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Abstract: We describe non-equilibrium quantum brain dynamics (QBD) for the breakdown of
symmetry and propose the possibility of hologram memory based on QBD. We begin with the
Lagrangian density of QBD with water rotational dipole fields and photon fields in 3 + 1 dimensions,
and derive time evolution equations of coherent fields. We show a solution for super-radiance derived
from the Lagrangian of QBD and propose a scenario of holography by the interference of two incident
super-radiant waves. We investigate the time evolution of coherent dipole fields and photon fields in
the presence of quantum fluctuations in numerical simulations. We find that the breakdown of the
rotational symmetry of dipoles occurs in inverted populations for incoherent dipoles. We show how
the waveforms of holograms with interference patterns evolve over time in an inverted population
for incoherent dipoles. The optical information of hologram memory can be transferred to the whole
brain during information processing. The integration of holography and QBD will provide us with a
prospective approach in memory formation.

Keywords: quantum brain dynamics; holography; breakdown of symmetry; super-radiance; memory

1. Introduction

What is the physical mechanism of memory in a brain? To date, the physical mech-
anisms for storing memories in the human brain have not been fully ascertained. Learn-
ing and memory are commonly understood as mechanistically correlated with synaptic
plasticity involving brain neurons, affecting cognitive activities through neuronal net-
works, and supported by so-called “long-term potentiation” (LTP). This is an experimental
paradigm stating that brief repetitive pre-synaptic stimulation causes prolonged post-
synaptic sensitivity, e.g., to glutamate. Glutamate receptor binding opens membrane
calcium channels, and causes calcium ion fluxes into dendritic spines in neurons, shafts
and cell bodies which then result in various downstream effects including the activa-
tion and phosphorylation of the calcium-calmodulin kinase II (CaMKII) holoenzyme.
A computational model demonstrating how this mechanism can lead to the development
of encoded phosphorylation patterns in neuronal microtubules has been proposed by
Craddock et al. [1]. However, there has been no experimental validation of the model to
date. Moreover, there could be different mechanisms involved in short- and long-term
memory formation, each of which would rely on the different stability of the encoded
state and its erasure. Several properties of memory storage in the human brain differ from
the way that computer memory works [2]. The human brain memorizes information by
sequences of patterns. For example, it recalls a melody or a song forward in sequences, and
not backward in sequences. It recalls memorized patterns auto-associatively, that is, it is
able to recall information from a given sample. The human brain memorizes patterns in
an invariant form [3,4]. For example, the motions generated when drinking tea in a cup
are different each time; however, we recognize them as a single motion. When we see our
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friend’s face, we can recognize their face every time even from various angles and distances,
with shades, and with various facial expressions. Over visual cortical processing, we find
that the invariant representations of objects with respect to translation, size, and view [5–7].
We process patterns in a hierarchical form, namely V1, V2, · · ·, V5, for visual processing.
Furthermore, the brain’s memory is robust against damages to parts of a brain and is
diffused in a non-local storage manner. We represent the equipotentiality and the mass
action principle. Equipotentiality refers to the property that memory is recalled by the other
undamaged regions even when local regions in a brain are damaged [8]. The mass action
principle represents whether each memory is lost depends on the severity of extensive
lesions in a brain [9].

Quantum field theory is a powerful tool for describing a variety of physical phenom-
ena in cosmology, elementary particle physics, nuclear physics, condensed matter physics,
to name but a few areas of application. It can be also applied to biological systems, especially
brain dynamics. Quantum brain dynamics (QBD) is a hypothesis formulated to describe
the physical mechanism of memory in a brain [10,11]. It originates from the monumental
work of Ricciardi and Umezawa in 1967 [12]. Non-local memory storage, the mechanism of
recall, and stability of memory were discussed in detail in [13,14]. According to the QBD
hypothesis, a brain is a mixed system of classical neurons and quantum degrees of freedom.
In 1968, Fröhlich suggested that Bose–Einstein condensation might occur in biological
systems at the cellular level and lead to quantum coherence with long-range correlations
(a so-called Fröhlich condensation phenomenon). This was determined to be theoreti-
cally possible if the frequencies of oscillating molecular dipoles are within a narrow range
around the resonant frequency and the coupling constants for their mutual interactions
and their interactions with the heat bath and the energy pump are sufficiently large [15,16].
In 1976, Davydov and Kislukha proposed a theory of solitary waves propagating along the
alpha-helical structures of DNA and protein chains, whose result was a stable localized
propagating wave of coupled exciton–phonon interactions referred to as the Davydov
soliton [17]. The Fröhlich condensation and the Davydov soliton emerged as static and
dynamical properties, respectively, in a non-linear Schrödinger equation of an equivalent
Hamiltonian [18]. In the 1980s, Del Giudice et al. investigated a quantum field theoretical
approach to biological systems [19–22]. Specifically, they introduced the quantum field
theory of water rotational degrees of freedom and photons [21]. By introducing the rota-
tional degrees of freedom of quantum water electric dipole fields interacting with photon
fields, the laser-like behaviors in quantum electrodynamics of water dipoles and photons
were studied. In the 1990s, Jibu and Yasue proposed a set of concrete physical degrees of
freedom in QBD, namely water electric dipole fields and photon fields [10,23–27]. Memory
in QBD is envisaged as ordered patterns of dipoles aligned in the same direction owing
to the breakdown of rotational symmetry. The vacua of these aligned dipoles are main-
tained by long-range correlations owing to the symmetry breakdown in the system of the
Nambu—Goldstone quanta. Vitiello suggested that a huge capacity of memory in QBD is
realized by the squeezed coherent states of Nambu–Goldstone bosons in open systems [28].
Meanwhile, Pribram proposed the holographic brain theory to describe non-local memory
storage and perception [29,30]. Holography is a technique for recording and reconstruct-
ing three-dimensional (3D) images achieved by electromagnetic wave interference [31,32].
Holography has several properties of equipotentiality and mass action because the recorded
information in a hologram is robust against the damaged of parts in a hologram, and the
non-damaged parts can reconstruct the recorded information.

We aimed to describe non-equilibrium QBD in the presence of quantum fluctuations
in 3 + 1 dimensions and to show how ordered patterns of holograms evolve over time. We
propose the integration of the QBD and holographic brain theory. We adopt Schrodinger-
like equations for coherent dipole fields and Klein–Gordon equations for coherent electric
fields in non-equilibrium QBD in 3 + 1 dimensions. We consider water dipoles and photons
around microtubules in the brain as a candidate of such a system which may generate super-
radiance, inducing a flash of light by the cooperative spontaneous emission of radiation.



Dynamics 2022, 2 189

The interference of two super-radiant waves induces holographic memory with optical
interference patterns. We find that ordered the patterns of aligned dipoles in memory
are amplified from their initial patterns by quantum fluctuations on picosecond (ps) time
scales. Incoherent dipoles in the first excited state of quantum fluctuations amplify the
initial ordered pattern in memory printing. The properties in open systems are significant
in memory storage because the flow of dipole fields from upstream to downstream induced
by external incoherent photons exciting dipoles from the ground state to first excited states
is necessary for the maintenance of aligned dipoles. The optical information of hologram
memory might be transferred to a whole brain using parallel information processing.
Holograms might propagate in a hierarchical manner in the brain’s cortex area with optical
information processing, and memory can be stored in an invariant form of memory. The
auto-associative property of holograms can be useful in describing memory in a brain. If
the sequences resulting from super-radiant emission are in the forward direction owing to
sequences of neuron firings involving super-radiant emission, sequential properties can
appear in the integration of QBD and holography. Holography and QBD will provide a
promising approach regarding the study of brain memory.

This paper is organized as follows. In Section 2, we introduce the Lagrangian density
in QBD in 3 + 1 dimensions, and derive time evolution equations for coherent fields. In
Section 3, we show a solution of super-radiance adopted in holography and introduce
a scenario of hologram memory. In Section 4, we show numerical simulations of the
breakdown of symmetry and for dynamical hologram memory. In Section 5, we discuss
our results. In Section 6, we provide concluding remarks. We adopt the natural unit, where
the light speed and the Planck constant divided by 2π are set to unity. We adopt the metric
tensor gµν = diag(1,−1,−1,−1) with space–time subscript µ, ν = 0, 1, 2, 3.

2. Lagrangian Density and Time Evolution Equations

In this section, we introduce the Lagrangian density in quantum brain dynamics (QBD)
and show time evolution equations for coherent fields. The flowchart of the derivation
in this section is depicted in Figure 1. We begin with the Lagrangian density for QBD in
3 + 1 dimensions by referring [21,33]. Then, we derive a two-particle-irreducible effective
action for the expectation values of quantum fields (coherent fields) and those of quantum
fluctuations [34–36]. Finally, we derive the time evolution equations for coherent fields
(Schrödinger-like eqs. and the Klein–Gordon eq.) and those for quantum fluctuations
called the Kadanoff–Baym equations [37–39] by differentiating the effective action with
expectation values. The derivations of terms with quantum fluctuations in the Klein–
Gordon equation are given in the Appendix A.

