Antimicrobial Resistance (AMR) in Italy over the Past Five Years: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Main Characteristics of the Included Studies
2.2. Multidrug-Resistant Microorganisms
2.3. Samples and Settings
2.4. Quality Assessment
3. Discussion
3.1. Recommendations
3.2. Limitations and Strengths
4. Materials and Methods
4.1. Data Extraction
4.2. Quality Assessment
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tackling a Crisis for the Health and Wealth of Nations. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 3 April 2022).
- European Centre for Disease Prevention and Control. ECDC Country Visit to Italy to Discuss Antimicrobial Resistance Issues: 9–13 January 2017. Available online: https://www.ecdc.europa.eu/en/publications-data/ecdc-country-visit-italy-discuss-antimicrobial-resistance-issues (accessed on 3 April 2022).
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef][Green Version]
- European Centre for Disease Prevention and Control; Organisation for Economic Co-Operation and Development. Antimicrobial Resistance Tackling the Burden in the European Union. Available online: https://www.oecd.org/health/health-systems/AMR-Tackling-the-Burden-in-the-EU-OECD-ECDC-Briefing-Note-2019.pdf (accessed on 3 April 2022).
- European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe. 2020. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2020 (accessed on 3 April 2022).
- World Health Organization. Antimicrobial Resistance: National Action Plans. 2018. Available online: https://www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG_AMR_National_Action_Plans_110618.pdf (accessed on 3 April 2022).
- Ashiru-Oredope, D.; Hopkins, S.; Vasandani, S.; Umoh, E.; Oloyede, O.; Nilsson, A.; Kinsman, J.; Elsert, L.; Monnet, D.L.; The #ECDCAntibioticSurvey Project Advisory Group. Healthcare workers’ knowledge, attitudes and behaviours with respect to antibiotics, antibiotic use and antibiotic resistance across 30 EU/EEA countries in 2019. Eurosurveillance 2021, 26, 1900633. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.; Vlahović-Palčevski, V.; Iwamoto, K.; Högberg, L.D.; Godman, B.; Monnet, D.L.; Garner, S.; Weist, K.; ESAC-Net Study Group; WHO Europe AMC Network Study Group. Variations in the Consumption of Antimicrobial Medicines in the European Region, 2014-2018: Findings and Implications from ESAC-Net and WHO Europe. Front Pharmacol. 2021, 12, 639207. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA (ESAC-Net), Annual Reporting for 2020. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/ESAC-Net%20AER-2020-Antimicrobial-consumption-in-the-EU-EEA.pdf (accessed on 3 April 2022).
- Calzi, A.; Grignolo, S.; Caviglia, I.; Calevo, M.G.; Losurdo, G.; Piaggio, G.; Bandettini, R.; Castagnola, E. Resistance to oral antibiotics in 4569 Gram-negative rods isolated from urinary tract infection in children. Eur. J. Pediatr. 2016, 175, 1219–1225. [Google Scholar] [CrossRef]
- Busani, S.; Serafini, G.; Mantovani, E.; Venturelli, C.; Giannella, M.; Viale, P.; Mussini, C.; Cossarizza, A.; Girardis, M. Mortality in Patients with Septic Shock by Multidrug Resistant Bacteria: Risk Factors and Impact of Sepsis Treatments. J. Intensive Care Med. 2019, 34, 48–54. [Google Scholar] [CrossRef]
- Bianco, A.; Capano, M.S.; Mascaro, V.; Pileggi, C.; Pavia, M. Prospective surveillance of healthcare-associated infections and patterns of Antimicrobial Resistance of pathogens in an Italian intensive care unit. Antimicrob. Resist. Infect. Control 2018, 7, 1–6. [Google Scholar] [CrossRef]
- Del Giudice, A.; Mustazzolu, A.; Iacobino, A.; Perna, R.; Smeraglia, R.; Marino, R.; Fattorini, L.; Santoro, G. Drug-resistant tuberculosis in Naples, 2008–2013. Ann. Ist. Super Sanita. 2016, 52, 603–607. [Google Scholar]
- Patriarca, F.; Cigana, C.; Massimo, D.; Lazzarotto, D.; Geromin, A.; Isola, M.; Battista, M.L.; Medeot, M.; Cerno, M.; Sperotto, A.; et al. Risk Factors and Outcomes of Infections by Multidrug-Resistant Gram-Negative Bacteria in Patients Undergoing Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2017, 23, 333–339. [Google Scholar] [CrossRef][Green Version]
