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Abstract: The hybrid normal (HN) distribution is a new generalization of the normal distribution that
we introduce and study in this article. Its mathematical foundation is based on the logarithmically
transformed version of the famous hybrid log-normal (HLN) distribution, which is an unexplored
direction in the literature. We emphasize the applicability of the HN distribution with the aim
of fitting versatile data, such as, in this paper, fiber data on the strength of glass. In particular,
the unknown parameters are estimated using both Bayesian and maximum likelihood estimation
approaches, with Bayesian estimation carried out using the MCMC approach. A thorough simulation
study is performed to determine the flexibility of the estimates’ performance. The glass fiber data
are then analyzed, with an assessment of several existing distributions from the literature used to
demonstrate how the HN distribution is relevant in this regard.

Keywords: hybrid log-normal distribution; MCMC estimation; simulation; strength of glass fiber data
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1. Introduction

The majority of real-life datasets resulting from complex processes are infrequently
characterized and predicted adequately by standard fundamental distributions in practice.
The choice of a flexible distribution for data analysis is crucial, as the perfection of results
from statistical analysis greatly relies on the model that is adopted. In order to obtain
statistical outputs of higher quality and greater accuracy, it is essential to identify more
connected distributions. Several continuous distributions are readily accessible in the
statistical literature for modelling real data. Among them, the skewed distributions have
more strategic significance, and are frequently used in many areas of applied research. For
this reason, numerous families of skewed distributions have been proposed. Azzalini (1985)
(see [1]) introduced a method for introducing skewness to the normal (N) distribution.
It should be noted that while the majority of skewed distributions have the positive real
values set as the support, the selected based distribution has the full real line as the support.
Subsequently, many authors have continued to develop this concept; for example, see [2,3].

In the same respect, we cite Coles (2001) [4], Castillo et al., (2005) [5], and Ferrari and
Pinheiro (2012) [6], all of whom emphasize the Gumbel distribution (defined on the real
line) for analyzing real datasets. As a fair competitor, [7] developed the log-Dagum (LD)
distribution, which is derived by transforming the Dagum distribution logarithmically. The
LD distribution has the feature of having leptokurtic shapes.

In order to create vast classes of standard distributions and pertinent statistical pro-
cedures that can be used as models for a variety of real-world problems, much effort has
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been put forth throughout the years. Real-world phenomena need to be introduced to new
statistical distributions that are defined on the entire real line and have bimodal behaviour
for the probability density function (pdf). As a consequence, in this paper, we offer a
novel distribution called the hybrid N (HN) distribution, which can be described as a
generalized version of the well-known N distribution. It can additionally be represented as
the logarithmically transformed version of the hybrid log-N (HLN) distribution, as defined
by the cumulative distribution function (cdf) provided in Equation (1). It has the interesting
feature of having a bimodal pdf. The leading motivations behind the introduction of this
new distribution are:

(i) to develop a new generalization for the well-known N distribution, which continues
to pique the interest of statisticians across the board;

(ii) as mentioned, to investigate the characteristics of the HLN distribution’s logarithmi-
cally transformed version, which has surprisingly not received much attention in the
statistical literature.

The practical viewpoint is considered as well; we aim to demonstrate how the HN
distribution can be concretely used as a model for dealing with the analysis of important
data, and show that it outperforms comparable well-known models. We examine an
experimental dataset of glass fiber strength from the National Physical Laboratory in
England as an application in this research. Because the HN distribution is an extended
version of the well-known N distribution, which has numerous applications in physics,
including various dynamical systems (see [8,9]), it is quite conceivable to employ the HN
distribution for further physical applications.

The remainder of the present article is divided into several sections, and is structured
as follows. We introduce the HN distribution and discuss its special cases and moments in
Section 2. The various functions and moments related to reliability measures are discussed
in Section 3. In Section 4, the unknown parameters of the new model are estimated
using efficient procedures, namely, the maximum likelihood (ML) and Bayesian estimation
procedures. A simulation study is conducted in Section 5 to analyze the performance
and flexibility of the ML estimates (MLEs). Additionally, Section 6 presents a parametric
bootstrap simulation technique utilizing these estimates. Section 7 illustrates the application
of the HN model based on a real-life dataset. The final concluding remarks are presented
in Section 8.