Figure 1. The flowchart of derivation.
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We show the variables and constants in Table 1.

Table 1. Variables and constants.

ψα dipole fields for first excited states α = 0,±1

ψs dipole field for the ground state

ψ̄α expectation value of ψα

ψ̄s expectation value of ψs

Aµ background photon fields with µ = 0, 1, 2, 3

aµ fluctuations of photon fields

δψ = ψ− ψ̄ fluctuations of dipole fields

I (constant) moment of inertia

2ede (constant) dipole moment

N/V (constant) number density of water dipoles

µi dipole moment density with i = 1, 2, 3

Fµν[A] = ∂µ Aν − ∂ν Aµ electromagnetic tensor or field strength

Ei = −F0i electric field i = 1, 2, 3

∆
4× 4 matrix of Green’s functions for quantum

fluctuations of dipole fields

D Green’s functions for quantum fluctuations of
photon fields ai with i = 1, 2, 3

∆−1
0

inverse of Green’s functions ∆ without
self-energy

D−1
0

inverse of Green’s functions D without
self-energy

P3
time-derivative of µ3 multiplied by moment of

inertia I

Z0 = |ψ̄0|2 − |ψ̄s|2
population difference between first excited

state and the ground state

Z = Z0/(N/V) population difference divided by N/V

M3 = µ3/(ede N/V)
dipole moment density in the x3 direction

divided by ede N/V

P3 = P3/(ede N/V)
time derivative ofM3 multiplied by I or P3

divided by ede N/V

The Lagrangian density for QBD in 3 + 1 dimensions [21,33] is given by

L[Ψ∗(x, θ, ϕ), Ψ(x, θ, ϕ), A(x), a(x)] = −1
4

Fµν[A + a]Fµν[A + a]−
(
∂µaµ

)2

2α1

+
∫ 2π

0
dϕ
∫ π

0
sin θdθ

[
iΨ∗

∂

∂x0 Ψ +
1

2m
Ψ∗∇2

i Ψ

+
1
2I

Ψ∗
(

1
sin2 θ

∂2

∂ϕ2 +
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
Ψ

]

−2ede

∫ 2π

0
dϕ
∫ π

0
dθ sin θ Ψ∗uiΨF0i[A + a], (1)

where the electric dipole field is denoted by Ψ(x, θ, ϕ) and its complex conjugate is denoted
by Ψ∗(x, θ, ϕ) in polar coordinates denoted by (θ, ϕ), the background photon fields are
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denoted by Aµ in the background field method [40–43], and its quantum fluctuations are
denoted by aµ, the field strength is denoted by Fµν[A] = ∂µ Aν − ∂ν Aµ, the gauge fixing
parameter is denoted by α1 = 1, the mass of dipoles is denoted by m, the moment of
inertia of dipoles I is denoted by 1/I = 4 meV (the average of the moment of inertia in
three spatial dimensions of water dipoles), the dipole moment is denoted by 2ede with
elementary charge e = 0.3 and de = 0.2 and the orientation of dipoles is denoted by
ui = (sin θ cos ϕ, sin θ sin ϕ, cos θ).

We adopt the two-energy-level approximation for angular momentum squared
l2 = −

( 1
sin2 θ

∂2

∂ϕ2 + 1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

))
. Electric dipole fields are expanded by the dipole

field for the ground state ψs(x) and the dipole fields for the first excited states ψα(x) as

Ψ(x, θ, ϕ) = ψs(x)Y00(θ, ϕ) + ∑
α=0,±1

ψα(x)Y1α(θ, ϕ), (2)

Ψ∗(x, θ, ϕ) = ψ∗s (x)Y∗00(θ, ϕ) + ∑
α=0,±1

ψ∗α(x)Y∗1α(θ, ϕ), (3)

with the spherical harmonics for the ground state Y00(θ, ϕ) (the eigenvalue l2 = 0) and the
first excited states Y1α(θ, ϕ) with α = 0,±1 (eigenvalues l2 = 2) given by

Y00(θ, ϕ) =
1√
4π

, (4)

Y1±1(θ, ϕ) = ∓i

√
3

8π
sin θ e±iϕ, Y10(θ, ϕ) = i

√
3

4π
cos θ. (5)

We can then rewrite the fourth term in Equation (1) with the electric fields Ei = −F0i

(i = 1, 2, 3) by

2ede

∫ 2π

0
dϕ
∫ π

0
dθ sin θ Ψ∗uiΨEi = µi(x)Ei(x), (6)

where µi (i = 1, 2, 3) are defined by

µ1 =
2edei√

6

(
ψ∗s ψ−1 − ψ∗s ψ1 + ψ∗1 ψs − ψ∗−1ψs

)
, (7)

µ2 =
2ede√

6

(
ψ∗s ψ−1 + ψ∗s ψ1 + ψ∗1 ψs + ψ∗−1ψs

)
, (8)

µ3 =
2edei√

3
(ψ∗s ψ0 − ψ∗0 ψs), (9)

and we can then rewrite

µi(x)Ei(x) =
2ede√

6

[
(iE1 + E2)(ψ

∗
s ψ−1 + ψ∗1 ψs) + (−iE1 + E2)(ψ

∗
s ψ1 + ψ∗−1ψs)

+
√

2iE3(ψ
∗
s ψ0 − ψ∗0 ψs)

]

=
2ede√

6
∑

α=0,±1

[(
−iα(E1 + iαE2) +

√
2i(1− |α|)E3

)
ψ∗s ψα

+
(

iα(E1 − iαE2)−
√

2i(1− |α|)E3

)
ψ∗αψs

]
. (10)

We then find that the Lagrangian density is rewritten by
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L[Ψ∗(x, θ, ϕ), Ψ(x, θ, ϕ), A(x), a(x)] → L[ψ∗(x), ψ(x), A, a]

= −1
4

Fµν[A + a]Fµν[A + a]−
(
∂µaµ

)2

2α1

+ψ∗s

[
i

∂

∂x0 +
∇2

i
2m

]
ψs + ∑

α=0,±1
ψ∗α

[
i

∂

∂x0 +
∇2

i
2m
− 1

I

]
ψα

+
2ede√

6
∑

α=0,±1

[(
−iα(E1 + iαE2) +

√
2i(1− |α|)E3

)
ψ∗s ψα

+
(

iα(E1 − iαE2)−
√

2i(1− |α|)E3

)
ψ∗αψs

]
. (11)

We then show a two-particle-irreducible (2PI) effective action [34,35] for the above
Lagrangian density in the closed-time path (CTP) C formalism [44,45]. We set the gauge
fixing a0 = 0 in the path integral in CTP. The 2PI effective action in C with path 1 from −∞
to ∞ and path 2 from ∞ to −∞ is given by

Γ2PI

[
A, āi, ψ̄, ψ̄∗, ∆, D

]
=

∫
C

d4x

[
− 1

4
Fµν[A + ā]Fµν[A + ā]− (∂i āi)

2

2

+ψ̄∗s

(
i

∂

∂x0 +
∇2

i
2m

)
ψ̄s + ∑

α=0,±1
ψ̄∗α

(
i

∂

∂x0 +
∇2

i
2m
− 1

I

)
ψ̄α

+
2ede√

6
∑

α=0,±1

[(
−iα(E1 + iαE2) +

√
2i(1− |α|)E3

)
ψ̄∗s ψ̄α

+
(

iα(E1 − iαE2)−
√

2i(1− |α|)E3

)
ψ̄∗αψ̄s

]]
+iTr ln ∆−1 + iTr∆−1

0 ∆

+
i
2

Tr ln D−1 +
i
2

TrD−1
0 D +

Γ2[∆, D]

2
, (12)

where the bar represents the expectation value of coherent fields, i∆−1
0 (x, y) and iD−1

0,ij(x, y)
are defined by

i∆−1
0 (x, y) ≡

δ2
∫

w L
δψ∗(x)δψ(y)

∣∣∣∣∣
ā=0

=


i ∂

∂x0 +
∇2

i
2m

2ede√
6
(iE1 + E2)

2ede√
3

iE3
2ede√

6
(−iE1 + E2)

2ede√
6
(−iE1 + E2) i ∂

∂x0 +
∇2

i
2m −

1
I 0 0

−2ede√
3

iE3 0 i ∂
∂x0 +

∇2
i

2m −
1
I 0

2ede√
6
(iE1 + E2) 0 0 i ∂

∂x0 +
∇2

i
2m −

1
I


×δ4
C(x− y), (13)

for (s,−1, 0, 1) components and

iD−1
0,ij(x, y) ≡

δ2
∫

w L
δai(x)δaj(y)

∣∣∣∣∣
ā=0

= −δij∂
2
xδd+1
C (x− y), (14)
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and the Green’s functions ∆(x, y) for quantum fluctuations of incoherent dipoles and
Dij(x, y) for quantum fluctuations of incoherent photons are given by

∆(x, y) =


∆ss(x, y) ∆s−1(x, y) ∆s0(x, y) ∆s1(x, y)

∆−1s(x, y) ∆−1−1(x, y) ∆−10(x, y) ∆−11(x, y)
∆0s(x, y) ∆0−1(x, y) ∆00(x, y) ∆01(x, y)
∆1s(x, y) ∆1−1(x, y) ∆10(x, y) ∆11(x, y)

