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Abstract: Machine learning is being increasingly applied in various aspects of medicine. The avail-
ability of large amounts of digital health records has enabled researchers to apply machine learning
algorithms to tackle different medical problems. Urinary tract infections (UTIs) are common bacterial
infections that are prone to being misdiagnosed and over-treated with antibiotics. For appropri-
ate tailored antibiotic therapy, new diagnostic methods providing rapid pathogen identification
and antibiotic susceptibility testing are urgently needed. In this review, we first discuss emerging
technologies that have employed machine learning models to deliver speedy diagnostic results,
particularly for urinary tract infections. We then explore how machine learning models are enabling
sequence-based diagnostics by predicting antibiotic resistances from genome sequencing data. Finally,
we examine different studies that apply machine learning to electronic health records to improve UTI
diagnosis, to reduce antibiotic use and guide treatments without urine culture, and to reduce clinical
workload and unnecessary hospital visits.
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1. Machine Learning: An Introduction

The term “machine learning’ was coined by Arthur Samuel, who described it as
“giving computers the ability to learn without being explicitly programmed” [1]. In machine
learning, an automatic computational model is built with available data, and the computer
infers patterns from the data and learns from past experiences. Machine learning models
rely on the quality and availability of large amounts of data. The process of developing
the model is called “training” the model/algorithm, and the data used to build the model
are referred to as the “training set”. A developed model/algorithm can be applied to new
datasets [1–3].

There are two main types of machine learning: supervised and unsupervised learn-
ing [2–4]. In supervised learning, the goal is to predict an outcome or target. It focuses on
classification (choosing among sub-groups to best describe a data point) and prediction.
The model is given defined input data or features to learn and outcome measures to be
arrived at, and the computer learns relationships and patterns between the datasets. Then,
when new inputs are presented, the computer should be able to deliver the outcomes.
The performance of such a model is measured by comparing predicted output values to
known output values. For example, the model is trained on a training set of patients using
input features, such as patient demographics and risk factors, and the algorithm learns to
diagnose the presence or absence of disease; the algorithm is then validated on another set
of patients [2–4].

In unsupervised learning, the computer is presented with unclassified features, and
the computer recognizes and determines if there are any relationships or patterns in the
data. Unsupervised learning models are useful for clustering or organizing data by patterns.
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There are no outcomes to predict, but the goal is to determine naturally occurring patterns
or groupings within data. The performance of an unsupervised learning model depends
on whether the model has captured interesting and useful trends in the data. Such models
can often lead to questions and answers not previously thought of by the researchers [2–4].

Several models/algorithms are available, such as decision trees, artificial neural net-
works, and support vector machines, to name a few; however, there is no guide or consensus
on the right model to use. Usually, scientists apply different algorithms to their problem
and see which works best [1].

Machine learning offers immense potential to advance medical diagnoses and treat-
ments. Vast amounts of accessible electronic health records may be used to build models
that deliver improved and accurate diagnoses, reduce clinical workload by efficiently ruling
out negative infections, and predict the risk of infection/disease. With next-generation
sequencing generating large amounts of genome sequence data, machine learning models
offer new ways to predict and also fight antibiotic resistance and tailor treatments. In the
context of antibiotic resistance in UTIs, supervised and unsupervised modalities of machine
learning have the potential for early pattern detection and prediction for optimizing clinical
decision-making and stewardship (Figure 1). Machine learning offers accelerated and early
prevention capabilities to facilitate guidance for clinicians and patients, translating into
value-added capabilities in clinical care and public health (Figure 2).
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2. Machine Learning for Pathogen Identification and Phenotypic AST

Traditional methods for microbial diagnosis of an infection rely on bacterial culture and
antimicrobial susceptibility testing (AST) that require a few days. This delay in definitive
diagnosis leads to the use of broad-spectrum antibiotics, which in turn leads to increases
in antibiotic resistance. Particularly for polymicrobial infections, all the pathogens and
their antibiotic susceptibilities need to be identified rapidly for tailored therapy. In this
section, we discuss how machine learning has aided pathogen detection and phenotypic or
pheno-molecular AST, particularly in urinary tract infections.

A recently developed digital PCR-high-resolution melt platform used a machine
learning algorithm to analyze the digital high-resolution melt curves to correctly identify
the bacterial species, even in polymicrobial samples [5]. The microfluidics platform had
three independent nanoarray modules, each with ~5000 nanowells. The DNA extracted
from the bacterial sample was appropriately diluted such that in each nanowell, the PCR
and melt curves were issued from a single DNA molecule. The abundance of each species
in a given clinical sample was measured by enumerating the number of species-specific
melt curves generated. By simultaneously analyzing samples grown briefly in the presence
and absence of antibiotics, antibiotic susceptibility was also tested. This platform could
achieve both species identification and AST in just 4 h [5].

