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Abstract: This paper is concerned with inconsistent results that can be obtained when modeling rigid
body collisions via algebraic equations. Newton’s approach is kinematic and fails in several cases.
Poisson’s formulation has been shown lead to energetic inconsistencies, particularly in work done
by the impulsive forces. This paper shows that the energetic formulation may lead to unexpected
results in the magnitudes of the impulsive forces. These inconsistencies are due to the simplifying
assumptions made to model collisions as occurring instantaneously. The inconsistencies increase
as friction in the system becomes higher. We propose an optimization procedure for solving the
algebraic equations of impact so that inconsistencies are minimized. Using experimental results, we
present a discussion about the coefficients of restitution and friction.
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1. Introduction

Consider an object colliding with another object or with a fixed surface. We observe
a few physical phenomena: there is less energy in the object and lower velocities are
observed after impact, and the impulsive forces that act during restitution are lower
in magnitude than their counterparts during compression. These phenomena have been
observed experimentally as well as deduced intuitively. Impact models have been proposed
based on these phenomena. At the simplest level, impact modeling by algebraic equations
relies on two parameters: the coefficients of restitution and friction [1].

Analyses of friction and impact are centuries old. Leonardo da Vinci’s contributions
are described in [2]. Routh [3] developed graphical techniques for modeling impact.
The Newton and Poisson models for restitution were the initial widely-used models.
The Newton model relates velocities of the impact point before and after impact and the
Poisson model relates the impact forces during compression and restitution. The Newton
model, which is a kinematic relationship, is widely used in experimental research involving
point or small masses, as well as for identifying the coefficient of restitution, e.g., [4,5].

The currently used algebraic equations for rigid body impact in the presence of friction
were developed over 30 years ago [6]. These equations were initially used with the Poisson
or Newtonian formulations. These two restitution models lead to energetically inconsistent
results [7] for modeling rigid body impact. For certain orientations of the body, work
done by the restitution force and energy dissipation deviates from expected values. This
inconsistency gets worse as the amount of friction in the system increases.

The energetic formulation [7] for the coefficient of friction was developed in response
to this inconsistency. Here, the coefficient of restitution is defined as the square root of the
ratio of the work done by the restitution force divided by the work done.

A review of the evolution of dynamics of impact can be found in [8], where contact
models are analyzed. The Poisson and energetic models give identical results in the absence
of friction [9].

The energetic model for restitution leads to energetically consistent results. However,
it does not consider the ratio of the normal forces during compression and restitution. We
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would expect this ratio to follow a similar pattern observed in experiments and in the Pois-
son model. The question arises as to whether it is possible to use the energetic formulation
and have unexpectedly high or low values for the impact forces. A restitution force close in
magnitude to the compressive force is an indication of inconsistency. Calculating the force
ratio in the energetic formulation was first considered in [10].

This paper builds on the observations in [10] and it analyzes and simulates impact
equations. It then compares the work done by the normal force, as well as ratios of
the magnitudes of the impulsive forces and points to inconsistencies in the formulation.
The analysis assumes that the coefficients of friction and restitution remain constant during
impact. The results confirm that the Poisson model may lead to inconsistent results
for energy. However, the results also indicate that the energetic approach may produce
inconsistent results for force magnitudes. Hence, neither the Poisson, Newton, nor energetic
formulations are accurate descriptions of rigid body impact in the presence of friction. This
inconsistency is exacerbated for higher values of friction.

What can be done to improve the impact model? To this end, this paper proposes an
optimization technique that combines the Poisson and energetic formulations. The paper
ends with a discussion and some thoughts about the coefficients of friction and restitution
based on experimental results of the author [11].

2. Review of Two-Dimensional Impact Equations

Consider a rigid body of mass m and centroidal moment of inertia IG impacting a
surface. The orientation is shown in Figure 1, where C is the impact point. The body does
not need to be a slender rod. We use a fixed set of xyz axes, with the y axis perpendicular
to the plane of impact and pointing downward.

The orientation of the object is defined by the angle θ. The position vector is

C
x

y

-y

Fx
^

Fy
^

Figure 1. Free body diagram of 2D model during impact assuming for vCx > 0.