- Cristina, M.; Sartini, M.; Ottria, G.; Schinca, E.; Cenderello, N.; Crisalli, M.; Fabbri, P.; Pinto, G.L.; Usiglio, D.; Spagnolo, A. Epidemiology and biomolecular characterization of carbapenem-resistant klebsiella pneumoniae in an Italian hospital. J. Prev. Med. Hyg. 2016, 57, E149–E156. [Google Scholar]
- Papa, V.; Blanco, A.R.; Santocono, M. Ocular flora and their antibiotic susceptibility in patients having cataract surgery in Italy. J. Cataract Refract. Surg. 2016, 42, 1312–1317. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Salsano, A.; Del Puente, F.; Campanini, F.; Mariscalco, G.; Marchese, A.; Viscoli, C.; Santini, F. Reduced Incidence of Carbapenem-Resistant Klebsiella pneumoniae Infections in Cardiac Surgery Patients after Implementation of an Antimicrobial Stewardship Project. Antibiotics 2019, 8, 132. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Salerno, F.; Borzio, M.; Pedicino, C.; Simonetti, R.; Rossini, A.; Boccia, S.; Cacciola, I.; Burroughs, A.K.; Manini, M.A.; LA Mura, V.; et al. The impact of infection by multidrug-resistant agents in patients with cirrhosis. A multicenter prospective study. Liver Int. 2017, 37, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Drago, L.; De Vecchi, E.; Bortolin, M.; Zagra, L.; Romanò, C.L.; Cappelletti, L. Epidemiology and Antibiotic Resistance of Late Prosthetic Knee and Hip Infections. J. Arthroplast. 2017, 32, 2496–2500. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.; Tejada, M.; Gaia, P.; Cornetta, M.; Moroni, A.; Carfora, E.; Valaperta, R.; De Siena, C.; Moussaidi, N.; Isgrò, G.; et al. Prevalence of multidrug-resistant organisms in migrant children admitted to an Italian cardiac surgery department, 2015–2016. J. Hosp. Infect. 2018, 98, 309–312. [Google Scholar] [CrossRef]
- Proroga, Y.T.; Capuano, F.; Capparelli, R.; Bilei, S.; Bernardo, M.; Cocco, M.P.; Campagnuolo, R.; Pasquale, V. Characterization of non-typhoidal Salmonella enterica strains of human origin in central and southern Italy. Ital. J. Food Saf. 2018, 7, 6888. [Google Scholar] [CrossRef]
- Cattaneo, C.; Di Blasi, R.; Skert, C.; Candoni, A.; Martino, B.; Di Renzo, N.; Delia, M.; Ballanti, S.; Marchesi, F.; Mancini, V.; et al. Bloodstream infections in haematological cancer patients colonized by multidrug-resistant bacteria. Ann. Hematol. 2018, 97, 1717–1726. [Google Scholar] [CrossRef][Green Version]
- García-Fernández, A.; Dionisi, A.M.; Arena, S.; Iglesias-Torrens, Y.; Carattoli, A.; Luzzi, I. Human Campylobacteriosis in Italy: Emergence of Multi-Drug Resistance to Ciprofloxacin, Tetracycline, and Erythromycin. Front. Microbiol. 2018, 9, 1906. [Google Scholar] [CrossRef]
- Forcina, A.; Lorentino, F.; Marasco, V.; Oltolini, C.; Marcatti, M.; Greco, R.; Lupo-Stanghellini, M.T.; Carrabba, M.; Bernardi, M.; Peccatori, I.; et al. Clinical Impact of Pretransplant Multidrug-Resistant Gram-Negative Colonization in Autologous and Allogeneic Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2018, 24, 1476–1482. [Google Scholar] [CrossRef][Green Version]
- Cama, B.A.V.; Ceccarelli, M.; Venanzi Rullo, E.; Ferraiolo, F.; Paolucci, I.A.; Maranto, D.; Mondello, P.; Lo Presti Costantino, M.R.; Marano, F.; D’Andrea, G.; et al. Outbreak of Brucella Melitensis Infection in Eastern Sicily: Risk Factors, Clinical Characteristics and Complication Rate. New Microbiol. 2018, 41, 43–48. [Google Scholar]
- De Angelis, G.; Fiori, B.; Menchinelli, G.; D’Inzeo, T.; Liotti, F.M.; Morandotti, G.A.; Sanguinetti, M.; Posteraro, B.; Spanu, T. Incidence and Antimicrobial Resistance trends in bloodstream infections caused by ESKAPE and Escherichia coli at a large teaching hospital in Rome, a 9-year analysis (2007–2015). Eur. J. Clin. Microbiol. Infect Dis. 2018, 37, 1627–1636. [Google Scholar] [CrossRef]
- Mascaro, V.; Capano, M.S.; Iona, T.; Nobile, C.G.A.; Ammendolia, A.; Pavia, M. Prevalence of Staphylococcus Aureus Carriage and Pattern of Antibiotic Resistance, Including Methicillin Resistance, among Contact Sport Athletes in Italy. Infect Drug Resist 2019, 12, 1161–1170. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Loconsole, D.; De Robertis, A.L.; Mallamaci, R.; Sallustio, A.; Morea, A.; Prato, R.; Quarto, M.; Martinelli, D.; Chironna, M. First Description of Macrolide-Resistant Mycoplasma pneumoniae in Adults with Community-Acquired Pneumonia in Italy. BioMed Res. Int. 2019, 2019, 7168949. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Del Prete, R.; Ronga, L.; Addati, G.; Magrone, R.; Abbasciano, A.; Decimo, M.; Mosca, A.; Miragliotta, G. Trends in Klebsiella pneumoniae strains isolated from the bloodstream in a teaching hospital in southern Italy. Infez. Med. 2019, 27, 17–25. [Google Scholar]