Machine learning models are also aiding pathogen identification with MALDI-TOF.
MALDI-TOF is widely used in clinical laboratories for species identification; however,
it suffers from the disadvantage that it requires bacteria in pure culture, necessitating
additional steps of culturing from clinical samples. Machine learning models that were
trained on LC-MS/MS peptidic signatures from bacteria could identify bacteria from urine
samples within four hours and without bacterial culture [6]. Currently, signatures for
15 species that cause 84% of UTIs are available. If the models include peptidic signatures
for proteins associated with antimicrobial resistance, MALDI-TOF may be used to predict
AST results as well. Machine learning models have already been developed to predict
specific antibiotic resistances from MALDI-TOF profiles: colistin-resistant Acinetobacter
baumanii and Klebsiella pneumoniae [7], and vancomycin-intermediate Staphylococcus aureus
and vancomycin-susceptible S. aureus [8].

Machine learning has also benefited microscopic-imaging-based methods of pathogen
identification and AST. One method is a low-cost microfluidic dark-field imaging plat-
form where immobilized oligonucleotide probes hybridize to the 16S rRNA of the target
pathogen [9]. A machine learning algorithm examines the images of the agglutinated bacte-
rial clusters and enumerates the bacteria in the clusters. This method delivers pathogen
identification results in 30 min and AST results in 3 h [9]. In another method called MAST,
or microscopy-based AST, antibiotics and bacteria dispensed in solid-phase microwells
are microscopically imaged to monitor bacterial replication. Machine learning then clas-
sified the images as growth or inhibition based on known morphologies of cells. MAST
could accurately determine MIC (minimum inhibitory concentration) in 2 h [10]. In a third
method, deep learning algorithms were trained to learn phenotypic features from video
microscopy of freely moving single bacteria in urine. The model incorporated multiple
features, such as morphology, size, division, and movement. AST was determined in
30 min when tested on E. coli in urine with five different antibiotics [11]. Machine learning
models have also been used to analyze Fourier-Transform Infrared (FTIR) microscopic
images of E. coli following an initial culture of urine samples from UTI patients and predict
AST within a few minutes [12,13].

3. Machine Learning for Sequence-Based AST

New diagnostic technologies aim to identify resistance genes and genotypes, rather
than resistance phenotypes, and then translate genotype information into treatment. Exist-
ing multiplex PCR and microarray methods are used clinically to detect resistance-specific
markers, but while these methods succeed in finding enzyme-mediated resistances, they
fail at identifying resistances caused by mutations within a gene. Sequence-based di-
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agnostics apply whole-genome sequencing data to predict resistance phenotypes from
genotypes. They provide a faster alternative to multiplex PCR screening for phenotypes
that are contributed to by multiple loci. Sequence-based diagnostics may use metagenomic
sequencing, where DNA is extracted from the sample without culturing, or whole-genome
sequencing, where the DNA is extracted from the pure culture of the bacteria obtained from
the clinical sample [14]. Sequencing-based ASTs are currently slower and more expensive
than phenotypic ASTs; however, these limitations are likely to decrease in the future with
new advances in technology [15].

Rules-based approaches have been traditionally used to interpret sequence-based
diagnostics [14]. These approaches make predictions based on the presence or absence of re-
sistance genes and are similar to the knowledge-based decisions that a clinician would make.
Rules-based models perform well for well-studied pathogens with well-characterized resis-
tance mechanisms, but they require regularly curated databases as new resistance genes
and mechanisms are discovered. It is not straightforward to predict phenotypes merely
from the presence or absence of resistance genes, as many parameters affect genotype-to-
phenotype translations [15]. Rules-based models do not consider interactions between loci
when multiple loci contribute to a phenotype, they do not consider the effect of the strain
background on loci activity, and they assume a complete understanding of the genetic
background for any resistance phenotype [14]. Differential expression of genes under
different contexts is a confounding factor for the interpretation of genotypes—genes may
be expressed differently if they are plasmid-borne or chromosomal, or if they are under the
control of regulatory sequences or different promoters [15].