~RC/G = Lx~i + Ly~j Lx = −L sin θ Ly = L cos θ (1)

in which L is the distance from the center of mass G to C. The velocity of the center of mass
and angular velocity immediately before impact are ~VG = vx~i + vy~j, ~ω = ωz~k. The impact
point velocity ~VC at the beginning of impact is ~VC = ~VG + ~ω× ~RC/G.

An impulsive normal force F̂y acts in the vertical direction (upwards) and impulsive
friction force F̂x opposite to the horizontal velocity of the impact point C. The gravitational
force is negligible as it is non-impulsive. We express the total impulsive force F̂ as

~̂F = Sx F̂x~i− F̂y~j, (2)
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in which Sx = −sign(vCx ). Assuming that impact takes place in a very short period of
time, the linear and angular impulse-momentum relationships can be written as

mvx + Sx F̂x = mv′x mvy − F̂y = mv′y IGω− Sx F̂xLy − F̂yLx = IGω′, (3)

where the primes denote post-impact quantities. With this notation, F̂x, and F̂y are both
positive quantities.

The three equations above are accompanied by five unknowns: three post-impact
velocities v′x, v′y, ω′ and two impulsive forces F̂x, F̂y. Two additional equations are needed
which are obtained depending on the type of motion and stage of impact.

In each stage of impact, the impact point can undergo four types of motion: (i) it can
continue sliding, (ii) sliding can come to a stop and the impact point sticks, (iii) after coming
to a stop the impact point begins to slide in the opposite direction (reverse sliding), or (iv)
if initial horizontal velocity of impact point is zero, it can continue sticking or begin sliding.
Reverse sliding occurs when the moment generated by the impulsive normal force is large
enough to reverse the direction of sliding.

Consider the compression stage and where sliding continues throughout. The vertical
velocity of the impact point is zero at the end of compression, so that the fourth and fifth
equations become

vc
Cy

= vc
y + ωc

zLx = 0 F̂c
x = µk F̂c

y . (4)

When sliding ends during compression, we split the compression stage into two
periods c1 and c2. The horizontal velocity of the impact point becomes zero before the
vertical velocity does. We replace c with c1, as described in [10].

There are two possibilities during the second part of compression: the impact point
sticks or it slides in the opposite direction. We calculate Sc2

x by analyzing the slide direction
in the absence of friction. This tendency is dictated by θ. When θ > 0, the impact point will
slide in the −x direction and vice versa. The end conditions for sticking are

vc
Cx

= vc
x −ωc

zLy = 0 vc
Cy

= vc
y + ωc

zLx = 0. (5)

When reverse sliding occurs, the end conditions are vc
Cy

= vc
y +ωc

zLx = 0, F̂c2
x = µk F̂c2

y ,

and Sc2
x = 1, as direction of the friction force has changed. The motions when the initial

horizontal velocity is zero, vCx = 0, are described in [10].
We next consider restitution. Here, the impulsive normal force has a smaller magnitude

than during compression, primarily due to hysteresis. This loss is modeled by the coefficient
of restitution and is denoted by en, (0 ≤ en ≤ 1). We begin with the case where at the end
of compression the impact point slides and sliding continues during restitution. The three
momentum balances are the same as Equation (3) with superscript r. The fourth equation
depends on the sliding condition.

When sliding ends during restitution, we separate the restitution stage into two
periods, r1 and r2, and follow a procedure similar to compression [10]. The horizontal
velocity of the impact point becomes zero at r1.

For sticking, the fourth equation is v′Cx
= v′x−ω′zLy = 0. For reverse sliding, the fourth

equation is F̂r2
x = µk F̂r1

y . As in the compression stage, we calculate friction needed to prevent
sliding and compare to the available friction.

The fifth equation in all cases is in terms of the coefficient of restitution en. We consider
three definitions for en. The first definition relates the impulsive normal forces by

F̂r
y = en F̂c

y . (6)

and it is attributed to Poisson. The second definition, known as Newton’s law, can be
derived from Poisson’s model for simple cases of impact and relates the velocities of the
impact point by en = −v′Cy

/vCy .
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The energetic formulation is in terms of work done by the normal force F̂y during the
compression and restitution stages. Denoting them by Wc and Wr, the energetic coefficient
of restitution is defined as

en =

√
Wr

−Wc . (7)

Work can be defined as the integral of power, that is, force times velocity. For the
normal force Fy, W =

∫
FyvCy dt. Details of the work expressions can be found in [10]. Work

done by the impact force during restitution has a similar form. Seven different cases can be
identified for two-dimensional impact, as listed in Table 1. As shown in [10], we can obtain
the mode of motion in closed form.