, (15)

with ∆s−1(x, y) = 〈TCδψs(x)δψ∗−1(y)〉 with δψs = ψs − ψ̄s or the 2× 2 matrix notation in C

∆s−1(x, y) =

[
∆11

s−1(x, y) ∆12
s−1(x, y)

∆21
s−1(x, y) ∆22

s−1(x, y)

]
=

[
〈T
(
δψs(x)δψ∗−1(y)

)
〉 〈δψ∗−1(y)δψs(x)〉

〈δψs(x)δψ∗−1(y)〉 〈T̃
(
δψs(x)δψ∗−1(y)

)
〉

]
, (16)

with time-order product T and anti-time-order product T̃ and

Dij(x, y) = 〈TCai(x)aj(y)〉. (17)

Time evolution equations are derived by differentiating 2PI effective action by vari-
ables āi, ψ̄(∗), ∆ and D as

δΓ2PI

δāi

∣∣∣∣∣
ā=0

=
δΓ2PI

δAi

∣∣∣∣∣
ā=0

= 0, (18)

δΓ2PI

δψ̄
(∗)
s,−1,0,1

∣∣∣∣∣
ā=0

= 0. (19)

δΓ2PI

δ∆

∣∣∣∣∣
ā=0

= 0, (20)

δΓ2PI

δD

∣∣∣∣∣
ā=0

= 0, (21)

where Equations (20) and (21) are the Kadanoff–Baym equations, time evolution equations
of quantum fluctuations, or Green’s functions. Equation (18) is written by

∂µFµi[A] = Ji, (22)

with the current terms

J1 = −2ede√
6

∂

∂x0 ∑
α=0,±1

[−iα(ψ̄∗s ψ̄α − ψ̄∗αψ̄s + ∆αs − ∆sα)], (23)

J2 = −2ede√
6

∂

∂x0 ∑
α=0,±1

[|α|(ψ̄∗s ψ̄α + ψ̄∗αψ̄s + ∆αs + ∆sα)], (24)

J3 = −2ede√
6

∂

∂x0 ∑
α=0,±1

[√
2i(1− |α|)(ψ̄∗s ψ̄α − ψ̄∗αψ̄s + ∆αs − ∆sα)

]
. (25)
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When we introduce J0 as

J0 = −2ede√
6

∂

∂x1 ∑
α=0,±1

[−iα(ψ̄∗s ψ̄α − ψ̄∗αψ̄s + ∆αs − ∆sα)]

−2ede√
6

∂

∂x2 ∑
α=0,±1

[|α|(ψ̄∗s ψ̄α + ψ̄∗αψ̄s + ∆αs + ∆sα)]

−2ede√
6

∂

∂x3 ∑
α=0,±1

[√
2i(1− |α|)(ψ̄∗s ψ̄α − ψ̄∗αψ̄s + ∆αs − ∆sα)

]
. (26)

we can derive

∂µFµ0[A] = J0, (27)

owing to the conservation law ∂0 J0 = ∂i Ji = ∂i∂
µFµi = ∂ν∂µFµν − ∂i∂µFµi = ∂0∂µFµ0 with

the identity ∂ν∂µFµν = 0 and integration with time x0. Time-independent terms interpreted
as initial conditions are set to be zero. The Schrödinger-like equations (Equation (19)) are
given by(

i
∂

∂x0 +
∇2

i
2m

)
ψ̄s +

2edei√
6

∑
α=0,±1

[
−α(E1 + iαE2) +

√
2(1− |α|)E3

]
ψ̄α = 0, (28)(

i
∂

∂x0 +
∇2

i
2m
− 1

I

)
ψ̄α +

2edei√
6

[
α(E1 − iαE2)−

√
2(1− |α|)E3

]
ψ̄s = 0, (29)

and their complex conjugates. Using Equations (28) and (29), we can show the population
conservation for coherent dipoles as

∂

∂x0

(
ψ̄∗s ψ̄s + ∑

α=0,±1
ψ̄∗αψ̄α

)

+
1

2im
∇i ·

[
ψ̄∗s∇iψ̄s − ψ̄s∇iψ̄

∗
s +∑α=0,±1(ψ̄

∗
α∇iψ̄α − ψ̄α∇iψ̄

∗
α)
]
= 0. (30)

We shall consider the case E1 = E2 = 0 and ψ
(∗)
±1 = 0 to be spatially homogeneous

in the x3 direction. Using Equations (28) and (29) and assuming ∇2
i /2m� 1/I = 4 meV

where the energy of the translational motion of water dipoles is smaller than that of
rotational motion in fixed positions of water molecules, we can derive relations

∂0µ̄3 =
P3

I
, (31)

∂0P3 = − µ̄3

I
− 8(ede)2

3
Z0E3, (32)

∂0Z0 = 2P3E3. (33)

for variables, the dipole moment density in the x3 direction µ̄3 = 2edei√
3
(ψ̄0ψ̄∗s − ψ̄sψ̄∗0 ), the

population difference of coherent dipole fields Z0 = |ψ̄0|2− |ψ̄s|2, and the time derivative of
the dipole moment density P3 = 2ede√

3
(ψ̄0ψ̄∗s + ψ̄sψ̄∗0 ). Differentiating Equation (22) for i = 3

by time x0, the time evolution equation of the coherent electric field E3 = F03 = ∂0 A3− ∂3 A0
with A0 = 0 (the solution of Equation (27)) is written by

[
(∂0)2 − (∂1)2 − (∂2)2

]
E3 =

µ̄3

I2 +
8(ede)2

3I
Z0E3 +

8(ede)2

3I
E3

∫ d4 p
(2π)4 (F00(x, p)− Fss(x, p)), (34)
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with
∫

p F00(x, p) = 1
2 (∆

21
00(x, x) + ∆12

00(x, x)) and
∫

p Fss(x, p) = 1
2 (∆

21
ss (x, x) + ∆12

ss (x, x)).
The third term on right-hand side can be derived from the Kadanoff–Baym equations in
Equation (20), as shown in Appendix A.

We shall adopt the scaling of variables Z ≡ Z0/(N/V),M3 ≡ µ̄3/(edeN/V), P3 ≡
P3/(edeN/V), and E3 ≡ ede IE3 by the number of the density of water dipoles N/V =
3.3× 1028 m−3 and the dipole moment divided by 2, that is ede with e = 0.3 and de = 0.2.
Using these parameters, we can derive√

8(ede)2

3
· N

V
· I × 1

I
' 13

I
, (35)

which corresponds to the frequency of the collective oscillation of dipoles Ω = 13
I . We can

then derive

∂0M3 =
P3

I
, (36)

∂0P3 = −M̄3

I
− 8

3I
ZE3, (37)

∂0Z =
2
I
P3E3, (38)

from Equations (31)–(33), and

[
(∂0)2 − (∂1)2 − (∂2)2

]
E3 =

3Ω2

8
M3 + Ω2ZE3 + Ω2 f2E3, (39)

from Equation (34) with the term of quantum fluctuations f2 ≡
∫ d4 p

(2π)4 (F00(x, p)− Fss(x, p))
/(N/V). The magnetic fields B1 and B2 with scaling of ede I obey

∂0B1 = −∂2E3, (40)

∂0B2 = ∂1E3, (41)

by the identity relation of field strength Fµν. The scaled total coherent population squared
N 2 ≡ Z2 + 3

4 (M2
3 + P2

3 ) is conserved

∂0

[
Z2 +

3
4
(M2

3 + P2
3 )

]
= 0, (42)

as shown from Equations (36)–(38) even in the presence of terms of quantum fluctuations.
The scaled energy εtot is written by

εtot =
1
2

[
E2

3 + B2
1 + B2

2

]
+

3 · 132

16
Z . (43)

The integration of εtot with 3D spatial coordinates is shown to be conserved from Equa-
tions (22) and (33) when we neglect the terms of quantum fluctuations.

3. Scenario of Hologram Memory

In this section, we introduce a scenario of hologram memory.

3.1. Super-Radiance

We begin with time evolution equations for coherent dipoles and electric fields, and
show a solution of super-radiant emission. We derive the super-radiance solution by refer-
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ring to [46,47]. We consider the case E1 = E2 = 0 and ψ
(∗)
±1 = 0 as spatially homogeneous

in the x2 and x3 directions. Time evolution equations are given by[(
∂0
)2
−
(

∂1
)2
]

E3 = −2edei√
3

(
∂0
)2

(ψ̄0ψ̄∗s − ψ̄sψ̄∗0 + ∆0s − ∆s0), (44)

∂0Z0 = +
4ede√

3
(ψ̄0ψ̄∗s + ψ̄sψ̄∗0 )E3, (45)

∂0(ψ̄0ψ̄∗s ) = − i
I

ψ̄0ψ̄∗s −
2ede√

3
Z0E3, (46)

with Ei = ∂0 Ai and, Z0 ≡ |ψ̄0|2 − |ψ̄s|2. Equation (44) is derived by differentiating Equa-
tion (22) with i = 3 by time x0. Equations (45) and (46) are derived from the Schrödinger-like
Equations (28) and (29).

