the trend coincides with the actual
polynomial fit in the initial m + 1 points in k = 0 and the final m + 1 points in k = kmax
segments. The linear interpolation suffices for the studied time series, and the parameter
m is adapted accordingly. As Figures 3 and 4 show, a complex structure of these cyclical
trends appears to have many harmonics, depending on overall network load; see Section 4
for further analysis. The standard fluctuation function of the detrended signal saturates for
time intervals n > m. As expected, the power spectrum of the fluctuations around the trend
coincides with the signal’s spectrum for the high-frequency region. Meanwhile, the trend
shows the power spectrum with the exponent φ = 2, cf. top right panels of Figures 3 and 4.
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4. Mutifractality of the Traffic-Load Trends and Detrended Fluctuations

In the following, we analyse the traffic load trends for both low and high posting rates
on both network structures. To apply the detrended multifractal analysis [52–54] of the
signal’s deviation from the local average, we construct the profile Y(i) = ∑i

k=1(C(k)− 〈C〉)
of the time series and divide it into Ns segments of length n. The process is repeated
starting from the end of the time series t = Tmax, resulting in 2Ns = 2Int(Tmax/n) segments.
The local trend yµ(i) at each segment µ = 1, 2, · · · , Ns is determined and the standard

deviation around it, F2(µ, n) = 1
n ∑n

i=1
[
Y((µ− 1)n + i)− yµ(i)

]2, is determined. Similarly,
F2(µ, n) = 1

n ∑n
i=1[Y(N − (µ − Ns)n + i) − yµ(i)]2 for µ = Ns + 1, · · · , 2Ns. Then, the

fluctuation function Fq(n) for the segment length n and different values of the parameter
q ∈ [−4.5, 4.5] is determined as:

Fq(n) =

(
1

2Ns

2Ns

∑
µ=1

[
F2(µ, n)

]q/2
)1/q

∼ nHq , (2)

and is plotted against varied segment length n ∈ [2, int(Tmax/4)]. The occurrence of the
power-law sections on the lines for different q are associated with the generalised Hurst
exponent Hq, as indicated on the right-hand side of the expression (2). The case q = 2
corresponds to the standard deviation and the above-mentioned Hurst exponent.

In Figure 5, we show the fluctuation function Fq(n) vs. segment length n for the
traffic trends detected in the load time series at low packet creation rate R = 0.1 on both
network structures. Even though the creation rate is low, the traffic load is higher on
the Statnet compared to the Webgraph. More importantly, the loads on both networks
show a clear cyclical trend, as shown in the close-up in Figure 5. A detailed analysis
of the fluctuation functions of these trends demonstrates their multifractal features on
both networks. The corresponding generalised Hurst exponent Hq is determined from
the fitted region of these curves for different values of the parameter q. The results are
summarised in the right panels of Figure 6. Notably, the large-scale fluctuations, which
are captured by the fluctuation function for q > 0, are almost mono-fractal and compatible
with the Hurst exponents Hq ∼ H2 ∼ 1. Theoretically, this value of the standard Hurst
exponent is observed in the class of stable Levy processes with limited range, in which
small and large jumps are present. In contrast, the small-scale fluctuations corresponding
to q < 0 need to be amplified with a whole spectrum of the exponents in the range
Hq ∈ [1.25, 2.5]. A similar feature persists for the larger values of posting rate, including
the one just before the congestion, i.e., R = 0.35 on Webgraph, and R = 0.7 on Statnet.
The corresponding fluctuation functions are shown in the left panels in Figure 6, exhibiting
multifractal properties in a wide range of time scales n. In addition, in both networks,
a further broadening of the spectrum at the q < 0 side occurs with Hq . 2.8 as the system
approaches the respective jamming transition. Hence, the increased number of higher
harmonics in these cyclical trends appears as a robust feature of traffic jamming on different
network structures; see also the Section 5.