Table 1. Cases for two-dimensional (also three-dimensional) impact.

Case Initial Compression Restitution
No. Condition Stage Stage

0 vCx 6= 0 Sliding Sliding
1 vCx 6= 0 Sliding ends, sticking Sticking
2 vCx 6= 0 Sliding ends, reverse sliding Reverse sliding
3 vCx 6= 0 Sliding Sliding ends, sticking
4 vCx 6= 0 Sliding Sliding ends, reverse sliding
5 vCx = 0 Sticking Sticking
6 vCx = 0 Sliding Sliding

3. Non-Dimensional Restitution Parameters and Simulation

The three definitions for coefficient of restitution in the previous section lead to three
non-dimensional and normalized quantities

NP =
F̂r

y

en F̂c
y

NN =
−v′Cy

envCy

NE =
1
en

√
−Wr

Wc . (8)

with the subscripts denoting Poisson, Newton, and energetic, respectively. In the absence
of friction, all three definitions of the coefficient of restitution are equivalent [7].

We next obtain numerical results by varying the orientation angle θ and ratio vCx /vCy

for en = 0.7 and µk = µs = 0.4. The initial angular velocity is taken as zero. The falling
object is a rod with m = 1, L = 2.3. The plots are given for −70◦ ≤ θ ≤ 70◦. These values
are chosen so that all modes of motion will be present in the plots [10] .

Figures 2 and 3 in [10] show the mode of impact, velocity ratios, total energy ratios,
NE and NP. We reproduce here the plot of NE for the Poisson model and NP for the
energetic model. For the Poisson model, plot of NE shows places where the model produces
energetically inconsistent or unreliable results. If the work-done ratio is over 1, then the
impulsive normal force increases energy, which is not possible. For the energetic model,
plot of NP shows the ratio of the impulsive forces, F̂r

y/(en F̂c
y) and where the energetic

model produces unexpected results. For example, NP > 1/en indicates that restitution
force is larger than the compression force, which is impossible. We make the following
observations from the simulation results:

• As discussed in [10], both models produce the same results for the mode of motion.
Furthermore, both models produce similar results for the velocity ratio of the impact
point, and very similar results for the ratio of total energy.

• The ratio of work done NE for Poisson’s model in Figure 2 shows an energetic incon-
sistency for some cases when θ < 0, with the restitution force doing more work than
e2

n times than the work done by the compressive forces, while the work done by the
restitution force is still less than work done by the compressive force, this ratio is high
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and unexpected. Furthermore, for certain values when θ > 0, the restitution force
does much less work than expected.

• The ratio of the normal forces in Figure 3, which uses the energetic model for resti-
tution, is quite high in a few cases. There are points on the plot with a force ratio of
NP = 1.32. The restitution force reaches values of F̂r

y = NPen F̂c
y = (1.32× 0.7)F̂c

r =

0.92F̂c
y , which is quite high, unexpected, and inconsistent.

• For cases when NE is larger than one, NP is less than one and vice versa.
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Figure 2. Influence of orientation angle θ and velocity ratio vCx /vCy for ω = 0, µk = µs = 0.4,
en = 0.7 on ratio of work done by normal force (NE). Poisson’s model is used.
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Figure 3. Influence of orientation angle θ and velocity ratio vCx /vCy for ratio of normal force for
restitution and compression (NP). Energetic model is used.

Both plots above point to a band that rises as the orientation angle θ approaches zero
and falls as θ increases. This band corresponds to regions when sliding ends and the object
sticks or reverse slides: in cases 1 and 2 sliding ends during compression and in cases 3
and 4 sliding ends during restitution. This is an indication that sliding coming to an end is
not being modeled accurately. Outside of this band, the three normalized quantities have
near-identical values, all very close to 1.

As discussed earlier, for zero friction all models give the same results. The Pois-
son and energetic models begin to diverge as the amount of friction increases, with NE
values deviating more from unity in the Poisson model and NP values in the energetic
model. Furthermore, the Newton model for restitution diverges faster than the Poisson
and energetic models.