We set ω = k0 = 1
I which is the energy difference in the two-energy-level approxima-

tion. Subsequently, we denote E3 and ψ̄0ψ̄∗s by

E3(x0, x1) =
1
2

ε3(x0, x1)e−i(ωx0−k0x1) + (c.c.), (47)

ψ̄0ψ̄∗s =
1
2

R0(x0)e−i(ωx0−k0x1). (48)

Here, the rotating-wave approximation where we neglect the non-resonant terms
∝ e±2iωx0

and the quantum fluctuations (∆0s and ∆s0) is adopted. We shall neglect higher-
order derivatives

|∂0ε3| � |ωε3|, |∂1ε3| � |k0ε3|, |∂0R0| � |ωR0|. (49)

We can then derive the following Maxwell–Bloch equations from Equations (44)–(46),

∂0ε3 + ∂1ε3 = − edek0√
3

R0, (50)

∂0Z0 =
ede√

3
(ε3R∗0 + ε∗3 R0), (51)

∂0R0 = −2ede√
3

Z0ε3. (52)

We set ε3 → −ε3, and assume that ε3 and R0 are real variables, then the above
equations are rewritten by

∂0ε3 + ∂1ε3 =
edek0√

3
R0, (53)

∂0Z0 = −2ede√
3

ε3R0, (54)

∂0R0 = +
2ede√

3
Z0ε3. (55)

Equations (54) and (55) satisfy the dipole number conservation

∂0
(

Z2
0 + R2

0

)
= ∂0

[(
|ψ̄0|2 + |ψ̄s|2

)2
]
= 0, (56)

and Equations (53) and (54) satisfy the energy conservation (by neglecting the derivative ∂1

terms)

∂0
[

1
2

ε2
3 +

1
2

k0Z0 +
1
2

k0B
]
= 0, (57)
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with B ≡ |ψ̄0|2 + |ψ̄s|2.
Since we can derive ∂0(Z2

0 + R2
0) = ∂0(|ψ̄1|2 + |ψ̄s|2

)2
= ∂0B2 = 0, we can write

Z0(x0) = B cos θ(x0), R0(x0) = B sin θ(x0), (58)

and we find

∂0R0(x0) = Z0∂0θ(x0) =
2ede√

3
Z0ε3(x0), or, ∂0θ(x0) =

2ede√
3

ε3(x0). (59)

Then, the θ(x0) is

θ(x0) = θ0 +
2ede√

3

∫ x0

0
dx′0 ε3(x′0). (60)

The release of radiation in Equation (53) is given with the term 1
L ε3 with the propaga-

tion length L. When we rewrite the equation as

∂0ε3(x0) +
1
L

ε3(x0) =
edek0√

3
B sin θ(x0), (61)

we use Equation (59) and investigate the case κ ≡ 1
L � ∂0, we can derive

∂0θ(x0) =
2(ede)2k0B

3κ
sin θ(x0). (62)

We then find the solution of θ(x0),

θ(x0) = 2 tan−1
[

exp
(

2(ede)2k0Bx0

3κ

)
tan

θ0

2

]
. (63)

Due to the relation ε3(x0) =
√

3∂0θ(x0)
2ede

, we arrive at

ε3(x0) =

√
3

2ede

1
τR

[
cosh

(
x0 − τ0

τR

)]−1

, (64)

with τR = 3κ
2(ede)2k0B and τ0 = −τR ln

(
tan θ0

2

)
. Because the conserved quantity B is the

number density of dipoles (B = N
V ) with volume V, we find 1/τR ∼ B = N

V . Considering
that the N dipoles with correlation among them decay within 1/N times faster than the
decay of a single dipole system, the intensity of electric fields is instantly ∼ N2.

We adopt microtubules (MTs), the cytoskeletons inside cells with cylindrical structures
composed of 13 proto-filaments, for super-radiant emission. When we set the length of
MT L = 1 µm, the energy difference k0 = 4 meV, the elementary charge e = 0.3 with
de = 0.2 for water dipoles (dipole moment 2ede), and the number density of dipoles
B = N/V = 3.3× 1028 m−3, we find the time scale of a flash light of super-radiance to be
τR = 0.2 ps and the strength to be

√
3

2edeτR
= 480 MeV/m. Since the time scale is smaller than

that of the thermal loss [25], the super-radiant photons propagate without thermal loss in
a brain.

We make use of the MT structures to overcome the dephasing where the phases
in each quantum state with a superposition in super-radiance are shifted differently in
time evolution due to asymmetric interactions among dipoles. When the dipole–dipole
interactions among neighboring dipoles are asymmetric and the phase shifts in time
evolution of quantum states of many-body systems of dipoles occur, the super-radiance is
weakened [48]. To overcome dephasing, the symmetric geometry of the system of dipoles
is necessary. We can adopt a ring arrangement of neighboring dipoles as a candidate of
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symmetric geometry. The MTs characterized by their cylindrical structures will provide
ring arrangement of water dipoles inside MTs, allowing the system to overcome dephasing.

We estimate the Fresnel number of MTs. In Figure 2, we show the super-radiant
emission from an MT with the inner diameter of MT 2w = 15 nm and a typical longitudinal
length of an MT L = 1 µm. The wavelength of super-radiant light is λ = 310 µm since
the energy difference of dipoles between the ground state and the first excited states is
1/I = 4 meV. Then, the Fresnel number F = πw2

Lλ is in the order of 10−6. Since F � 1,
the diffraction occurs in the propagation of super-radiant light outside MTs. The super-
radiant lights might propagate in a wide range in a brain due to diffraction:

Figure 2. Super-radiant emission from a microtubule.

3.2. Hologram Memory with the Interference of Reference and Object Waves

Super-radiant light from one side of an MT might be reflected by objects and then the
light will interfere with the super-radiant light from the other side of an MT.

In Figure 3, we show the interference of the reference and object waves. The polariza-
tion in the electric fields for the reference and object waves is set to be in the x3 direction.
When we set the angle of the incident beam of the reference wave with momenta (k1, k2, 0)
and the vertical line of x1x3 plane as θ1 and the angle of the incident beam of the object wave
with momenta (p1, p2, 0) and the vertical line of x1x3 plane as θ2, the angle of amplification
in the interference of two waves is θ1+θ2

2 (the average of two angles). We set the angle θ1+θ2
2

as 0, the interference pattern for the amplification of waves is in parallel to x2 direction
as shown in Figure 3. We print hologram memory by creating interference patterns. We
investigate how interference patterns evolve over time in the next section.
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Figure 3. Interference of reference and object waves.

The memory recall mechanism from a hologram is envisaged as follows. The time
evolution of electric field E3 is given by[

(∂0)2 − (∂1)2 − (∂2)2
]

E3 −Ω2ZE3 = Ω2Ẽ3 + (other terms), (65)

with collective mode Ω = 13
I as in Equation (34) with the external field. Here, Ẽ3 is an

external electric field. When the external electric field is Ẽ3 = Ae−i(
√

(k1)2+(k2)2x0−k1x1−k2x2),
the special solution of the above equation is

E3 =
A

(−Z) e−i(
√

(k1)2+(k2)2x0−k1x1−k2x2) + O(∂Z). (66)

Using the conservation law of the scaled total coherent population squared N 2 ≡
Z2 + 3

4 (M2
3 + P2

3 ) = 1, we find −Z =
√

1− 3
4 (M2

3 + P2
3 ) ∼ 1− 3

8M2
3. WhenM3 is pro-

portional to the electric field E′3 in memory printing (M3 = ηE′3) with the proportionality
constant η, we find

E3 '
(

1 +
3
8

η2E′3
2
)
Ae−i(

√
(k1)2+(k2)2x0−k1x1−k2x2). (67)

In x1x3 plane, when we write E′3
2 = |r(x1, x3) + o(x1, x3)|2 = |r|2 + |o|2 + ro∗ + r∗o for

the object wave o(x1, x3) and the reference wave r(x1, x3) andAe−i(
√

(k1)2+(k2)2x0−k1x1−k2x2) = r,
we find that

E3 '
(

r +
3
8

η2(|r|2r + |o|2r + o|r|2 + r2o∗)
)

. (68)
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Term o|r|2 corresponds to the reconstructed image in memory recall.

4. Numerical Simulations for Dynamical Holograms

In this section, we show how ordered patterns evolve over time in the presence of
evolving quantum fluctuations. We adopt the time evolution equations for the coherent
fields in Section 2 with dynamically evolving quantum fluctuations. We adopt the fourth-
order Runge–Kutta method to study the time evolution of our numerical simulations.