- La Fauci, V.; Costa, G.B.; Genovese, C.; Palamara, M.A.R.; Alessi, V.; Squeri, R. Drug-resistant bacteria on hands of healthcare workers and in the patient area: An environmental survey in Southern Italy’s hospital. Rev. Esp. Quimioter. 2019, 32, 303–310. [Google Scholar]
- Mascaro, V.; Squillace, L.; Nobile, C.G.; Papadopoli, R.; Bosch, T.; Schouls, L.M.; Casalinuovo, F.; Musarella, R.; Pavia, M. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) carriage and pattern of antibiotic resistance among sheep farmers from Southern Italy. Infect. Drug Resist. 2019, 12, 2561–2571. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Grandi, G.; Bianco, G.; Boattini, M.; Scalabrin, S.; Iannaccone, M.; Fea, A.; Cavallo, R.; Costa, C. Bacterial etiology and Antimicrobial Resistance trends in ocular infections: A 30-year study, Turin area, Italy. Eur. J. Ophthalmol. 2021, 31, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Pirolo, M.; Visaggio, D.; Gioffrè, A.; Artuso, I.; Gherardi, M.; Pavia, G.; Samele, P.; Ciambrone, L.; Di Natale, R.; Spatari, G.; et al. Unidirectional animal-to-human transmission of methicillin-resistant Staphylococcus aureus ST398 in pig farming; evidence from a surveillance study in southern Italy. Antimicrob. Resist. Infect. Control 2019, 8, 1–10. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cannas, A.; Butera, O.; Gualano, G.; Parracino, M.; Venditti, C.; Mazzarelli, A.; Palmieri, F.; Girardi, E.; Di Caro, A. Multidrug-Resistant Tuberculosis In A Referral Center In Rome: 2011–2016. Infect. Drug Resist. 2019, 12, 3275–3281. [Google Scholar] [CrossRef][Green Version]
- Tumbarello, M.; Raffaelli, F.; Peghin, M.; Losito, A.R.; Chirico, L.; Giuliano, G.; Spanu, T.; Sartor, A.; Fiori, B.; Bassetti, M. Characterisation and risk factor profiling of Pseudomonas aeruginosa urinary tract infections: Pinpointing those likely to be caused by multidrug-resistant strains. Int. J. Antimicrob. Agents 2020, 55, 105900. [Google Scholar] [CrossRef]
- Papalini, C.; Sabbatini, S.; Monari, C.; Mencacci, A.; Francisci, D.; Perito, S.; Pasticci, M.B. In vitro antibacterial activity of ceftazidime/avibactam in combination against planktonic and biofilm carbapenemase-producing Klebsiella pneumoniae isolated from blood. J. Glob. Antimicrob. Resist. 2020, 23, 4–8. [Google Scholar] [CrossRef]
- Riccardi, N.; Pontarelli, A.; Alagna, R.; Saderi, L.; Ferrarese, M.; Castellotti, P.; Viggiani, P.; Cirillo, D.; Besozzi, G.; Sotgiu, G.; et al. Epidemiology and treatment outcome of MDR and pre-XDR TB in international migrants at two reference centers in the North of Italy: A cross-sectional study coordinated by Stop TB Italia Onlus. Public Health 2020, 180, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Pompilio, A.; Savini, V.; Fiscarelli, E.; Gherardi, G.; Di Bonaventura, G. Clonal Diversity, Biofilm Formation, and Antimicrobial Resistance among Stenotrophomonas maltophilia Strains from Cystic Fibrosis and Non-Cystic Fibrosis Patients. Antibiotics 2020, 9, 15. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Seminari, E.; Monzillo, V.; Lombardi, A.; Barbarini, D.; Scudeller, L.; Schimmenti, A.; Muzzi, A.; Marone, P. Migrations do not modify Mycobacterium tuberculosis resistance rates: A 20-year retrospective study. Eur. J. Clin. Microbiol. Infect Dis. 2020, 39, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Loconsole, D.; Accogli, M.; De Robertis, A.L.; Capozzi, L.; Bianco, A.; Morea, A.; Mallamaci, R.; Quarto, M.; Parisi, A.; Chironna, M. Emerging high-risk ST101 and ST307 carbapenem-resistant Klebsiella pneumoniae clones from bloodstream infections in Southern Italy. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gudiol, C.; Albasanz-Puig, A.; Laporte-Amargós, J.; Pallarès, N.; Mussetti, A.; Ruiz-Camps, I.; Puerta-Alcalde, P.; Abdala, E.; Oltolini, C.; Akova, M.; et al. Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64, e02494-19. [Google Scholar] [CrossRef]