For a high-friction case, such as µ = 0.7, in a few orientations of the object the energetic
approach, the impulsive restitution force has a higher magnitude than the impulsive
compression force, which is an impossibility. The highest value of NP for the energetic
model is 1.49, so that F̂r = 1.49× 0.7F̂c = 1.04F̂c. The lowest value of NP is 0.78, which
leads to a very small value for the restitution force F̂r = 0.78× 0.7F̂c = 0.55F̂c, which also is
not very likely. Furthermore, the band where the values of NE and NP deviate from unity
becomes thicker with increasing friction.
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Similarly, for the Poisson model with µ = 0.7, the highest value of NE is 1.27, so that
Wr = (enNE)

2Wc = 0.79Wc, which is quite high and unexpected. The lowest value of NE
is 0.67, so that Wr = (enNE)

2Wc = 0.22Wc, also not expected.
We should keep in mind that the friction force becomes a greater factor when the

horizontal speed is within a certain range. From Figures 2 and 3, for low horizontal to
vertical velocity ratios (in our example, vCx /vCy < 0.3) and high velocity ratios (in our
example, vCx /vCy > 2) increase in friction does not affect NE and NP as much.

The normalized response characteristics do not change when the coefficient of resti-
tution is varied. Table 2, lists the minimum and maximum values of NE for the Poisson
model and of NP for the energetic model for different values of µ and en. When µ is kept
the same and en is varied, values for NP and NE do not change for both the Poisson and
energetic models. However, when en is kept the same and µ is varied, there is a substantial
difference in the results.

Table 2. Minimum and maximum values for NE and NP for different values of µ and en.

µ en NE for Poisson Model NP for Energetic Model
0.4 0.4 0.74, 1.08 0.92, 1.35
0.4 0.8 0.74, 1.08 0.92, 1.35
0.8 0.4 0.66, 1.37 0.73, 1.53
0.8 0.8 0.65, 1.37 0.73, 1.53

4. Review of Three Dimensional Impact and Simulation

The three-dimensional impact equations have received more interest in recent years,
e.g., [12–14]. We use here the formulation described in detail in [10]. The derivations are
quite lengthy, so that they will only be summarized here. We use the same coordinate
system as before. The xz plane is the plane of impact. The position vector ~R = ~RC/G from
the center of mass to the impact point is shown in Figure 4.

C

+Ly

G

x

y

Fx
^

Fy
^

z

Fz
^

-Lx

-Lz

Figure 4. Falling object colliding with ground in three dimensions.

We express the position vector as

~RC/G = Lx~i + Ly~j + Lz~k, (9)

with L2
x + L2

y + L2
z = L2, where L is the distance from the center of mass G to impact point C.
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The initial velocity of the center of mass and angular velocity are ~VG = vx~i + vy~j + vz~k,
~ω = ωx~i + ωy~j + ωz~k. The impact point velocity ~VC at the beginning of impact is

~VC = ~VG + ~ω× ~RC/G = vCx
~i + vCy

~j + vCz
~k. (10)

Figure 4 also illustrates the impulsive forces acting at the impact point. Defining the
magnitudes of these forces as positive, the impulsive force vector becomes

~̂F = Sx F̂x~i− F̂y~j + Sz F̂z~k, (11)

where Sx = −sign (vCx ), Sz = −sign (vCz). The linear momentum balances in the fixed
x, y, and z-directions are

mvx + Sx F̂x = mv′x mvy − F̂y = mv′y mvz + Sz F̂z = mv′z. (12)

The angular momentum of a rigid body about its center of mass is {HG} = [IG]{ω},
in which [IG] is the inertia matrix and {ω} is the angular velocity. The angular momentum
balance, using a set of body-fixed coordinates, is approximated for impulsive motion as

[IG]
(
{ω′} − {ω}

)
= {M̂G}. (13)

It is necessary to calculate direction of the friction force during impact. Work on this
topic has included determining a nonlinear curve to describe the change in direction [14,15].
Recent research also involves obtaining the coefficient of restitution from experimental
data considering that impact has a finite time duration and integrating force and moment
equations over this time period [13,16,17].

As in two-dimensional impact, the mode of motion is not affected by the restitution
model. Plots of NE for Poisson model and of NP for the energetic model follow a pattern
similar to the two-dimensional case, as shown in [10]. There is a band where the two impact
models give different results. These bands involve mode change, where sliding comes to
an end or reverses.