4.1. Time Evolution towards a Breakdown of Rotational Symmetry in a Spatially
Homogeneous Case

In this section, we investigate the dynamics of coherent fields in the spatially homogeneous
system. Time evolution equations are Equations (36)–(38) and (44). The time step at is set
to be at

1
I = 0.006. We assume that the population difference of incoherent dipoles f2 ≡∫ d4 p

(2π)4 (F00(x, p)− Fss(x, p))/(N/V) in the term for quantum fluctuations in Equation (34) is

dependent on time x0 (open systems) and evolves in

∂0 f2 = −γ f2 (69)

with initial f2(x0 = 0) = 0.06 and γI = 0.05 (Case I), initial f2(x0 = 0) = 0.05 and
γI = 0.05 (Case II),

∂0 f2 = −γ( f2 + 0.001) (70)

with f2(x0 = 0) = 0.06 and γI = 0.05 (Case III), and

(∂0)
2 f2 = −ω′2( f2 + 0.001) (71)

with f2(x0 = 0) = 0.005 and ω′ I = 0.03 (Case IV). Initial values are set to beM3 = 0,
P3 = 0, Z = −1, E3 = 0.001 and ∂0E3 = 0.

In Figure 4, we show the time evolution of electric fields E3 with f2 in Cases I and II.
In Cases I and II, f2 is positive at any time point and decays exponentially. At early times
x0 < 5 ps, the electric field E3 is fluctuating around zero in Cases I and II. In Case I, the E3
is monotonically increasing at intermediate times 5 ps ≤ x0 < 30 ps. At around x0 ∼ 35 ps,
the increase becomes steeper. At later times x0 ≥ 40 ps, the E3 is still monotonically
increasing. In Case II, at intermediate times 10 ps ≤ x0 < 60 ps, the E3 gradually increases.
The increase becomes steeper at around x0 ∼ 65 ps.

In Figure 5, we show the time evolution of electric fields E3 with f2 in Cases III and
IV. In Case III, f2 starts from a positive value, flips the sign at x0 = 13.7 ps and converges
towards −0.001. We find that the electric field E3 monotonically increases in Case III
when f2 is positive. When f2 becomes negative, the increase in electric field E3 in Case
III becomes moderate, and E3 starts oscillating around zero in the later times x0 > 20 ps.
In Case IV, the f2 oscillates around −0.001. When f2 is positive at 25 ps ≤ x0 < 40 ps, we
find that E3 starts increasing. When f2 becomes negative at 45 ps ≤ x0 < 60 ps, E3 starts
oscillating. When f2 is positive at x0 ≥ 60 ps, E3 starts increasing. In Case IV, the electric
field periodically repeats the increase and oscillation with the flips of the sign of f2.
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Figure 4. Time-evolution of the electric field E3 with population difference f2 in Cases I and II.

Figure 5. Time-evolution of the electric field E3 with population difference f2 in Cases III and IV.

In Figure 6, we show the time evolution of the dipole moment density µ̄3 divided
by its maximum value µ3,max = 2√

3
edeN/V derived from the conservation of the scaled

total coherent population squared N 2 ≡ Z2 + 3
4 (M2

3 +P2
3 ) = 1. At early times x0 < 10 ps,

the µ̄3 is approximately zero since E3 is fluctuating close to zero in Cases I and II. In Case I,
at intermediate times 10 ps ≤ x0 < 35 ps, the µ̄3 gradually increases and tends to converge
towards its maximum value. Then, µ̄3 saturates at x0 ≥ 35 ps. We find that the increase
becomes steeper at approximately x0 ∼ 35 ps in Figure 4 when the saturation of µ̄3 occurs.
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Because energy is supplied from incoherent dipoles when the population difference f2 is
positive, the energy is transferred to the coherent electric field E3 and coherent dipole fields.
When the dipole moment density µ̄3 becomes saturated, the energy is solely transferred to
the electric field E3. Consequently, the increase in electric field becomes steeper. In Case II,
at intermediate times 10 ps ≤ x0 < 65 ps, the µ̄3 gradually increases towards its maximum
value in Figure 6. The µ̄3 saturates at later times x0 ≥ 65 when the increase in electric field
becomes steeper in Figure 4. When electric fields gradually increase, dipoles tend to be
aligned in the same direction as electric fields. In Cases III and IV, we find that the time
evolution of µ̄3 in Figure 6 is similar to that of the electric field E3 in Figure 5. When the
electric field is positive, the µ̄3 becomes positive. The µ̄3 increases at x0 < 10 ps in Case III
in a similar manner to µ̄3 in Case I. However, it begins oscillating at x0 ≥ 10 ps because the
population difference f2 becomes negative at x0 = 13.7 ps in Case III.
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Figure 6. Time-evolution of dipole moment density µ̄3 divided by its maximum value µ3,max.

In Figure 7, we show the time evolution of the population difference of coherent dipole
fields Z = Z0/(N/V). In all cases, Z starts from −1 in its time evolution. In Case I, Z
gradually increases and converges towards zero when the dipole moment density becomes
saturates to its maximum value in Figure 6. In Case II, the increase in Z is moderate
compared with that in Case I; however, Z also tends to converge towards zero. In Cases III
and IV, the Z is near -1 in its time evolution; however, due to the conservation of the total
coherent population,Z ≥ −1 is squared N 2 ≡ Z2 + 3

4 (M2
3 + P2

3 ) = 1. The deviations of
the total coherent population squared from 1 are 10−7% in Case I, and less than 10−7% in
Cases II, III, and IV.
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Figure 7. Time-evolution of population difference of coherent dipole fields Z = Z0/(N/V).

In Figure 8, we show the population difference of coherent dipole fields −Z =
−Z0/(N/V) for the electric field E3. Here, −1/Z corresponds to the transmission in
amplitude holography shown in Section 3.2. When E3 fluctuates at approximately zero,
the population difference −Z is dependent on the processes of time evolution in Cases
I, II, III, and IV. However, when E3 gradually increases, the population difference −Z is
independent of the processes. We find similar relations between −Z and E3 for Cases I and
II for ln E3 ≥ 2. We also find the linear relation between − ln(−Z) and ln E3 for ln E3 ≥ 6.
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Figure 8. Population difference of coherent dipole fields −Z for the electric field E3 in Cases I, II, III,
and IV.
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4.2. Evolution of Spatially Inhomogeneous Hologram Memory

In this section, we show the time evolution of spatially inhomogeneous hologram
memory. We set the initial condition of inhomogeneous electric fields by the interference of
two super-radiant waves in Figure 3. We prepare the lattice 2N1 × 2N2 with N1 = N2 = 64
in the x1x2-plane, the lattice spacing is as

1
I = 0.15 on space −N1as,−(N1 − 1)as, · · ·0, · ·

·(N1 − 1)as, N1as, with time step at/as = 0.04. We assume periodic boundary conditions
for x1 and x2. We prepare the initial condition of the electric field E3 by

E3 = 0.001 sin
(

πn1

N1

)
, (72)

with initial distributions set toM3 = 0, P3 = 0, Z = −1 and ∂0E3 = 0 in any spatial points.
This condition corresponds to the case in which interference patterns are parallel to the
x2 direction. The E3 takes its maximum value at n1 = 32. Time evolution equations are
Equations (36)–(38) and (44). We investigate the case in which f2 satisfies

∂ f2

∂x0 = −0.009 f2, (73)

with initial condition f2(x0 = 0) = 0.005.
In Figure 9, we show the time evolution of the electric field at point (x1 = 32as, x2 = 0)

where E3 attains its maximum value at the initial time. At early times x0 < 10 ps, the E3
fluctuates around zero, but gradually increases at intermediate times 10 ps ≤ x0 < 50 ps.
The E3 takes its maximum value at approximately x0 = 50 ps where f2 = 3.3× 10−4 > 0.
At later times x0 > 50 ps, the E3 starts oscillating in time evolution. The amplitude in
oscillation does not seem to change at later times. The reason why E3 starts oscillating even
in the positive population difference of incoherent dipoles f2 =

∫
p(F00 − Fss)/(N/V) is the

Laplacian term in the time evolution Equation (44). In the previous section, the threshold of
f2 between amplification and oscillation in E3 is found to be zero. With the existence of the
Laplacian in Equation (44), the sum of the term with f2 and the term with the Laplacian is

Ω2 f2E3 → Ω2 f2E3 +
[
(∂1)2 + (∂2)2

]
E3, (74)

in the spatially inhomogeneous case. The Laplacian is determined by spatial frequency in
E3. Owing to the Laplacian term, the threshold of f2 between amplification and oscillation
in E3 is shifted to a positive value. When we increase the spatial frequency in initial E3,
the threshold becomes larger and the E3 starts oscillating at earlier times for damping f2 in
time evolution. The times when E3 starts oscillating are determined by spatial frequency in
E3 and a population difference f2.

In Figure 10, the distributions of electric field E3 at times x0 = 50 ps, x0 = 300 ps
and x0 = 450 ps are depicted. We find that the electric field has a maximum amplitude
at approximately x0 = 50 ps. The zero points in E3 do not change in time evolution. At
x0 = 450 ps, the E3 flips signs compared with E3 at x0 = 50 ps and 300 ps. However,
the shapes of the sine curve do not change in time evolution. The amplitude in the sine
curve increases at x0 < 50 ps and the E3 starts oscillating at x0 > 50 ps with the shapes of
sine curves maintained.
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Figure 9. Time-evolution of electric field E3(x0, x1 = 32as, x2 = 0).
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Figure 10. Distribution of the electric field E3 at x0 = 50 ps, x0 = 300 ps and x0 = 450 ps.