- Fiorini, G.; Saracino, I.M.; Zullo, A.; Pavoni, M.; Saccomanno, L.; Lazzarotto, T.; Cavallo, R.; Antonelli, G.; Vaira, B. Antibiotic Resistance and Therapy for H. pylori Infection in Immigrant Patients Treated in Italy. J. Clin. Med. 2020, 9, 1299. [Google Scholar] [CrossRef]
- Gentile, B.; Grottola, A.; Orlando, G.; Serpini, G.F.; Venturelli, C.; Meschiari, M.; Anselmo, A.; Fillo, S.; Fortunato, A.; Lista, F.; et al. A Retrospective Whole-Genome Sequencing Analysis of Carbapenem and Colistin-Resistant Klebsiella pneumoniae Nosocomial Strains Isolated during an MDR Surveillance Program. Antibiotics 2020, 9, 246. [Google Scholar] [CrossRef]
- Saracino, I.M.; Pavoni, M.; Zullo, A.; Fiorini, G.; Saccomanno, L.; Lazzarotto, T.; Antonelli, G.; Cavallo, R.; Borghi, C.; Vaira, D. Rifabutin-Based Triple Therapy Or Bismuth-Based Quadruple Regimen As Rescue Therapies For Helicobacter pylori Infection. Eur. J. Intern. Med. 2020, 81, 50–53. [Google Scholar] [CrossRef]
- Giovanni, N.; Elisa, S.; Marta, C.; Rosa, F.; Loredana, C.; Alessandra, B.; Antonio, P. Occurrence and characteristics of methicillin-resistant Staphylococcus aureus (MRSA) in buffalo bulk tank milk and the farm workers in Italy. Food Microbiol. 2020, 91, 103509. [Google Scholar] [CrossRef]
- Mascellino, M.T.; Oliva, A.; Miele, M.C.; De Angelis, M.; Bruno, G.; Severi, C. Secondary Antibiotic Resistance, Correlation between Genotypic and Phenotypic Methods and Treatment in Helicobacter Pylori Infected Patients: A Retrospective Study. Antibiotics 2020, 9, E549. [Google Scholar] [CrossRef]
- Karruli, A.; Boccia, F.; Gagliardi, M.; Patauner, F.; Ursi, M.P.; Sommese, P.; De Rosa, R.; Murino, P.; Ruocco, G.; Corcione, A.; et al. Multidrug-Resistant Infections and Outcome of Critically Ill Patients with Coronavirus Disease 2019: A Single Center Experience. Microb. Drug Resist. 2021, 27, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Barbadoro, P.; Bencardino, D.; Carloni, E.; Omiccioli, E.; Ponzio, E.; Micheletti, R.; Acquaviva, G.; Luciani, A.; Masucci, A.; Pocognoli, A.; et al. Carriage of Carbapenem-Resistant Enterobacterales in Adult Patients Admitted to a University Hospital in Italy. Antibiotics 2021, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Gasperini, B.; Cherubini, A.; Lucarelli, M.; Espinosa, E.; Prospero, E. Multidrug-Resistant Bacterial Infections in Geriatric Hospitalized Patients before and after the COVID-19 Outbreak: Results from a Retrospective Observational Study in Two Geriatric Wards. Antibiotics 2021, 10, 95. [Google Scholar] [CrossRef]
- Magi, G.; Tontarelli, F.; Caucci, S.; Di Sante, L.; Brenciani, A.; Morroni, G.; Giovanetti, E.; Menzo, S.; Mingoia, M. High prevalence of carbapenem-resistant Klebsiella pneumoniae ST307 recovered from fecal samples in an Italian hospital. Futur. Microbiol. 2021, 16, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Posteraro, B.; De Angelis, G.; Menchinelli, G.; D’Inzeo, T.; Fiori, B.; De Maio, F.; Cortazzo, V.; Sanguinetti, M.; Spanu, T. Risk Factors for Mortality in Adult COVID-19 Patients Who Develop Bloodstream Infections Mostly Caused by Antimicrobial-Resistant Organisms: Analysis at a Large Teaching Hospital in Italy. J. Clin. Med. 2021, 10, 1752. [Google Scholar] [CrossRef]
- Petrillo, F.; Pignataro, D.; Di Lella, F.; Reibaldi, M.; Fallico, M.; Castellino, N.; Parisi, G.; Trotta, M.; D’Amico, M.; Santella, B.; et al. Antimicrobial Susceptibility Patterns and Resistance Trends of Staphylococcus aureus and Coagulase-Negative Staphylococci Strains Isolated from Ocular Infections. Antibiotics 2021, 10, 527. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef][Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 90. 2019. Available online: https://eucast.org/clinical_breakpoints/ (accessed on 3 April 2020).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- World Health Organization. Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2018; Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 3 April 2022).