We compare minimum and maximum values for NE and NP for three-dimensional
impact. As expected, values of NP and NE deviate from unity more as friction becomes
higher. Table 3 shows maximum and minimum values of these parameters for different
values of µ and en.

Table 3. Minimum and maximum values for NE and NP for different values of µ and en,
with vCx /vCy = 1. 3D impact is modeled.

µ en NE for Poisson Model NP for Energetic Model
0.4 0.4 0.78, 1.08 0.93, 1.29
0.4 0.8 0.78, 1.08 0.92, 1.30
0.8 0.4 0.68, 1.18 0.84, 1.47
0.8 0.8 0.68, 1.18 0.84, 1.47

The results in Table 3 follow closely the two-dimensional impact results in Table 2: the
coefficient of restitution does not affect NP and NE, while NP and NE deviate more from
unity for higher levels of friction.

5. Selection of Restitution Model

Because in the presence of friction the Poisson model produces energetically incon-
sistent results and the energetic model produces inconsistent results for the ratio of the
impact forces, we propose the following approach for obtaining post-impact velocities and
angular velocities:
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• Solve the impact equations using the energetic model. Use the solution to calculate NP.
If this value is much different from 1, then there is an inconsistency with the energetic
model as the force amplitudes are not reasonable.

• Next, solve the impact equations using Poisson’s model. Use the solution to calculate
NE. If this value is much different from 1, then there is an inconsistency with the
Poisson model with values for work done.

• Select the impact model that gives more consistent and expected results.
• If both models produce inconsistent values, likely for cases of high friction, such as

µ > 0.5, consider alternate models. One approach is to bring time dependence into
impact modeling, or to use finite-elements. A compromise definition for coefficient of
restitution can also be considered, as will be described in the next section.

6. An Optimization Approach to Modeling Restitution

In previous sections, we observed that the Poisson method may lead to energetically
inconsistent results, and the energetic approach can yield inconsistent values of impact
forces. These inconsistencies are present because both the Poisson and energetic approaches
are applied to equations obtained by approximation. The inconsistencies become larger
with increasing friction. While experimental results will be the ultimate arbiter of which
approach is more accurate, we propose a methodology that bridges the gap between the
two aforementioned approaches.

The compromise approach proposed here is based on obtaining an optimal solution
that renders the values of NP and NE as close to unity as possible. Therefore, when solving
the restitution equations, we minimize the objective function

J = d1(1− NP)
2 + d2(1− NE)

2 = d1

(
1−

F̂r
y

en F̂c
y

)2

+ d2

(
1−

√
−Wr

e2
nWc

)2

, (14)

in which d1 and d2 are weighting functions. The minimization process is subject to
equality constraints, which are the describing equations associated with impact. For two-
dimensional impact, there are four equations: the three momentum balances and a fourth
equation associated with the type of motion. For example, when sliding continues during
restitution the three momentum equations are given in [10], and the fourth equation is
F̂r

x − µk F̂r
y = 0. In essence, the fifth equation of previous approaches, the coefficient of

restitution equation, is replaced by minimization of the objective function.
For three-dimensional motion, there are eight equality constraints: three constraints

each associated with the linear momentum and angular momentum balances , as well as
two constraint equations associated with the type of motion.

Consider the two-dimensional case and the parameters used to generate Figure 2
(Poisson model) and Figure 3 (energetic model). Using weighting functions d1 = d2 = 1,
the simulation results are shown in Figure 5.

We can clearly see from Figure 5 that in both plots of the ratios NP and NE the maxi-
mum and minimum values are closer to unity than their counterparts in Figures 2 and 3.
That is, the plot of NE in Figure 5 has lower maximums and higher minimums than the
plot of NE in Figure 2. Similarly, the plot of NP in Figure 5 has lower maximums and higher
minimums than the plot of NP in Figure 3. When comparing the velocity ratio, NN , Figure 5
is more similar to the Poisson model than the energetic model.