2. The Hybrid Normal Distribution

For fitting data on occupational radiation exposure, Kumazawa and Numakunai [10]
introduced a new distribution in 1981 called the HLN distribution. An absolutely continu-
ous random variable (acrv) Y is said to follow an HLN distribution if its cdf is indicated as

HY(y) =
∫ y

0

1√
2π

( α

u
+ σ

)
e−

1
2 (α log u+σu+µ)2

du, (1)

and the pdf is provided by

hY(y) =
1√
2π

(
α

y
+ σ

)
e−

1
2 (α log y+σy+µ)2

, (2)

where y > 0, α ≥ 0, σ ≥ 0, α + σ > 0, and µ ∈ R. For σ = 0, the pdf in Equation (2)
reduces to the well-known two-parameter log-N distribution denoted as LN(−µα−1, α−2).
Although the HLN distribution might seem simple, there do not seem to be many references
to it in the statistical literature. A scalar function was defined in [11], showing a hybrid
pdf made up of p N and q log-N variants. The hybrid multivariate stochastic differential
equation for stand basal area and volume models in a forest stand is presented in [12].

Here, the proposed three-parameter distribution is referred to as the hybrid N distri-
bution, denoted as HN(α, µ, σ) or simply HN.
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Definition 1. If an acrv Y follows the HLN distribution as provided by its cdf and pdf in Equations
(1) and (2), respectively, then the acrv X = log Y is said to follow the HN distribution. The cdf of X
is specified by

F(x) =
∫ x

−∞

1√
2π

(α + σeu)e−
1
2 (αu+σeu+µ)2

du,

which can be written as
F(x) = Φ(αx + σex + µ), (3)

where Φ(x) is the cdf of the standard N (SN) distribution, conventionally denoted as N(0, 1). Then,
the pdf of the acrv X is provided by

f (x) =
1√
2π

(α + σex)e−
1
2 (αx+σex+µ)2

, x ∈ R, (4)

where α ≥ 0, σ ≥ 0, α + σ > 0, and µ ∈ R.

Two extremely alluring characteristics instantly follow from Definition 1, which are as
follows:
Property A: When σ = 0, the pdf in Equation (4) reduces to the pdf of the N distribution
with parameters −µα−1 and α−2, i.e., N(−µα−1, α−2), where µ is not the typical location
parameter of the N distribution.
Property B: If the acrv X follows the HN distribution, then Y = eX has the HLN distribution.

Plots of the corresponding cdf and pdf of the HN distribution are shown in Figures 1
and 2. It is possible to see from Figure 2 that the pdf is bimodal in nature, with a possible
spike, which is an intriguing feature of this distribution.
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Figure 1. Cdf plots of the HN distribution.
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Figure 2. Pdf plots of the HN distribution: (a) bimodal with a dominant bell shape, (b) bimodal with
a bell-shape and a spike shape, and (c) original skewness shapes.

Now, the moment generating function of the HN distribution is indicated as

M(t) =
I∗(t)√

2π
, (5)

where
I∗(t) =

∫ ∞

−∞
(α + σex)etx− 1

2 (αx+σex+µ)2
dx, (6)

which is well-defined for all t ∈ R.

Theorem 1. If X has the HN(α, µ, σ) distribution, then Y = |X| follows the half-HN distribution
(HHN) with parameters α, µ, and σ, with the cdf and pdf provided by

G(y) = Φ(αy + σey + µ)−Φ(−αy + σe−y + µ), (7)

and
g(y) = (α + σey)φ(αy + σey + µ) + (α + σe−y)φ(−αy + σe−y + µ), (8)

respectively, where y > 0 and φ(x) is the pdf of the SN distribution.
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Proof. For any y > 0, the cdf of Y is specified by

G(y) = P(Y ≤ y) =P(|X| ≤ y) = P(−y ≤ X ≤ y) = F(y)− F(−y)

=Φ(αy + σey + µ)−Φ(−αy + σe−y + µ).