The fluctuations around these trends are also investigated, as shown in Figure 7 for
both networks and the two representative posting rates. Notably, these fluctuations are
only weakly multifractal, specifically in the range q < 0, where the width ∆Hq<0 . 0.4,
virtually independent of the posting rate R. Whereas, in all cases we find Hq>0 ∼ H2 ∼ 1,
suggesting that these fluctuations still maintain temporal correlations characteristic of the
whole signal.
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as the green line. The straight lines indicate the fitted segments of the fluctuation function curves
corresponding to the generalised Hurst exponent.
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Figure 6. Left panels: The fluctuation function Fq(n) vs. n for the traffic load trends with jamming in
pre-congestion flow, at R = 0.35 in Webgraph (top) and R = 0.7 in Statnet (bottom panel). The gen-
eralised Hurst exponent Hq vs. amplification parameter q for two posting rates, indicated in the
legends for Webgraph (top) and Statnet (bottom panel).
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Figure 7. Fq(n) vs. n for the fluctuation around identified trends studied in Figures 5 and 6, for dif-
ferent networks and posting rates, as indicated in the legend. The slopes of the dashed and dot-
ted lines are 1.02± 0.05 and 1.33± 0.07, respectively. Different lines in each panel correspond to
q = 4, 2, 0.5,−0.5,−1,−2,−4, top to bottom.

5. Discussion and Conclusions

Using the previously developed model of the information packets’ transport with
search and queuing [1,13,14,17] on structured networks, we have investigated the nature
of the traffic load fluctuations for densities below the transition into the congested phase.
We have considered the data simulated with the model rule with a 2-depth search strategy
and the fixed maximum queue lengths at all nodes [1,13,14]. Apart from the limited full
queue lengths at all nodes, the network structure influences the packet traffic in various
ways. It manifests in the efficiency of the packets’ delivery, the distribution of their travel
times and waiting times in queues, and the jamming densities, primarily depending on
how the routing strategies adhere to the network structure, as previous studies showed [30].
In this context, the two networks considered in this work, Webgraph and Statnet, are
good representatives of the structures that are ‘optimal’ for low and high traffic density,
respectively [1]. They experience jamming via a 1st order phase transition at traffic densities
related to different posting rates Rc, as stated above; see Figure 13 in reference [1].

Our main findings are that, despite considerable differences in the average packet
densities resulting from the network’s structural characteristics, traffic loads’ global fluc-
tuations close to jamming exhibit certain universal features. They are best captured by
prominent cyclic trends in the traffic loads and their multifractal features, depicted in
Figures 5 and 6. On the other hand, the fluctuations around the respective trends are only
weakly multifractal, as shown in Figure 7. Considering different posting rates, i.e., traffic
densities on the respective networks, such cycles may occur as soon as the density is high
enough to cause packet queueing at different nodes. The network attempts to clear queues
in a series of actions that spread to the neighbouring nodes. Such coordinated activity of
nodes reduces the total load, after which it starts building up again with queueing at the
busiest nodes. By approaching the jamming transition, the network’s efficiency for packet
delivery is reduced. This situation results in gradually reduced coherence and an increase
of small variations of the load. Accordingly, the load’s power spectra exhibit long-range
temporal correlations for a wide range of low frequencies; cf. Figures 3 and 4. Meanwhile,
the short-range correlations dominate when the congestion starts. A detailed analysis of the
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trend’s fluctuations revealed its multifractality, in particular for the small-scale fluctuations
captured with the spectrum of the generalised Hurst exponents Hq<0, as shown in Figure 6
in both networks. As Figure 6 shows, the diversity of small fluctuations increases on
approaching the jamming transition, which leads to a broadening of the Hq<0 spectrum.

It should be noted that the studied cyclic trends in traffic loads on networks are
related to the system’s states (phase space). Thus, they differ from the more familiar
spatio-temporal evolution waves of localised groups of vehicles that appear as solutions
of differential equations in macroscopic models of high-density traffic [4]. These robust
characteristics of traffic load fluctuations can be used as warning signs for traffic congestion.
They can be detected directly from the time series of network loads and complement the
prominent statistical signatures, which require more detailed information about individual
packets and the activities of local nodes in a heterogeneous network. Similar properties
can be expected for the traffic loads of many other transport systems, provided that the
mapping to the network geometry [8] properly takes into account the key elements of the
underlying stochastic processes.
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