We next plot in Figure 6 results when friction is increased to 0.7 while keeping the
other parameters the same. We observe that the modes of motion change, velocity ratios are
higher, and there is less total energy in the system after impact, all expected results. On the
other hand, in contrast with earlier results for the Poisson and the energetic models, values
for NP and NE do not change nearly as much, an indicator that the optimization technique
leads to more consistent results for the impact forces and work done than the Poisson
and energetic approaches. Similarly, the band where the impact results lose accuracy
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becomes wider with increased friction. The one black dot in the figures is associated with a
convergence issue of the optimization procedure.
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Figure 5. Influence of orientation angle θ and velocity ratio vCx /vCy on the type of impact for ωz = 0,
µk = µs = 0.4, en = 0.7. Top figure: mode of sliding; second figure: velocity ratio NN ; third figure:
total energy ratio (after impact/before impact); fourth figure: ratio of normal force for restitution and
compression (NP); bottom figure: ratio of work done by normal force (NE). Optimization model
is used.
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Figure 6. Influence of orientation angle θ and velocity ratio vCx /vCy on the type of impact for ωz = 0,
µk = µs = 0.7, en = 0.7. Top figure: mode of sliding; second figure: velocity ratio NN ; third figure:
total energy ratio (after impact/before impact); fourth figure: ratio of normal force for restitution and
compression (NP); bottom figure: ratio of work done by normal force (NE). Optimization model
is used.

Let us next repeat the analysis for the maximum and minimum values of NP and NE
for different values of the coefficients of restitution and and friction. We use the values of
0.4 and 0.8 for both these coefficients. The results for 2D impact with the same parameters
as in Table 2 are shown in Table 4.

When compared with Table 2, we observe exactly what we saw in Figures 5 and 6 that
the maximum and minimum values the ratios NP and NE are much closer to unity than in
Table 2. The difference from Table 2 is quite striking. Values around 1.40–1.50 in Table 2
are now around 1.15, a significant drop. We conclude that the maximum and minimum
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values of the force ratios and energy ratios are much closer to 1 so that inconsistencies are
reduced substantially.

Table 4. Minimum and maximum values for NE and NP for different values of µ and en. The opti-
mization approach is used to solve the impact equations.

µ en min. and max. NE min. and max. NP

0.4 0.4 0.84, 1.04 0.96, 1.12
0.4 0.8 0.84, 1.04 0.96, 1.12
0.8 0.4 0.76, 1.13 0.82, 1.16
0.8 0.8 0.76, 1.13 0.82, 1.16

We note that, when d1 = 0, the optimization results are identical to results obtained
using the energetic formulation. Similarly, when d2 = 0, the optimization results are
identical to results obtained using the Poisson formulation.

Let us next compare the simulation results by tabulating the velocities and angular
velocity, as well as NP and NN , for given angles. In the first comparison, we use µ =
0.4, en = 0.7, vCx /vCy = 1, θ = 20◦. In the second comparison, the incident angle is
θ = 40◦ with all the other parameters the same.

In both Tables 5 and 6, the optimization results look like the averages of the values
obtained for the Poisson and energetic models. This is expected, as the optimization
approach is a compromise between the Poisson and energetic approaches.

Table 5. Post-impact values for the three models and for θ = 20◦. Mode of motion is sticking.

Poisson Energetic Optimization
v′x 1.02 1.04 1.03
v′y −0.14 −0.19 −0.16
ω′ 0.48 0.48 0.47
v′Cx

0 0 0
v′Cy

−0.52 −0.57 −0.54

NP 1 1.10 1.05
NE 0.91 1 0.95

Table 6. Post-impact values for the three models and for θ = 40◦. Mode of motion is reverse sliding.

Poisson Energetic Optimization
v′x 0.93 0.95 0.94
v′y 0.40 0.35 0.38
ω′ 0.57 0.60 0.58
v′Cx

−0.08 −0.10 −0.09
v′Cy

−0.45 −0.54 −0.48

NP 1 1.22 1.08
NE 0.83 1 0.89

The results also show that the velocity ratio of modeling restitution is indeed more
inaccurate. Since the pre-impact value of vCy is 1 in both Tables 5 and 6, the vertical
velocity of the contact point after impact is expected to be −0.7 when the Newton model
(en = −v′Cy

/vCy ) is used. The results are −0.54 and −0.48, more than a 20% difference from
−0.7, larger than the differences for NP and NE.
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As stated earlier, experimental results should be compared with the three analytical
approaches used in this paper. Nevertheless, the optimization approach, which permits
simultaneous use of both the Poisson and energetic formulations, appears to be a viable
alternative that produces more consistent and realistic results.