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial Resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2015, 57, 2857–2876. [Google Scholar] [CrossRef]
- Core Elements of Antibiotic Stewardship|Antibiotic Use|CDC. Available online: https://www.cdc.gov/antibiotic-use/core-elements/index.html (accessed on 3 April 2022).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef][Green Version]
Author | Italian Region | Year | Study Design | Study Period | Definition of “Multidrugresistant Isolate” Adopted | Microorganism Studied | Main MDR Microorganism | N° of Isolates | N° of Multidrug Resistant (N, %) | Microorganism Identification Methods | Antimicrobial Susceptibility Testing Method | Breakpoints Used for MIC | Sample Features | Mean Age | Subjects (N) | Setting | Quality Assessment (STROBE) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Calzi A [10] | Liguria | 2016 | CS | January 2007–December 2014 | n.a. | E.coli; Enterobacteriaceae; Paeruginosa | E. coli | 3006 | 902 (30%) | Culture-based | BD Phoenix™ Automated Microbiology System | EUCAST | Paediatric patients | 2 | 3364 | Hospital Ward | Intermediate |
Busani S [11] | Emilia-Romagna | 2016 | CS | January 2008–December 2013 | Non-susceptibility to at least one agent in three or more antimicrobial categories | Staphylococcus aureus; Enterococcus subspp.; Enterobacteria ceae; Pseudomonas aeruginosa; and Acinetobacter | P. aeruginosa | 115 | 94 (36%) | n.a. | n.a. | n.a. | Adult ICU patients with septic shock | 71 | 381 | Hospital Ward | Poor |
Bianco A [12] | Calabria | 2016 | LS | Mar 2014–May 2014 | n.a. | A. baumannii | A. baumannii | 8 | 8 (100%) | MALDI Biotyper® (MBT) | VITEK® 2 system | CLSI | Adult ICU patients | 65 | 8 | Hospital Ward | Good |
Del Giudice A [13] | Campania | 2016 | LS | 1 January 2008–31 December 2013 | Resistant to at least isoniazid, H, and rifampin, R | M. tuberculosis | M. tuberculosis | 690 | 31 (4.5%) | GenoType Mycobacterium CM; BD MGIT TBc Identification assay | BD BACTEC™ MGIT™ 960 | n.a. | General population | 42 | 690 | Laboratory of Microbiology and Virology | Good |
Patriarca F [14] | Friuli-Venezia Giulia | 2016 | CS | January 2013–Junuary 2015 | Non-susceptibility to at least one agent in three or more antimicrobial categories | K. Pneumoniae; P. aeruginosa; E. coli | K. Pneumoniae | 241 | 13 (5%) | Culture-based | n.a. | EUCAST; CLSI | Adult patients who underwent HSCT | 56 | 241 | Transplant Center | Good |
Cristina ML [15] | Liguria | 2016 | CS | 2013–2014 | Non-susceptible to imipenem and/or meropenem and/or ertapenem according to the EUCAST breakpoints | K. pneumoniae | K. pneumoniae | 147 | 147 (100%) | BD Phoenix™ Automated Microbiology System | BD Phoenix™ Automated Microbiology System | EUCAST | Adult patients | 79 | 147 | Hospital Ward | Good |
Papa V [16] | Sicily | 2016 | CS | May 2014–October 2014 | Non-susceptibility to at least one agent in three or more antimicrobial categories | S. aureus; S. epidermidis | CoNS | 131 | 92(33%) | Culture-based | Disk diffusion test | EUCAST | Adult patients | 72 | 120 | Hospital ward | Good |
Giacobbe DR [17] | Liguria; Piedmont; Emilia-Romagna | 2017 | CS | January 2012–March 2014 | n.a. | Staphylococcus spp.; Enterococcus spp.; Enterobacteriaceae; non- fermenting Gram negatives; Candida spp. | K. pneumoniae | 353 | 353 (100%) | MALDI Biotyper® (MBT); VITEK® 2 system | VITEK® 2 system | EUCAST; CLSI | Adult patients | 70 | 353 | Hospital Ward | Intermediate |
Salerno F [18] | Multicenter | 2017 | LS | January 2007–October 2009 | n.a. | GN; GP | S. aureus | 313 | 83 (27%) | n.a. | n.a. | n.a. | Adult patients | n.a. | 203 | Hospital ward | Good |