The pdf of the HHN distribution is provided by

g(y) =
d

dy
G(y) =

d
dy

Φ(αy + σey + µ)− d
dy

Φ(−αy + σe−y + µ)

=(α + σey)φ(αy + σey + µ) + (α + σe−y)φ(−αy + σe−y + µ),
(9)

which ends the proof.

It is significant to mention that the HHN distribution is not addressed in the current
statistical literature. In a subsequent publication, we intend to investigate the various
mathematical properties of this distribution.

3. Reliability Measures

Identification of a system’s important components and estimation of the effects of
component failures are the fundamental goals of systems reliability analysis. Therefore, it
is essential to derive the functions of the HN distribution’s reliability measures.

Assume that X is an acrv with pdf f (x) and cdf F(x). Then, the general formulas
for the survival, hazard rate, cumulative hazard rate and reversed hazard rate functions are
S(x) = 1− F(x), h(x) = f (x)/S(x), R(x) = − log[S(x)], and r(x) = f (x)/F(x), respectively.

3.1. Survival, Hazard Rate, Cumulative Hazard Rate, and Reversed Hazard Rate Functions

The survival function of the HN distribution is indicated as

S(x) = 1−Φ(αx + σex + µ), (10)

where x ∈ R (as hereinafter).
Thus, the hazard rate function of the HN distribution is provided as

h(x) =
(α + σex) e−

1
2 (αx+σex+µ)2

√
2π [1−Φ(αx + σex + µ)]

. (11)

The plots in Figure 3 portray the increasing nature of the hazard rate function.
The cumulative hazard rate function of the HN distribution is specified by

R(x) = − log[1−Φ(αx + σex + µ)], (12)

while the reversed hazard rate function of the HN distribution is expressed as

r(x) =
(α + σex) e−

1
2 (αx+σex+µ)2

√
2π Φ(αx + σex + µ)

. (13)

3.2. Conditional Moments

For studying the reliability of a system, it is of great interest to know the conditional
moments that are important tools for prediction purposes. If X is an acrv that follows the
HN distribution, then its nth conditional moment is provided by

E(Xn|X > t) =
1√

2π S(t)
I1(n, t), (14)

where
I1(n, t) =

∫ ∞

t
xn(α + σex) e−

1
2 (αx+σex+µ)2

dx. (15)
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Figure 3. Hazard rate function plots of the HN distribution: (a) moving σ and (b) combined action of
α and σ.

A direct application is discussed below. In reliability engineering, biomedical research,
and survival analysis, the vitality function is crucial. A component must have low relative
vitality to age quickly, whereas high vitality implies comparatively gradual aging over
the course of the given period. The vitality function of an acrv X that follows the HN
distribution is expressed by the conditional moments provided in Equation (14) for n = 1,
that is,

V(t) = E(X|X > t) =
I1(1, t)√
2π S(t)

, (16)

where I1(n, t) is presented in Equation (15). For more details on the vitality function,
see [13].

3.3. Geometric Vitality Function

The geometric mean of the residual lifetime serves as the foundation for the geometric
vitality function. If X is an acrv which represents the lifetime of a component, then the
geometric mean of the component that lives up to time t is represented by log G(t) =
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E(log X|X > t), provided that E(log X) exists. Hence, the geometric vitality function for a
non-negative acrv X with pdf f (t) is defined as

log G(t) =
1

S(t)

∫ ∞

t
(log x) f (x)dx, (17)

where S(t) = P(X > t) represents the survival function. For more information on the
geometric vitality function, see [14]. Now, the geometric vitality function of an acrv X that
follows the HN distribution is provided by

log G(t) =
I2(t)√
2π S(t)

, (18)

where
I2(t) =

∫ ∞

t
(log x)(α + σex) e−

1
2 (αx+σex+µ)2

dx. (19)

3.4. Moments of Residual Life

The rth order moment of the residual life of an acrv X that follows the HN distribution
is obtained as follows:

µr(t) = E[(X− t)r|X > t]