The large-scale coupling of antimicrobial resistance data and whole-genome sequenc-
ing data for thousands of isolates has enabled many researchers to apply machine learning
to aid sequence-based diagnostics. Machine learning models can overcome many of the
above limitations. Such models are trained on a set of genomes with known phenotypes,
and the models learn which genes or single-nucleotide polymorphisms (SNPs) are responsi-
ble for particular resistance phenotypes. The model is then validated, ideally on a different
set of genomes. Machine learning models can learn interactions between loci and can be
trained to weight different loci, since not all loci contribute equally to the phenotype [14].

Machine learning models were used to uncover genetic mechanisms for resistance to
17 antibiotics in Clostridium difficile, Streptococcus pneumoniae, Mycobacterium tuberculosis, and
Pseudomonas aeruginosa [16]. Machine learning can be used to understand new resistance
mechanisms and discover shared resistance mechanisms between different antibiotics,
potentially helping to identify appropriate combination therapies [16,17]. Machine learning
algorithms can reveal previously unknown associations and epistatic interactions between
resistance determinants and can perform well even when resistance mechanisms are not
well understood, as shown for M. tuberculosis [17,18]. Models have also been recently
applied to examine both whole-genome and transcriptome sequencing data to account for
differential expression of genes [19]. Gene expression and genome sequencing data from
414 clinical isolates were used to build highly sensitive predictive models for resistance
to four drugs for P. aeruginosa, an organism that exhibits many environment-driven gene
expression changes [19].

Machine learning algorithms may use different inputs—genes, contigs, or k-mers. Mod-
els have been applied to pan-genomes to identify resistance determinants in E. coli [20,21],
M. tuberculosis [17], and Elizabethkingia [22]. The pan-genome refers to the shared features
of all strains in a species; the pan-genome may be classified into a core set that clusters
genes present in all the genomes, and an accessory set that clusters all the remaining genes
that are present in only one or a few genomes. Her and Wu showed that only 61% of the
E. coli resistance genes were in the accessory set (61%), suggesting that there are intrinsic
resistance genes shared across all E. coli, and the accessory set would serve to differentiate
between resistance phenotypes of different strains. They designed an algorithm that se-
lected gene clusters from the accessory set and trained it to predict resistance to four drugs,
and this out-performed the genes shown in the literature to predict resistance [20].
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An alternative to using genes as inputs is k-mers, which are small overlapping sub-
sequences within a contig. The model uses each k-mer as a feature, and it identifies the
k-mers that contribute to antibiotic resistance. The use of k-mers reduces biases that occur
when using reference genomes. Models that used k-mers have successfully predicted resis-
tance in several species: Neisseria gonorrhea [23], Klebsiella [24], non-typhoidal Salmonella [25],
C. difficile, M. tuberculosis, P. aeruginosa, and Streptococcus pneumoniae [16].

Pesesky et al. compared rules-based approaches to machine learning models in predict-
ing antimicrobial resistance from whole-genome data from 78 Enterobacteriaceae species that
spanned a range of phenotypes. Rules-based models failed because of incomplete genome
assemblies and new variants of known resistance markers. Machine learning models were
confounded by low-frequency resistance markers that occurred very rarely or not at all in
the training set [15]. Although both models performed overall with similar accuracies, the
researchers predict that machine learning models will prevail in the future because they
perform similarly with any pathogen, rather than just well-characterized species. While
rules-based models need databases with constant curation, updating machine learning
algorithms will be simple. Once the training set is sufficiently large, machine learning
algorithms will be able to uncover new resistance mechanisms that could not have been
detected by traditional means. Machine learning models can also be trained to predict the
MICs of antibiotics, which would be more relevant for guiding treatment [15]. Models
could predict MICs for 15 antibiotics in non-typhoidal Salmonella [25], for 20 antibiotics in
Klebsiella [24], for 5 antibiotics in N. gonorrhea [26], and 6 antibiotics in S. pneumoniae [27,28].
One study that compared machine learning models and rules-based models for prediction
of MICs in S. pneumoniae showed that rules-based models had higher false negatives [27].
Models are not a “one size fits all” solution. In M. tuberculosis, where mutations within
genes often determine resistance, seven machine learning algorithms performed better than
a rules-based approach in predicting resistance against eight drugs. However, each drug
was predicted best by a different model and a different subset of mutations [18].