Drago L [19] | Lombardy | 2017 | CS | January 2013–June 2015 | n.a. | Staphylococcus spp.; Enterobacteriaceae; propionibacterium acnes | Staphylococcus spp. | 341 | 144 (42%) | VITEK® 2 system | VITEK® 2 system; E-TEST® strips | n.a. | Adult patients | 65 | 429 | Hospital ward | Good |
Costa E [20] | Lombardy | 2017 | LS | 2015–2016 | n.a. | S. aureus; extended-spectrum b-lactamase; Enterobacterales; Gram-negative bacteria; Enterococci | Extended-spectrum b-lactamase | 577 | 336 (68%) | VITEK® 2 system | VITEK® 2 system | EUCAST | Paediatric patients candidates for cardiac surgery | n.a. | 495 | Hospital ward | Good |
Proroga YTR [21] | Lazio; Campania | 2017 | LS | January 2013–December 2015 | Magiorakos et al. criteria | S. enterica | S. enterica | 150 | 90 (60%) | n.a. | Disk diffusion test | CLSI | Adult patients | n.a. | n.a. | Hospital ward | Good |
Cattaneo C [22] | Multicenter | 2018 | LS | March 2015–August 2015 | Non-susceptibility to at least one agent in three or more antimicrobial categories | VRE; ESBL-P; CarbaR | CarbaR | 2226 | 144 (7%) | Culture-based | Disk diffusion test | EUCAST | Adult patients with a haematological neoplasm | n.a. | 144 | Hospital Ward | Good |
García-Fernández A [23] | Multicenter | 2018 | LS | January 2013–December 2016 | Non-susceptibility to at least one agent in three or more antimicrobial categories | Campylobacter spp. | C. jejuni | 176 | 15 (37%) | Culture-based s; multiplex PCR | Disk diffusion test | EUCAST | Paediatric and adult patients | n.a. | 4672 | Enter-Net Italia | Good |
Forcina A [24] | Lombardy | 2018 | LS | July 2012–January 2016 | Non-susceptibility to at least one agent in three or more antimicrobial categories | GNB | P. aeruginosa | 54 | 7 (16%) | Culture-based | n.a. | n.a. | Adult patients undergoing autologous and allogeneic transplant | n.a. | 348 | Hospital Ward | Poor |
Cama BAV [25] | Sicily | 2018 | CS | January 2016–December 2016 | n.a. | B. melitensis | B. melitensis | 12 | 7 (58%) | Culture-based | n.a. | n.a. | Adult patients | n.a. | 24 | Hospital ward | Good |
De Angelis G [26] | Lazio | 2018 | CS | 2007–2015 | Non-susceptibility to at least one agent in three or more antimicrobial categories | E. coli; E. faecium; S. aureus; K. pneumoniae; A. baumannii; P. aeruginosa; Enterobacter spp. | E. coli | 9720 | 5336 (54.9%) | VITEK 2® system; MALDI Biotyper® (MBT) | VITEK® 2 system; MERLIN Diagnostica GmbH | EUCAST | General population | n.a. | n.a. | Laboratory of Microbiology and Virology | Good |
Mascaro V [27] | Calabria | 2019 | CS | March 2017–February 2018 | Non-susceptibility to at least one agent in three or more antimicrobial categories | S. aureus | S. aureus | 95 | 3 (3%) | Gram stain, catalase, and coagulase tests(Pastorextm Staph-plus Bio-Rad), API Staph identification system (bioMérieux) | Disk diffusion test | EUCAST | Sheep farm workers | 46 | 275 | Farm | Poor |
Loconsole D [28] | Apulia | 2019 | CS | January 2013–April 2015 | n.a. | Macrolide Resistant M. pneumoniae | Macrolide Resistant M. pneumoniae | 15 | 3 (34%) | RT-PCR | RT-PCR; MLVA | n.a. | Adult patients | 53 | 234 | Hospital ward | Good |
Del Prete R [29] | Apulia | 2019 | CS | January 2015–December 2017 | Non-susceptibility to at least one agent in three or more antimicrobial categories | K. pneumoniae | K. pneumoniae | 439 | 439 (58%) | VITEK® 2 system | VITEK® 2 system | EUCAST | Adult patients | n.a. | 356 | Hospital ward | Good |
La Fauci V [30] | Sicily | 2019 | LS | June 2017–May 2018 | Magiorakos et al. criteria | Staphylococcus; Enterobacteria; Pseudomonas; Acinetobacter; Rhizobium; Sphingomonas; Ochrobactrum; Streptococcus spp.; Aerococci; Burkholderia; Roseomonas; Kytococcus. | Staphylococcus spp. | 608 | 47 (15%) | VITEK® 2 system | VITEK® 2 system | EUCAST | Adult patients | n.a. | n.a. | Hospital Ward | Poor |