=
1

S(t)

∫ ∞

t

r

∑
i=0

(
r
i

)
(−t)r−ixi f (x)dx

=
1√

2π S(t)

r

∑
i=0

(
r
i

)
(−t)r−i I1(i, t),

(20)

where I1(n, t) is provided in Equation (15).
As a special case, the mean residual life (MRL) function is expressed as

µ1(t) = V(t)− t =
I1(1, t)√
2π S(t)

− t. (21)

Similarly, the second moment of the residual life time is provided by

µ2(t) = t2 − 2t V(t) +
I1(2, t)√
2π S(t)

= t2 − 2t
I1(1, t)√
2π S(t)

+
I1(2, t)√
2π S(t)

.
(22)

Using µ1(t) and µ2(t), it is possible to calculate the variance of the residual life function.

4. Estimation of the Parameters

In this section, we go over how to estimate the HN distribution’s parameters using
the ML and Bayesian approaches, the two most widely used techniques.

4.1. Maximum Likelihood Estimation

Let x1, x2, . . . , xn represent the observed values of a random sample formed of acrvs,
say, X1, X2, . . . , Xn, taken from the HN distribution. The log-likelihood function for the
parameter vector Θ = (α, µ, σ)T is provided by

Ln = −n log
√

2π +
n

∑
i=1

log(α + σexi )− 1
2

n

∑
i=1

(αxi + σexi + µ)2. (23)
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By maximising Equation (23) with regard to the parameters, the MLEs can be obtained
more quickly in practice. Hereafter, we denote by µ̂, α̂, and σ̂ the MLEs of µ, α, and σ,
respectively. From a computational viewpoint, the score vector function is

U =

(
∂Ln

∂α
,

∂Ln

∂µ
,

∂Ln

∂σ

)T
, (24)

where
∂Ln

∂µ
= −

n

∑
i=1

(αxi + σexi + µ), (25)

∂Ln

∂α
=

n

∑
i=1

1
α + σexi

−
n

∑
i=1

xi(αxi + σexi + µ) (26)

and

∂Ln

∂σ
=

n

∑
i=1

exi

α + σexi
−

n

∑
i=1

exi (αxi + σexi + µ). (27)

By computationally solving the nonlinear system of equations U = (0, 0, 0)T , it is
possible to derive the MLEs. In this study, we obtain the MLEs numerically using the
fitdistrplus package in R software (see [15]). The following link provides more informa-
tion about this package: (https://CRAN.R-project.org/package=fitdistrplus).

We now depict the asymptotic confidence intervals (CIs) for the parameters. On taking
the second partial derivatives of Equations (25)–(27) at the MLEs, the observed Hessian
matrix of the HN distribution can be obtained, and is specified by

Ĥ =



∂2Ln

∂α2
∂2Ln

∂α∂µ

∂2Ln

∂α∂σ

∂2Ln

∂µ∂α

∂2Ln

∂µ2
∂2Ln

∂µ∂σ

∂2Ln

∂σ∂α

∂2Ln

∂σ∂µ

∂2Ln

∂σ2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(α,µ,σ)=(α̂,µ̂,σ̂)

.

Based on the above, the observed Fisher’s information matrix is Ĵ = −Ĥ, from which
we can derive the estimated dispersion matrix as

Ξ̂ = Ĵ−1 =

Ξ̂11 Ξ̂12 Ξ̂13
Ξ̂21 Ξ̂22 Ξ̂23
Ξ̂31 Ξ̂32 Ξ̂33

,

and Ξ̂ij = Ξ̂ji for i 6= j = 1, 2, 3. The asymptotic N distribution of the random versions of the
MLEs is guaranteed by the current general theory, with technical regular assumptions. More
precisely, the random version of Θ̂ = (α̂, µ̂, σ̂)T follows the multivariate N distribution
N3(Θ, Ξ̂). Thus, we obtain 100× (1− δ)% asymptotic CIs of the parameters using the
following formulas:

Iα =

[
α̂∓ υδ/2

√
Ξ̂11

]
, Iµ =

[
µ̂∓ υδ/2

√
Ξ̂22

]
, Iσ =

[
σ̂∓ υδ/2

√
Ξ̂33

]
,

where υδ is the upper δth percentile of the SN distribution.

https://CRAN.R-project.org/package=fitdistrplus


Dynamics 2022, 2 407

4.2. MCMC Estimation Using Bayesian Approach

In this subsection, we implement the MCMC estimation using the Bayesian estimation
procedure on the HN distribution parameters. Each parameter demands a prior pdf to
accomplish this. For this, we use two different variants of the almost improper uniform
priors, as when using the almost improper uniform priors the comparison with MLEs is not
confounded by the choice of proper prior distributions. Thus, we choose Uniform (−1000,
1000) (U(−1000, 1000)) for the parameter µ, and U(0, 1000) for the other two parameters.
With this configuration, the joint posterior pdf is described by

ψ(µ, α, σ|x1, x2, . . . , xn) ∝ Lnψ(µ)ψ(α)ψ(σ), (28)

where Ln = eLn is the likelihood function of the HN distribution, where ψ(µ), ψ(α)
and ψ(σ) are the almost improper prior pdfs of the corresponding parameters. From
Equation (28), there is obviously no analytical way to determine the MCMC Bayesian
estimates. To perform numerical computations for MCMC Bayesian estimation, the
LaplacesDemon package of the R software, which provides a comprehensive environment
for Bayesian inference, is used. For more information and examples about this package,
the following link is recommended: https://cran.r-project.org/package=LaplacesDemon
(accessed on 14 September 2022).

5. Simulation Study

In this section, we execute simulation tests to evaluate the long-term performance of
the MLEs of the HN distribution parameters. Several finite sample sizes are considered.
More precisely, we generate samples of sizes n = 25, 50, 100, 250, and 500 from the HN
distribution for two sets of parameter values.

5.1. Simulation Study for the MLEs

Here, the iteration is conducted 500 times, and the mean values of the biases, root
mean squared errors (RMSEs), 95% (asymptotic) coverage probabilities (CPs), and ALs
of the 95% (asymptotic) CIs corresponding to each of the parameter estimates for every
replication are calculated with respect to the corresponding sample sizes. The results
corresponding to each of the parameter sets are reported in Tables 1 and 2.

It can be seen that the RMSEs and ALs corresponding to each estimate decrease as
the sample size increases. Additionally, for each parameter the CPs are relatively close to
expected value of 0.95. This attests to the MLEs of the HN distribution perform consistently.

Table 1. The simulation results of the MLEs for the set (α = 0.2, µ = 0.9, σ = 0.6).

Parameters n MLE Bias RMSE CP AL

α 25 0.2087 0.0087 0.0394 0.966 0.1548
50 0.2045 0.0045 0.0273 0.948 0.1063

100 0.2022 0.0022 0.0178 0.964 0.0742
250 0.2015 0.0015 0.0120 0.942 0.0466
500 0.2007 0.0007 0.0086 0.944 0.0328

µ 25 0.9237 0.0237 0.3106 0.958 1.2256
50 0.9173 0.0173 0.2240 0.936 0.8528

100 0.9051 0.0051 0.1532 0.942 0.5976
250 0.9039 0.0039 0.0942 0.964 0.3757
500 0.8998 -0.00018 0.0650 0.966 0.2651

σ 25 0.7869 0.1869 0.5733 0.954 1.5415
50 0.6754 0.0754 0.2842 0.956 0.9509

100 0.6376 0.0376 0.1695 0.950 0.6353
250 0.6133 0.0133 0.1017 0.944 0.3889
500 0.6067 0.0067 0.0683 0.950 0.2717

https://cran.r-project.org/package=LaplacesDemon
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Table 2. The simulation results of the MLEs for the set (α = 1.1, µ = 0.2, σ = 0.05).