In Figure 11, we show the distribution of the dipole moment density at times x0 =
50 ps, x0 = 300 ps, and x0 = 450 ps. The amplitude takes its maximum value at ap-
proximately x0 = 50 ps in a similar manner to that in E3. The zero points in µ̄3 (x1 =
−480 µm, 0 µm, 480 µm) are the same as those in E3 although the dipole moment density
µ̄3 is set to be zero at any spatial point at the initial time. At x0 = 450 ps, the µ̄3 flip signs is
compared with that at x0 = 50 ps and 300 ps in a similar manner to E3 at x0 = 450 ps. The
shapes of the sine curve are maintained for µ̄3 in time evolution. Since both E3 and µ̄3 have
shapes of sine curves, we find that the values of µ̄3 become proportional to those of E3.



Dynamics 2022, 2 206

-0.1

-0.05

 0

 0.05

 0.1

µ 3
/µ

3,
 m

ax

-500 -400 -300 -200 -100 0 100 200 300 400 500

x1 [µm]

50ps 300ps 450ps

Figure 11. Distribution of the dipole moment density µ̄3 divided by its maximum value µ̄3,max =
2√
3

ede N/V at x0 = 50 ps, x0 = 300 ps and x0 = 450 ps.

In Figure 12, we show the distribution of the population difference of coherent dipoles
Z = Z0/(N/V) where−1/Z0 corresponds to transmission in hologram. At approximately
x0 = 50 ps, the Z = Z0/(N/V) takes maximum values at x1 = ±32as = ±240 µm.
The Z at x1 = ±32as = ±240 µm at x0 = 300 ps is less than that at x0 = 450 ps. We
find that Z is dependent on the absolute values of the dipole moment density µ̄3 in
Figure 11. The Z is related with µ̄3 due to the conservation law of the number density of
coherent dipoles. The scaled total coherent population squared N 2 ≡ Z2 + 3

4 (M2
3 + P2

3 )
is conserved in each spatial point. The deviations of N from 1 are less than 10−7% at any
points in the time evolution x0 ≤ 500.0 ps. Since N is conserved, we find the relation

Z = −
√

1− 3
4 (M2

3 + P2
3 ) in any points and times.
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Figure 12. Distribution of the population difference of coherent dipoles Z0/(N/V) at x0 = 50 ps,
x0 = 300 ps and x0 = 450 ps.
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We shall then investigate how interference patterns are amplified in fixed f2. We set
f2 = 0.06 at any points in space and time. The initial conditions are set to be

E3 = 0.001 sin
(

πn1

N1

)
+ 0.001 sin

(
π(n1 + n2)

N1

)
, (75)

∂0E3 = 0, Z = −1,M3 = 0 and P3 = 0. The conditions correspond to the case were two
interference patterns were recorded.

In Figure 13, we show the distribution of electric fields E3 at x0 = 0.0 ps, x0 = 5.0 ps,
x0 = 6.0 ps, and x0 = 7.0 ps. We find that the waveforms of the electric fields do not seem
to change in the course of time evolution, although maximum values in |E3| monotonically
increase in time evolution. The spatial positions for both the maximum and minimum
electric field values do not seem to change in the course of time evolution. The contrasts in
E3 are amplified with the maintained waveforms.

Figure 13. Distribution of electric fields E3 at (a) x0 = 0.0 ps; (b) x0 = 5.0 ps; (c) x0 = 6.0 ps; and (d)
x0 = 7.0 ps.

In Figure 14, the distribution of the dipole moment density µ̄3 divided by its maximum
value at time x0 = 7.0 ps is represented. We find that waveforms of µ̄3 are similar to those
of E3 in Figure 13. The spatial positions for both the maximum and minimum values
of µ̄3 correspond to those of E3. The µ̄3 seems to be proportional to E3 in the course of
time evolution.
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Figure 14. Distribution of the dipole moment density µ̄3 divided by the maximum value µ3 =
2√
3

ede N/V at x0 = 7.0 ps.

In Figure 15, we show the distribution of Z = Z0/(N/V). We find two peaks in Z0.
The positions of peaks correspond to the maximum and minimum points of µ̄3 in Figure 14
proportional to E3 in Figure 13. We can check the conservation of the scaled total coherent
population squared N 2 ≡ Z2 + 3

4 (M2
3 + P2

3 ). The deviations of N from 1 are less than
10−7% at any points on the lattice for x0 ≤ 7.0 ps. Because N is conserved, we find that the

relation Z = −
√

1− 3
4 (M2

3 + P2
3 ) withM3 ∝ E3 or µ̄3 ∝ E3.
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Figure 15. Distribution of population difference Z0/(N/V) at x0 = 7.0 ps.

5. Discussion

In this paper, we showed the time evolution towards the breakdown of symmetry
and time evolution of holograms with interference patterns. This was achieved based on
the time evolution equations for coherent fields, namely the Schrödinger-like equations
for coherent dipole fields and the Klein–Gordon equations for coherent electric fields,
in the presence of evolving quantum fluctuations derived from the Lagrangian density
in QBD in 3 + 1 dimensions. We expanded quantum water dipole fields in terms of
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spherical harmonics and adopted a two-energy level approximation for the water dipole
field in ground state ψs, that in the first excited states is ψα with α = 0,±1 and their
complex conjugates. Beginning with time evolution equations, we derived a solution for
super-radiance, which is a cooperative spontaneous emission of radiation. The solution
involves coherent waves from microtubules characterized by their cylindrical structures
and abundantly present in all neuronal cells. The super-radiant waves propagate in a
wide range by diffraction due to the small Fresnel number F ' 10−6 for the structures of
microtubules. The super-radiance solution offers a new method to achieve holographic
memory with the interference patterns of reference waves and object waves reflected by
objects involving the information of external stimuli. The transmission of electric fields
∝ −1/Z0, with the population difference of coherent dipoles between the first excited
states and the ground state Z0 = |ψ̄0|2 − |ψ̄s|2 with bar representing expectation values, is
expressed in terms proportional to the squared electric fields with interference patterns
in recording the information in holograms. The recorded information is reconstructed by
incident reference waves whose incident angle is equal to the angle in the recording. In
simulations of the time evolution of interference patterns, the wavefronts of electric fields
seem to be maintained and the contrasts of electric fields are amplified. The distribution
of the dipole fields has a similar form to that of electric fields in Figures 13 and 14. The
transmission ∝ −1/Z0 ∝ 1 + 3

8M2
3 = 1 + 3

8 η2E′3
2 with a scaled valueM3 = µ̄3/(edeN/V)

for the dipole moment density and proportionality constant η contains terms dependent on
the distribution of electric fields |E′3|2 in recording information. Considering the fact that
the wavefronts E′3 are maintained with contrasts amplified and the transmission contains
terms proportional to |E′3|2, the strength of the reconstructed images in recalling memory
increases over the time evolution of holograms.

We initially began with simulations of time evolution of coherent fields in spatially
homogeneous systems. We find that the breakdown of rotational symmetry emerges in time
evolution with terms for quantum fluctuations derived in Appendix A. In our simulations,
the positive values of the population difference of incoherent dipoles, namely the inverted
population of incoherent dipoles where the population of incoherent dipoles in the first
excited state is larger than that in the ground state in two-energy systems expressed by
f2 =

∫
p(F00 − Fss)/(N/V) > 0 with F00, or,ss which represent populations of incoherent

dipoles for the first excited state 00 and the ground state ss, play a significant role in
the breakdown of rotational symmetry. Dipole fields can be energy sources for coherent
electric fields. We show leading-order processes of interactions in the coupling expansion
in Figure 16 where Figure 16a represents processes between electric fields and incoherent
dipoles, and Figure 16b represents the process of incoherent dipoles in the ground state
absorbing incoherent photons and excited by the first excited states (the inverse process is
also possible). By adopting open systems, we can consider the flow of incoherent photons
and exciting dipoles in the ground state to the first excited states as in Figure 16b. Incoherent
dipoles in the first excited states amplify electric fields in an inverted population as shown
in Figure 16a. Meanwhile, electric fields oscillate in the normal population f2 < 0. The
f2 = 0 represents the threshold determining the amplification or oscillation of electric
fields in spatially homogeneous systems. We can also discuss the values of electric fields
in Figure 4 for which the dipole moment density µ̄3 becomes saturated in Figure 6. Water
dipoles are found to be all aligned approximately for E3 > 1000 MeV/m in our approach
based on quantum field theory (QFT). In the preceding work [49], the critical value of the
external electric field inducing aligned water dipoles was determined as 800 MeV/m. We
can observe that our approach provides a value of electric fields for the alignment of water
dipoles similar to the value in the preceding work even if we adopt several approximations,
namely an isotropic moment of inertia, a two-energy level approximation, rigid dipoles
without the stretching of O–H bonds, and situations neglecting hydrogen bonding among
water molecules.
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Figure 16. Leading-order processes of interactions in the coupling expansion of ede. (a) Interaction
between electric fields and incoherent dipoles in the ground states and the first excited states; and
(b) Interaction between incoherent photons and incoherent dipoles.