Mascaro V [31] | Calabria | 2019 | CS | May 2017–March 2018 | Non-susceptibility to at least one agent in three or more antimicrobial categories | S. aureus | S. aureus | 101 | 10 (10%) | API Staph identification system (bioMérieux) | Disk diffusion test | EUCAST | Athletes | 23 | 238 | Public or private gyms | intermediate |
Grandi G [32] | Piedmont | 2019 | LS | 1988–2017 | Non-susceptibility to at least one agent in three or more antimicrobial categories | S. aureus; Staphylococcus spp; S. pneumoniae;P. aeruginosa; H. influenzae; Streptococcus spp. | S. aureus | 2898 | n.a. (8.7%); n.a. (10%); 348 (12%) | n.a. | Disk diffusion test | EUCAST; CLSI | Adult patients with ocular infection | n.a. | n.a. | Hospital Ward | Good |
Pirolo M [33] | Calabria | 2019 | CS | March 2018–February 2019 | Non-susceptible to at least three non β-lactams antimicrobial classes | S. aureus | S. aureus | 49 | 19 (9%) | Staphytect plus test; PCR | VITEK® 2 system | CLSI | Pig farm workers | 46 | 88 | Farm | Intermediate |
Cannas A [34] | Lazio | 2019 | CS | 2011–2016 | Resistance to isoniazid and rifampicin | M. tuberculosis | M. tuberculosis | 926 | 51 (6%) | Ziehl Nielsen; hot staining; mRNA testing (E-MTD, TRCReady-80) | Proportion dilution | n.a. | Adult patients | 40 | 926 | Hospital Ward | Intermediate |
Tumbarello M [35] | Lazio; Lombardy | 2020 | CS | 1 January 2016–31 December 2017 | Non-susceptibility to at least one agent in three or more antimicrobial categories | P. aeruginosa | P. aeruginosa | 242 | 65 (27%) | MALDI Biotyper® (MBT) | VITEK® 2 system; MERLIN Diagnostica GmbH | EUCAST | Adult patients | 71 | 305 | Hospital Ward | Good |
Papalini C [36] | Umbria | 2020 | CS | 2014–2019 | Magiorakos et al. criteria | K. pneumoniae | K. pneumoniae | 3 | 3 (100%) | MALDI Biotyper® (MBT) | BD Phoenix™ Automated Microbiology System | EUCAST | General population | n.a. | 113 | Laboratory of Microbiology and Virology | Intermediate |
Riccardi N [37] | Lombardy | 2020 | CS | 1 January 2000–1 Jan 2015 | n.a. | M. tuberculosis | M. tuberculosis | 8603 | 370 (4%) | n.a. | n.a. | n.a. | Adult migrant patients | 32 | 116 | Hospital Ward | Intermediate |
Pompilio A [38] | Lazio | 2020 | CS | 2017–2018 | Non-susceptibility to at least one agent in three or more antimicrobial categories | S. maltophilia | S. maltophilia | 85 | 66 (78%) | Thermo Scientific™ Culti-Loops™ API 20NE; VITEK® 2 system | Disk diffusion test; broth microdilution method | CLSI | Pediatric patients | n.a. | n.a. | Hospital Ward | Good |
Seminari E [39] | Lombardy | 2020 | LS | 1 January 1998–31 December 2017 | Resistance to isoniazid and rifampicin | M. tuberculosis | M. tuberculosis | 919 | 28 (3%) | n.a. | Culture based identification methods; Mycobacteria Growth Indicator Tube (MGIT) | n.a. | Adult patients | 47 | 919 | Hospital Ward | Intermediate |
Loconsole D [40] | Apulia | 2020 | CS | 2014–2016 | n.a. | K. pneumoniae | K. pneumoniae | 691 | 691 (100%) | Cepheid’s GeneXpert® System | n.a. | EUCAST | Adult patients | n.a. | 691 | Hospital ward | Good |
Gudiol C [41] | Italy | 2020 | CS | 1 January 2006–31 May 2018 | Non-susceptibility to at least one agent in three or more antimicrobial categories | P. aeruginosa | P. aeruginosa | 123 | 50 (41%) | Culture-based identification methods | n.a. | EUCAST; CLSI | Adult neutropenic onco-hematological patients | n.a. | 123 | Hospital Ward | Good |
Fiorini G [42] | Emilia-Romagna | 2020 | CS | 2009–2019 | n.a. | H. pylori | H. pylori | 294 | 294 (100%) | Culture-based | E-TEST® strips | EUCAST | Adult migrant patients | 41 | 294 | Hospital ward | Good |
Gentile B [43] | Emilia-Romagna | 2020 | CS | 2013–2014 | n.a. | CR-K. pneumoniae | CR-K. pneumoniae | 27 | 27 (100%) | Illumina MiSeq platform | VITEK® 2 system | EUCAST | Adult patients | 72 | 26 | Hospital ward | Good |