7. Experimental Modeling of Restitution and Friction

Experimental results show that the normal force generated during impact increases
with time during compression and decreases during restitution and that the time elapsed
during restitution is shorter than time elapsed during compression. Figure 7 shows a
generic model for such an impact force. For a triangular profile of impact lasting tc during
compression and tr for restitution, the impulsive force during compression, which is the
integral of the force over time, is F̂c = F0tc/2. Similarly, the impulsive force during
restitution is F̂r = F0tr/2. As we saw earlier, the Poisson approach defines the ratio of
the two impulsive forces as the coefficient of restitution. If we assume that the rise and
fall profiles are linear, the coefficient of restitution becomes the ratio of the duration of
restitution to duration of compression

en =
F̂r

F̂c
=

tr

tc
. (15)

 

t

F

trtc

F0

Figure 7. Profile for an impact force.

Other impact force profiles give different expressions for the coefficient of restitution.
In general, impulsive force profiles are closer to sinusoidals than straight lines [18].

Figure 8 shows an experimentally-obtained acceleration profile from a drop test of
a corrugated cardboard container inside which were two ammunition boxes, encased
by cushioning material made of folded paper. Reference [11] describes the process of
developing the folded-paper cushioning system and the material properties of the cushion.
The accelerations (in g) were measured by attaching a triaxial accelerometer to one of the
ammunition boxes. The container with the ammunition boxes and cushions weighed about
45 kg and the drop height was 30 m onto a concrete ramp. The objective of the experiments
was to measure the load-absorbing capability of the folded-paper cushions developed
for the U.S. Army. Calculating coefficients of friction and restitution was not a primary
objective. However, we can use Figure 8 for observations about en and µ.
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Figure 8. Acceleration profile obtained experimentally using a triaxial accelerometer.

The acceleration profiles in the bottom half of the figure show accelerations in the
different orientations of the accelerometer:

• X-direction (blue), which was close to the impact direction perpendicular to the drop
surface, but not exactly. Accurately measuring orientation of the box from video of the
drop was difficult. The X-direction was relatively close to the direction of the normal
force, with a peak acceleration close to 300 g.

• Near horizontal Y-direction (red), along direction of sliding or impending lateral
velocity (impulsive friction force direction).

• A third direction Z (green), along which there was little acceleration (compared to the
other levels).

The top curve (brown) shows magnitude of the total acceleration, with the peak
acceleration reaching 350 g. We note that other drop tests we conducted using similar
equipment gave similar acceleration profiles. We observe the following from Figure 8:

• As expected, the restitution period is shorter than the compression period.
• A rough estimate of the coefficient of restitution is en ≈ 0.35. This value is obtained by

approximating the acceleration profile as consisting of straight lines. This calculation
was verified by visually observing the height to which the box rose after impact.
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• The impulsive friction force has almost the same form as the impulsive normal force,
providing evidence for the general assumption that the coefficient of friction is con-
stant or near-constant during impact. The coefficient of friction can be estimated by
comparing magnitudes of the accelerations in the perpendicular and horizontal direc-
tions as µ ≈ 0.65. As mentioned above, the perpendicular and horizontal directions
are approximate.

• The impact duration is about 0.03 s. Note that there is an error in the plot provided by
the recording device regarding increments of time.

• The initial small rise, then drop, and then larger rise of the acceleration profile can
be explained by the presence of folded-paper cushion around the ammunition case
before the majority of the impact took place.

• The acceleration curves during restitution are smoother than compression.

Given the observations above, we justify describing the impulsive friction force as a
friction coefficient multiplied by the impulsive normal force. On the other hand, the results
do not provide justification for the assumption that the coefficient of restitution does not
change with speed of impact and orientation of the impacting object.

8. Conclusions

This paper analyzes inconsistent results that can be obtained when modeling rigid
body collisions via algebraic equations. While the Poisson approach leads to inconsistencies
associated with the work done by these forces, the energetic model leads to inconsistencies
in force ratios of compression and restitution forces. The inconsistencies are not affected by
the coefficient of restitution but they increase as the coefficient of friction becomes higher.
It is possible, as friction becomes larger, to obtain physically unrealizable results. It is
recommended that algebraic equations for impact be used when the amount of friction in
the system is low. An optimization procedure is proposed to calculate post-impact velocities
and impact forces which reduces the inconsistencies associated with the magnitudes of the
compression and restitution forces, as well as work done by these forces. Prior experimental
results provide guidelines for modeling the coefficients of restitution and friction.
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