Linear dependence between the logarithm of transmission −1/Z0 and the logarithm
of electric fields E3 is observed in Figure 7. The transmission is dependent on processes of
E3 when E3 is fluctuating at approximately zero. As E3 increases exponentially, we find
the relation between transmission and E3 independent of processes. Even if electric fields
for interference patterns are small at the initial time, they are amplified due to incoherent
dipoles in the inverted population. Subsequently, transmission which is linearly dependent
on amplified electric fields involving initial interference patterns is achieved in the course
of time evolution. We can adopt this linear dependence for hologram memory formation.

Why is the waveform in the hologram shown in Figure 13 maintained? We can explain
the reason by referring to the structure of the Klein–Gordon Equation (34). We find that the
equation has the following terms

Ω2 f2E3 +
[
(∂1)2 + (∂2)2

]
E3 = Ω2 f2E3 − (Θ2 + δΘ2)E3

=
[
Ω2 f2 − (Θ2 + δΘ2)

]
E3, (76)

with a collective mode Ω = 13
I . We assume that the population difference of incoherent

dipoles f2 =
∫

p(F00 − Fss)/(N/V) is positive and sufficiently large compared with the

absolute value of the curvature or spatial frequency squared of electric fields Θ2 emerging
from the Laplacian operating on the electric fields. The δΘ2 represents the deviation of
curvature from Θ2 in E3. The larger the bracket in the above equation Ω2 f2 − (Θ2 + δΘ2)
is, the more rapidly electric fields E3 increase in the course of time evolution. When the
deviation δΘ2 > 0 becomes large for the parts of interference patterns with E3 > 0 or their
absolute value of the curvature becomes large, the Ω2 f2− (Θ2 + δΘ2) becomes smaller and
the increase in parts in E3 becomes moderate compared with the other parts in E3. Similarly
for the deviation δΘ2 < 0, the parts in E3 increase more rapidly than the other parts. As a
result, the waveform in the hologram is maintained.

In this work, we adopted a two-dimensional flat surface with periodic boundary
conditions. There are various structures in morphology, that is torus, cylindrical or spherical
structures with curvatures representing dendrite, cell body and axion in a brain. In these
structures, we can investigate the Laplacian with derivatives in perpendicular directions
to electric fields in the Klein–Gordon equation. When electric fields are in the direction
perpendicular to the surfaces of cylindrical structures, the derivatives of the Laplacian is in
the direction parallel to the surfaces. Then, for the zero-points of electric fields Er = sin(nθ)

with integer n and the variable of angle θ, the Laplacian 1
r2

∂2Er
∂θ2 is zero, so that electric

fields in these zero-points remain zero. Except in those zero points, electric fields can be
amplified in a similar way to a flat two-dimensional surface. The dipole moment density
can be aligned in the same directions as electric fields in cylindrical structures. We can
also discuss the various morphology of microtubules. When the diameter of microtubules
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becomes larger, the number of correlated water dipoles increases inside microtubules,
but the amplitude of super-radiance does not change in Equation (64) since it depends on
the number density of water dipoles. The critical factor is the length L of microtubules. The
larger the length is, the smaller τR is, so that the amplitude of super-radiance will increase
since that is proportional to the length. The length of microtubules affects the initial electric
fields in the interference patterns of holography. In addition, the number of microtubules
becomes larger, the diverse angles and sources of super-radiant emission will be achieved,
and the capacity of hologram memory can increase.

We consider memory printing and information processing induced by external stimuli
in QBD and holography. The candidate of initial external objects might be phosphorylated
tubulins [1] and ionic bio-plasma around microtubules, for example, in V1 for visual
information. External objects in V1 are irradiated by super-radiant waves. Then, the
interference patterns of reference and object waves are produced as holographic patterns.
Once these optical patterns of holography are produced, they propagate in a brain with the
other super-radiant waves from neurons in a higher visual cortex with parallel information
processing. The strength and angle will be determined by the distances and geometry in
the propagation of the visual cortex, which is the strength and angle of super-radiance
that depend on the distance of propagation and the direction of information processing in
the cortex.

In conventional neuroscience, we consider long-term potentiation (LTP) as a result
of neurotransmitter-receptors as the mechanism of long-term memory. Our approach can
connect the LTP and holographic approach with super-radiant waves. We shall consider the
firing of a single neuron and subsequent super-radiant emissions. There can be various an-
gles of super-radiant emissions as reference waves inducing the reconstruction of multiple
holographic images. In considering the firing of two neurons interconnected by LTP with
synchrony, the common reconstructed image can emerge in both printing and recalling,
and then the amplitude of that image is twice that of the other images. Similarly, due to the
firing of N multiple neurons with synchrony and subsequent super-radiant emissions, the
amplitude of the common image is N times larger than that of the other images regarded
as noises. As a result of LTP and subsequent super-radiant emission, the synchrony can
induce the common holographic image in printing and recalling whose amplitude might
be proportional to the number of neurons with synchrony.

We adopt the QFT approach involving the field variables of space–time coordinates.
The QFT approach can be regarded as the generalization of multi-oscillator systems.
In [50–53], the sets of oscillators with a mutual relationship with temporal synchrony
for binding and robustness in conscious perception against inherent noise are reported.
Similarly, we can consider the mass-spring system of oscillators with an infinite number of
point-masses and spring among (neighboring) them in the continuum limit. This physical
system will be represented by field variables defined in each space–time in QFT including
strings, cloths, or boxes. The QFT with an infinite number of degrees of freedom can
provide the Bose–Einstein condensation where massless Nambu–Goldstone bosons are
condensed in the zero-energy state resulting in the binding of quantum degrees of freedom
in the physical system where they behave as a single entity. The QFT generalized from
oscillators can provide the binding of quantum degrees of freedom and synchrony in the
physical system. The QFT might provide an answer to the binding problem in neuroscience.

Our approach can provide relations with a split brain study suggested in [54,55].
Among the consequences of cutting the corpus callosum, the breakdown of functional
integration between the left and right hemispheres is reported. We assume that the brain is
a mixed system of classical neurons and quantum degrees of freedom. Connections among
neurons play a role in synchrony. In the split brain, although memory is not lost in each
hemisphere due to the diffused non-local nature of memory, the synchrony among neurons
is lost. Due to the loss of connections, the simultaneous neuron firing and synchrony of
subsequent super-radiant emissions will disappear.
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We can adopt parallel information processing in the hologram memory of QBD, where
the processing is optically achieved in each point of the hologram through propagation
in space. The optical information of a hologram memory might be transferred with the
filtering of the hologram or processing in propagation through a hierarchy in the neocortex.
(The digital–analog conversion with filtering is proposed in [56].) Hologram memory might
propagate in the hierarchy and can be stored in an invariant form of memory. In storing
information in the hologram, we do not necessarily adopt sine functions for transmission.
We can also adopt step-function-like storage, where coherent domains with dipoles are all
aligned and incoherent domains with dipoles whose directions are random are distributed
as spatially inhomogeneous patterns after optical information processing. The difference
between sine functions and step functions is one of efficiency. This denotes the percentage
of incident reference beam used to reconstruct the object image. The holograms for long-
term memory might be stored as step functions with coherent domains and incoherent
domains and be diffused in a whole brain to achieve the equipotentiality and the mass
action. When we consider step-function-like storage, we can then adopt the vacua emerging
in the breakdown of rotational symmetry. The vacua are long-range correlations maintained
by massless Nambu–Goldstone bosons, indicating robustness against disturbance. We
find several stable examples of the breakdown of symmetry in our daily life. For example,
magnets are maintained by magnons in the breakdown of symmetry and crystals are main-
tained by phonons in room temperature. We just simply propose to adopt the macroscopic
order emerging in the breakdown of symmetry in quantum field theory (QFT) in QBD and
holography. The QFT, the fundamental theory of the nature describes both macroscopic
matter (including macroscopic order in the breakdown of symmetry) in classical mechanics
and microscopic degrees of freedom in quantum mechanics. The QFT approach is different
from other quantum mechanical approaches, such as Penrose–Hameroff theory [57]. The
quantum mechanics cannot be applied to macroscopic matter. The robustness against
damage in a brain is achieved in hologram memory. The whole image can be recreated
from undamaged parts in hologram memory even if parts of the hologram are damaged.
We can represent sequential characters of hologram memory. When patterns of incident
super-radiant emission are sequential, this may be related to neuron firing and subsequent
super-radiant beams in sequential properties—we recall memory as sequential patterns. We
can also achieve the auto-associative character of memory in a brain by adopting hologram
memory in QBD, where the entire memory is recreated from fragments of memory. When
two object images are recorded on the same hologram and the reflected light by one of the
object images extends to the hologram, the other object image is recreated by the light.