Saracino IM [44] | Emilia-Romagna | 2020 | CS | 2016–2019 | n.a. | H. pylori | H. pylori | 663 | 33% | Culture-based | E-TEST® strips | EUCAST | Adult patients | 51 | 270 | Hospital ward | Intermediate |
Normanno G [45] | Veneto | 2020 | CS | 2017–2018 | n.a. | MRSA | MRSA | 4 | 4 (100%) | Disk diffusion test | Disk diffusion test | CLSI | Cow farm workers | n.a. | 24 | Farm | Intermediate |
Mascellino MT [46] | Lazio | 2020 | CS | 2017 | Resistance to more than one antibiotic | H. pylori | H. pylori | 80 | a) 24 (30%); b) 11 (14%); c) 9 (11%); d) 5 (6%) | Pylori Agar; GenoType® HelicoDR test | E-TEST® strips | EUCAST | Adult patients | 59 | 80 | Hospital ward | Good |
Karruli A [47] | Campania | 2021 | LS | 9 March 2020–1 May 2020 | Magiorakos et al. criteria | K. pneumoniae; A. baumannii; P. aeruginosa; Enterobacter spp.; S. maltophilia; Enterococcus spp.; E. faecium; S. aureus | K. pneumoniae | 32 | 16 (50%) | n.a. | Thermo Scientific™ Sensititre™ | n.a. | Adults ICU patients with SARS-CoV-2 infection | 68 | 32 | Hospital ward | Intermediate |
Barbadoro P [48] | Marche | 2021 | LS | February 2018–September 2018 | Magiorakos et al. criteria | K. pneumoniae; E. coli | K. pneumoniae | 2478 | 21 (1%) | VITEK® 2 system | SensiQuattro Gram-negative System | EUCAST | Adult patients | n.a. | 2478 | Hospital ward | Intermediate |
Gasperini B [49] | Marche | 2021 | CS | (a) Dec 2019Feb 2020; (b) May 2020–July 2020 | Non-susceptibility to at least one agent in three or more antimicrobial categories | E. coli; Klebsiella spp.; Enterococcus spp.; Proteus spp.; Pseudomonas spp.; Enterobacter spp.; Staphylococcus spp. | E. coli | a) 36; b) 47 | a) 18 (50%); b) 28 (59.6%) | Culture-based | n.a. | EUCAST | Adult patients | a) 89; b) 86 | a) 33; b) 40 | Hospital ward | Good |
Magi C [50] | Marche | 2021 | CS | October 2018–May 2019 | n.a. | K. pneumoniae | K. pneumoniae | 650 | 18 (3%) | MALDI Biotyper® (MBT); VITEK® 2 system | Brilliance™ CRE Agar | EUCAST | General population | n.a. | n.a. | Laboratory of Microbiology and Virology | Intermediate |
Posteraro B [51] | Lazio | 2021 | CS | 1 March 2020–31 May 2020 | Non-susceptibility to at least one agent in three or more antimicrobial categories | S. aureus; Enterobacter spp.; E. faecalis; Candida spp.;P. aeruginosa | S. aureus | 69 | 27 (39%) | MALDI Biotyper® (MBT) | VITEK® 2 system; Sensititre YeastOne | EUCAST; CLSI | Adults patients with SARS-CoV-2 infection | 70 | 46 | Hospital ward | Good |
Petrillo F [52] | Campania | 2021 | CS | 2017–2020 | n.a. | S. aureus; Coagulase-negative staphylococci | Coagulase negative staphylococci | 322 | 96 (61%) | Culture-based | MicroScan WalkAway 96 Plus | EUCAST | Adult patients | n.a. | 322 | Hospital ward | Intermediate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montalti, M.; Soldà, G.; Capodici, A.; Di Valerio, Z.; Gribaudo, G.; La Fauci, G.; Salussolia, A.; Scognamiglio, F.; Zannoner, A.; Gori, D. Antimicrobial Resistance (AMR) in Italy over the Past Five Years: A Systematic Review. Biologics 2022, 2, 151-164. https://doi.org/10.3390/biologics2020012
Montalti M, Soldà G, Capodici A, Di Valerio Z, Gribaudo G, La Fauci G, Salussolia A, Scognamiglio F, Zannoner A, Gori D. Antimicrobial Resistance (AMR) in Italy over the Past Five Years: A Systematic Review. Biologics. 2022; 2(2):151-164. https://doi.org/10.3390/biologics2020012
Chicago/Turabian StyleMontalti, Marco, Giorgia Soldà, Angelo Capodici, Zeno Di Valerio, Giorgia Gribaudo, Giusy La Fauci, Aurelia Salussolia, Francesca Scognamiglio, Anna Zannoner, and Davide Gori. 2022. "Antimicrobial Resistance (AMR) in Italy over the Past Five Years: A Systematic Review" Biologics 2, no. 2: 151-164. https://doi.org/10.3390/biologics2020012