Parameters n MLE Bias RMSE CP AL

α 25 1.0490 −0.0510 0.2432 0.968 1.1842
50 1.0689 −0.0311 0.1681 0.964 0.7897

100 1.0803 −0.0197 0.1133 0.988 0.5403
250 1.0894 −0.0106 0.0753 0.974 0.3350
500 1.0935 −0.0065 0.0566 0.968 0.2327

µ 25 0.0443 −0.1557 0.3837 0.966 1.5773
50 0.1190 −0.0810 0.2566 0.966 1.0372

100 0.1509 −0.0491 0.1727 0.962 0.7024
250 0.1746 −0.0254 0.1050 0.968 0.4336
500 0.1864 −0.0136 0.0749 0.964 0.2997

σ 25 0.1916 0.1416 0.2948 0.978 1.0386
50 0.1250 0.0750 0.1707 0.978 0.6460

100 0.0913 0.0413 0.1025 0.984 0.4234
250 0.0720 0.0220 0.0639 0.972 0.2570
500 0.0596 0.0096 0.0439 0.968 0.1743

5.2. Simulation Study for MCMC Bayesian Estimates

Here, we consider the prior distributions for the HN distribution parameters provided
in Subsection 4.2. Iteration is conducted 10, 001 times. For each parameter set of the
respective sample sizes, the posterior summary results, such as mean, standard deviation
(SD), Monte Carlo error (MCE), ALs of the 95% (asymptotic) CIs, and median, are presented
in Tables 3 and 4.

Table 3. Posterior summary results for (α = 0.2, µ = 0.9, σ = 0.6).

Parameters n Mean SD MCE AL Median

α 25 0.2901 0.0511 0.0084 0.1891 0.2866
50 0.2940 0.0429 0.0072 0.1607 0.2883

100 0.2109 0.0215 0.0034 0.0837 0.2115
250 0.2108 0.0106 0.0032 0.0357 0.2133
500 0.2090 0.0052 0.0008 0.0144 0.2038

µ 25 1.0248 0.2868 0.0440 1.2101 1.0270
50 1.0688 0.2519 0.0389 0.9015 1.0579

100 0.8076 0.1592 0.0251 0.5298 0.7742
250 0.9186 0.1071 0.0201 0.3615 0.9101
500 0.9651 0.0384 0.0046 0.0984 0.9855

σ 25 0.4747 0.2909 0.0592 1.1074 0.4390
50 0.4946 0.2443 0.0528 0.8478 0.5202

100 0.7444 0.2018 0.0429 0.8019 0.7700
250 0.5579 0.0741 0.0235 0.2961 0.5930
500 0.6533 0.0597 0.0156 0.1831 0.5656

Table 4. Posterior summary results for (α = 1.1, µ = 0.2, σ = 0.05).

Parameters n Mean SD MCE AL Median

α 25 1.2324 0.2087 0.0255 0.8182 1.2660
50 1.1025 0.1481 0.0177 0.5810 1.0935
100 1.0528 0.0917 0.0159 0.3420 1.0744
250 1.1009 0.0861 0.0132 0.2751 1.1148
500 1.0993 0.0590 0.0058 0.1472 1.1162

µ 25 0.2278 0.2569 0.0494 1.1499 0.2437
50 0.1767 0.1690 0.0305 0.8105 0.2195
100 0.2530 0.1482 0.0231 0.6799 0.2523
250 0.2139 0.0910 0.0141 0.3427 0.2457
500 0.2151 0.0838 0.0085 0.2558 0.1958

σ 25 0.0476 0.1330 0.0277 0.3482 0.03409
50 0.0316 0.0659 0.0129 0.1901 0.0272
100 0.0469 0.0541 0.0121 0.1761 0.0237
250 0.0741 0.0509 0.0118 0.0909 0.0676
500 0.0300 0.0331 0.0108 0.0693 0.0120



Dynamics 2022, 2 409

It can be seen that the SD, MCE, and AL decline as the sample size rises, which indicates
that the MCMC Bayesian estimates of the HN distribution parameters perform consistently.