6. Conclusions and Perspectives

We proposed the integration of quantum brain dynamics (QBD) and holography.
Based on the Lagrangian density of QBD, we derived the time evolution equations for
coherent dipole fields and coherent electric fields. We adopted a solution of super-radiance
to achieve interference patterns for hologram memory. We discovered that the breakdown
of rotational symmetry occurs in an inverted population of incoherent dipoles in spatially
homogeneous systems. We investigated how interference patterns in holographic memory
evolve over time with the existence of the flow of dipole fields in the first excited state
(quantum fluctuations) excited by incoherent photons. Ordered patterns in a hologram were
amplified for memory printing in the course of time evolution in the inverted population of
the incoherent dipoles. Holography in QBD can describe several properties of memory in a
brain, which are different from computer memory. The integration of QBD and holography
may provide a promising approach to investigate the fundamental and applied aspects of
the human brain and the mechanism of memory creation.
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Appendix A. Quantum Fluctuations

We derive the term of quantum fluctuations in the Klein–Gordon Equation (34), namely
the third term on the right-hand side. In order to derive the term, we need to calculate the
term,

−2ede√
6

∂2

∂(x0)2 ∑
α=0,±1

[√
2i(1− |α|)(+∆αs − ∆sα)

]
,

which is time-derivative in Equation (22) with J3 in Equation (25).
We begin with the Kadanoff–Baym equations for incoherent dipoles in the ground

state and the first excited states. The Kadanoff–Baym equations for incoherent dipoles are

given by δΓ2PI
δ∆

∣∣∣
ā=0

= 0 in Equation (20). The equations are written as

i∆−1
0 − iΣ = i∆−1, (A1)

where i∆−1
0 is given in Equation (13), ∆ is given in Equation (15), and self-energy iΣ =

− 1
2

δΓ2
δ∆ . Here, the self-energy matrix Σ is written by Σ = diag(Σss, Σ−1−1, Σ00, Σ11) in the

leading order in the coupling expansion.
Multiply ∆ from the right in Equation (A1) and take the (α, s) component; we can

then derive

i
(

∆−1
0,αα − Σαα

)
∆αs +

2ede√
6

[
iα(E1 − iαE2)−

√
2i(1− |α|)E3

]
∆ss = 0, (A2)

with i∆0,αα(x, y) =

(
i ∂

∂x0 +
∇2

i
2m −

1
I

)
δC(x − y) in the closed-time contour C. We shall

introduce the auxiliary Green’s function ∆g,αα satisfying

i∆−1
g,αα = i

(
∆−1

0,αα − Σαα

)
. (A3)

Using Equation (A3) in Equation (A2), we can derive the relation

∆αs(x, y) = −1
i

2ede√
6

∫
C

dw∆g,αα(x, w)
[
iα(E1(w)− iαE2(w))−

√
2i(1− |α|)E3(w)

]
∆ss(w, y). (A4)

For α = 0, we find

∆0s =
2ede√

3
∆g,00E3∆ss. (A5)
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Then, multiply ∆ from the right in Equation (A1) and take the (s, s) component; we
can then derive

i
(

∆−1
0,ss − Σss

)
∆ss +

2ede√
6

∑
α=0,±1

[
−iα(E1 + iαE2) +

√
2i(1− |α|)E3

]
∆αs = iδC , (A6)

where i∆0,ss(x, y) =
(

i ∂
∂x0 +

∇2
i

2m

)
δC(x− y). Using Equation (A4), we arrive at

i
(

∆−1
0,ss − Σss

)
∆ss + i

2(ede)2

3 ∑
α

[
−iα(E1 + iαE2) +

√
2i(1− |α|)E3

]
∆g,αα

×
[
iα(E1 − iαE2)−

√
2i(1− |α|)E3

]
∆ss = iδC . (A7)

Then multiply ∆ from the left in Equation (A1) and take the (s, α) component; we
can then derive

∆ss
2ede√

6

[
−iα(E1 + iαE2) +

√
2i(1− |α|)E3

]
+ ∆sαi

(
∆−1

0,αα − Σαα

)
= 0. (A8)

Using the relation (A3), the above equation is transformed into

∆sα(x, y) = −1
i

2ede√
6

∫
C

dw∆ss(x, w)
[
−iα(E1(w) + iαE2(w)) +

√
2i(1− |α|)E3(w)

]
∆g,αα(w, y). (A9)

For α = 0, we find

∆s0 = −2ede√
3

∆ssE3∆g,00. (A10)

Multiply ∆ from the left in Equation (A1), and take the (s, s) component; we can
then derive

∆ssi
(

∆−1
0,ss − Σss

)
+ ∑

α

2ede√
6

∆sα

[
iα(E1 − iαE2)−

√
2i(1− |α|)E3

]
= iδC . (A11)

Using Equation (A9), the above equation is rewritten by

∆ssi(∆−1
0,ss − Σss) + i

2(ede)2

3
∆ss

[
−iα(E1 + iαE2) +

√
2i(1− |α|)E3

]
×∆g,αα

[
iα(E1 − iαE2)−

√
2i(1− |α|)E3

]
= iδC . (A12)

Multiply ∆ from the right in Equation (A1), take the (α, α) component with α = 0, and
use the relation (A9); we can then derive

i∆−1
g,00∆00 + i

4(ede)2

3
E3∆ssE3∆g,00 = iδC . (A13)

From this relation, we arrive at

∆00 = ∆g,00 −
4(ede)2

3
∆g,00E3∆ssE3∆g,00. (A14)

We then calculate the time derivatives of ∆s0(x, x) and ∆0s(x, x). We shall neglect
self-energy terms which are a next-to-leading order contribution in the Klein–Gordon
Equation (34). We consider the case of E1 = E2 = 0. The relation (A3) is then rewritten as
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(
i

∂

∂x0 +
∇2

x
2m
− 1

I

)
∆g,αα(x, w) = iδC(x− w) (A15)(

−i
∂

∂x0 +
∇2

x
2m
− 1

I

)
∆g,αα(w, x) = iδC(w− x). (A16)

The Equation (A7) is rewritten as

(
i

∂

∂x0 +
∇2

x
2m

)
∆ss(x, w) + i

4(ede)2

3
E3(x)

∫
C

dy∆g,00(x, y)E3(y)∆ss(y, w) = iδC(x− w). (A17)

Similarly, the relation (A12) is rewritten as

(
−i

∂

∂x0 +
∇2

x
2m

)
∆ss(w, x) + i

4(ede)2

3

∫
C

dy∆ss(w, y)E3(y)∆g,00(y, x)E3(x) = iδC(w− x). (A18)

Using Equations (A15)–(A18), we can derive

∂

∂x0 ∆0s(x, x) =
2ede√

6

[(
1
I

∆g,00 + iδC

)
(−
√

2iE3)∆ss

+∆g,00(−
√

2iE3)i
4(ede)2

3
∆ssE3∆g,00E3 − ∆g,00(−

√
2iE3)iδC

]
, (A19)

and

∂

∂x0 ∆s0(x, x) =
2ede√

6

[
iδC
√

2iE3∆g,00 − i
4(ede)2

3
E3∆g,00E3∆ss

√
2iE3∆g,00

+∆ss
√

2iE3

(
−1

I
∆g,00 − iδC

)]
, (A20)

where we neglect the terms with ∇
2

2m which are higher-order contributions in the gradient
expansion. Using relations (A19) and (A20), we find

∂

∂x0 (∆0s − ∆s0) =
2ede√

6
1
I

(
∆g,00(−

√
2iE3)∆ss + ∆ss

√
2iE3∆g,00

)
=

1
iI
(∆0s + ∆s0), (A21)

and

∂2

∂(x0)2 (∆0s − ∆s0) =
1
iI

2ede√
6

[
2
√

2∆ssE3 − 2
√

2∆g,00E3 +
1
I

∆g,00(−
√

2iE3)∆ss

−1
I

∆ss
√

2iE3∆g,00 +
8
√

2(ede)2

3
∆g,00E3∆ssE3∆g,00E3

]
. (A22)
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We shall use the relation (A14), and then we find

∂2

∂(x0)2 (∆0s − ∆s0) =
1
iI

2ede√
6

[
2
√

2(∆ss − ∆00)E3 +
1
I

∆g,00(−
√

2iE3)∆ss

−1
I

∆ss
√

2iE3∆g,00

]

= − 1
I2 (∆0s − ∆s0) +

4ede√
3

1
iI
(∆ss − ∆00). (A23)

Finally, taking the 0th order terms in the gradient expansion and taking the statistical
part of Green’s functions, we arrive at

−2edei√
3

∂2

∂(x0)2 (∆0s − ∆s0) = +
8(ede)2

3I
E3

∫
p
(F00(x, p)− Fss(x, p))

+
8(ede)2

3I2 E3

∫
p

(
Re∆g,00,RFss + ∆g,00,FRe∆ss,R

)
, (A24)

where we introduced the retarded Green’s functions ∆g,00,R = i(∆11
g,00 − ∆12

g,00) and ∆ss,R =

i(∆11
ss − ∆12

ss ) and statistical functions Fss = ∆12
ss +∆21

ss
2 and ∆g,00,F =

∆12
g,00+∆21

g,00
2 with their

Fourier-transformed functions. In this paper, we discuss the first term on the right-hand
side in the above equation by assuming that the second term is incorporated into the
first term.
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