6. Bootstrap CIs

In this section, we approximate the distribution of the MLEs of the HN model parame-
ters using the parametric bootstrap method. Then, we can estimate CIs for each parameter
for the fitted HN distribution using the bootstrap distribution. Using the dataset comprised
of x1, x2, . . . , xn, let the MLE of θ ∈ {α, µ, σ} be θ̂. In our setting, the bootstrap stands for a
method for estimating the distribution of θ̂ by drawing a random sample (θ∗1 , θ∗2 , . . . , θ∗B)
for θ based on B random samples that are drawn with replacement from x1, x2, . . . , xn. The
sample of bootstrapping, i.e., (θ∗1 , θ∗2 , . . . , θ∗B), can be used to construct bootstrap CIs for
each HN distribution parameter.

Thus, using the following formulas, we calculate the 100× (1− δ)% bootstrap CIs for
the parameters as

Iα,boot = [α̂∓ zδ/2 ŝeα,boot], Iµ,boot =
[
µ̂∓ zδ/2 ŝeµ,boot

]
, Iσ,boot = [σ̂∓ zδ/2 ŝeσ,boot],

where zδ represents the δth percentile of the bootstrap sample; for θ ∈ {α, µ, σ},

ŝeθ,boot =

√√√√ 1
B

B

∑
b=1

(
θ∗b −

1
B

B

∑
b=1

θ∗b

)2

.

7. Applications and Empirical Study

The purpose of this section is to illustrate the empirical significance of the HN distri-
bution. We consider a real dataset from the area of subject physics. The data consist of a
sample from an experimental dataset of the strength of glass fibers with a length 15 cm
from the National Physical Laboratory in England. This dataset, usually called the glass
fiber (GF) dataset, can be found in [16]. The summary statistics of the data are provided in
Table 5. We use the R software for numerical evaluations.

Table 5. Descriptive statistics of the strength of the GF dataset.

Statistic n Min First Quartile Median Mean Third Quartile Max

Values 46 0.37 0.9575 1.16 1.13 1.3375 1.61

We study the empirical hazard rate function of the dataset using the concept of total
time on test (TTT) plot. The TTT plot is a graph that is primarily used to distinguish between
various ageing types indicated by hazard rate shapes. For more details, see [17]. Figure 4
indicates that the dataset has an increasing hazard rate shape for its empirical hazard rate
function. Therefore, the HN distribution represents a credible choice for this dataset.

We demonstrate the potentiality of the HN distribution by comparing it with the
Laplace, logistic, Gumbel, and N distributions, all of which are defined on the entire
real line. Using the statistical tools of the negative log-likelihood (− log L), Kolmogorov–
Smirnov statistics (KS), Cramér–von Mises (W∗), Anderson–Darling (A∗), the values of the
Akaike information criterion (AIC), and Bayesian information criterion (BIC), we compare
the competing models with the suggested model. The corresponding MLEs and goodness-
of-fit (GOF) statistics are presented in Table 6.

From this table, it can be seen that the GOF statistics values of the HN distribu-
tion are lower than those of the examined distributions. In light of this, we can draw
the conclusion that the suggested HN model provides a better fit than those from the
compared distributions.
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Figure 4. The TTT plot of the strength of the GF dataset.

Table 6. MLEs and GOF statistics results of the strength of the GF dataset.

Estimates Laplace Logistic Gumbel N Hybrid N

α̂ - - - - 0.0142
µ̂ 1.1609 1.1504 0.9865 1.1300 −4.0688
σ̂ 0.2095 0.1498 0.3111 0.2684 1.2659

− log L 5.9996 4.4613 13.4978 4.7700 2.2719
KS 0.0864 0.0734 0.1497 0.0928 0.0619
W * 0.0648 0.0411 0.2947 0.0742 0.0187
A * 0.5121 0.3790 1.9881 0.5267 0.1397
AIC 15.9993 12.9225 30.9955 13.5400 10.5439
BIC 19.6566 16.5798 34.6528 17.1973 16.0298

The plots of the empirical cdfs, empirical pdfs, and the theoretical probabilities against
empirical ones (P–P plot) for the real dataset (for the HN model only for the P–P plot) are
displayed in Figure 5.
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Figure 5. Empirical plots on the strength of the GF dataset: (a) empirical versus theoretical cdfs,
(b) histogram and fitted pdfs, and (c) P–P plot.
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This graphic displays attractive curves for the fitted and empirical functions. In light
of this, we can draw the conclusion that the HN distribution is the most appropriate for
this dataset among the alternative distributions.

Now, the empirical Hessian matrix is obtained as follows:

Ĥ =

 65.5553 51.9800 185.5325
51.980 46.000 147.2665

185.5325 147.2665 528.4451

,

and the associated estimated dispersion matrix is

Ξ̂ =

 2.4932 −0.1388 −0.8367
−0.1388 0.2093 −0.0096
−0.8367 −0.0096 0.2983

.

In order to complete the above analysis, Table 7 provides the 95% (asymptotic) CIs for
the HN distribution parameters.

Table 7. The 95% (asymptotic) CIs of the HN distribution parameters based on the strength of the GF dataset.

Parameter Lower Upper

α −3.0806 3.1090
µ −4.9655 −3.1720
σ 0.1954 2.3364

On the basis of the GF dataset outlined above, we now concentrate on estimating the
HN distribution parameters using the MCMC Bayesian technique. The investigation was
carried out using the MH algorithm of the MCMC method with respect to 1000 iterations
in the perspective of Bayesian estimation. All three MCMC Bayesian estimates of the HN
distribution parameters are included in Table 8 for comparison with the MLEs. Numerical
computations for MCMC Bayesian estimation were performed using R software.

Table 8. ML and MCMC Bayesian estimates of the HN distribution parameters on the strength of the
GF dataset.

Parameter ML MCMC Bayesian

α 0.0142 0.0135
µ −4.0688 −4.1753
σ 1.2659 1.2977

We now focus on the 95% bootstrap CIs for the HN distribution parameters using
the computed MLEs. To this end, we generate 1001 samples of the same size as the
GF dataset using the HN distribution, with the true values of parameters chosen as the
corresponding MLEs. For each obtained sample, we calculate the MLEs α̂∗b , µ̂∗b , and σ̂∗b for
b ∈ {1, 2, . . . , 1001}. Thus, for the parameters α, µ, and σ, Table 9 shows the median and
95% bootstrap CIs.

Table 9. The median and 95% bootstrap CIs for the HN distribution parameters on the strength of
the GF dataset.

Parameter Median Bootstrap CI

Strength of the
GF
dataset

α 0.2340 (0.0001, 4.3993)
µ −4.2647 (−5.6048, −3.4066)
σ 1.1516 (0.0001, 1.5551)

In order to identify any potential structural correlation between the parameters, it is
noteworthy to examine the joint distribution of the bootstrapped values in the matrix of scat-
ter plots. Figure 6 demonstrates the matrix scatterplots of the bootstrapped HN parameter
values, which reflect the joint uncertainty distribution with respect to the fitted parameters.
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Figure 6. Matrix scatterplots of the bootstrapped HN parameter values due to strength of the GF dataset.

8. Concluding Remarks

In this study, we suggest a new distribution that generalizes the well-known normal
distribution and is defined on the entire real line. We investigate the mathematical and
statistical features of the new model, which we refer to as the hybrid normal (HN) distri-
bution. With regard to the HN distribution, we present explicit expressions for several
reliability metrics. The hazard rate function of the HN distribution possesses increasing
shaped graphical representation. In terms of inference, the observed information matrix
is presented together with the estimation of the model parameters using the maximum
likelihood and Bayesian estimation methods, with Bayesian estimation performed using
the MCMC approach. In addition, we use the parametric bootstrap method to obtain the
model parameter confidence intervals. Goodness-of-fit tests are applied to a real dataset
concerning the strength of glass fibers with a length of 15 cm from the National Physical
Laboratory in England in order to demonstrate the new model’s real-world applicability.
In comparison to the other analyzed models, the new model consistently offers a supe-
rior fit. We expect that the proposed model can be used more frequently to represent
actual datasets in a variety of fields, including physics, engineering, economics, hydrology,
survival analysis, and others.
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