It Is unreasonable to expect 100% accuracy from sequence-based diagnostics, even
with machine learning models. There are non-genomic determinants of resistance, such as
biofilm formation and DNA methylation patterns, that are difficult to predict [21]. Rare
mutations, of which we have incomplete knowledge, can also cause resistance. For example,
among Staphylococcus aureus clinical isolates, 93% of rifampin resistance was caused by
8 mutations in rpoB, but the remaining 8% was caused by 72 rare mutations [29]. That said,
several steps can be taken to improve machine learning predictions. We need more genomic
databases that are matched with phenotypic AST data. The training set used should be
as large and diverse as possible. Researchers often use conveniently accessible databases,
but these may not be varied geographically or temporally. Sampling—the temporal range,
the geographic range, and the sampling approach—can affect the model. For example, the
RpoB I491F mutation accounts for <5% of TB resistance to rifampicin in most countries, but
in Swaziland, it accounted for 30% [30]. Hicks et al. showed that model performance varies
with the antibiotic, the dataset, the resistance metric used, and the species [31]. For instance,
in N. gonorrhea, machine learning models accurately predicted ciprofloxacin resistance,
which is mediated by mutations in a single gene (gyrA), but not resistance to azithromycin,
which is mediated by various means [31]. Many studies use datasets from highly resistant
organisms, which does not help a balanced model. Nguyen et al. used a very diverse and
balanced dataset of >5000 Salmonella genomes collected over 15 years. Their model could
predict resistances in newer strains and possibly help with future outbreaks [25].

Better databases for antibiotic resistance genes will enhance the performance of
sequence-based AST. Most resistance gene prediction tools use a “best hit” approach,
which results in these tools having low false-positive rates but high false-negative rates.
Deep machine learning models were used to look at similarity distributions of sequences in
the antibiotic resistance gene database across 30 antibiotic resistance categories to predict
whether a gene was a resistance gene or not [32]. The resulting Deep-ARG database has
expanded the known repertoire of ARGs.
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4. Machine Learning in Clinical Decision Making

In this section, we look at the various ways in which machine learning models have
helped improve different stages of clinical decision-making—reducing clinical workload,
reducing unnecessary hospital visits, and improving diagnosis and antibiotic prescriptions.

During laboratory diagnosis of UTI, urine culture is often performed, but 70–80% of the
results are negative, mixed, or ambiguous cultures, and therefore unhelpful. Appropriate
pre-processing of urine samples, such that only true microbially infected samples are further
analyzed, will reduce clinical workload and improve efficiency [33]. Machine learning
algorithms can help in this pre-processing where positive urine cultures continue to be
detected, but negative samples are ruled out before culture. One such algorithm was
built from urine analysis data collected over a year in a single clinical laboratory servicing
multiple hospitals [33]. This algorithm incorporated the microscopy thresholds of white
blood cell and bacterial counts, and other factors such as patient age, pregnancy, red blood
cell count, and if the patient was pre-operative, immunocompromised, or an in-patient.
The model worked best—with 95% sensitivity and 41% workload reduction—with separate
decision trees for pregnant patients, for children below 11 years, and all others [33].

Another study used data and urinalysis results from 59 patients; the algorithms
developed were able to differentiate between cystitis and non-specific urethritis from only
three parameters—erythrocyte count, suprapubic pain, and frequent urination [34]. Using
these models could eliminate the need for expensive laboratory tests.

An unsupervised machine learning model was used to detect UTIs in patients with
dementia [35]. People with dementia are at an increased risk for physical health-related fac-
tors, with UTIs being one of the top five reasons for hospital visits. Unfortunately, patients
with dementia tend to receive poorer-quality care at hospitals and less favorable outcomes.
Therefore, machine learning models may be useful, both to avoid unnecessary hospital vis-
its for these patients and to provide early detection of UTI. The model used environmental
and physiological in-home sensory data to analyze the patient’s daily routines and patterns
to identify any anomalies or routine changes. Time-sensitive movement patterns, such as
an increase in bathroom use frequency, along with an increase in body temperature, would
generate a UTI alert, which would be followed up by healthcare practitioners [35].

Another area where machine learning offers great potential is in emergency depart-
ment visits. Diagnosis and treatment prescriptions in emergency departments are based on
symptoms and physical findings, rather than urine culture; consequently, misdiagnoses and
antibiotic overuse are frequent. In one study, machine learning models were built with a
large dataset of >80,000 emergency department visits with UTI symptoms and urine culture
results [36]. Initial models used 211 input variables, but the models performed similarly
with a curated list of just ten variables—age, gender, urine analysis (white blood cell count,
nitrites, epithelial cells, leukocytes, blood, and bacteria), dysuria, and history of UTIs. The
diagnoses provided by the models had significantly higher accuracy than the healthcare
provider’s diagnoses (87% vs. 53%). When the model was applied retrospectively, 1 in
4 patients were reclassified from false positive to true negative, and 1 in 11 were reclassified
from false negative to true positive [36].

A study in Israel used machine learning on a 10-year longitudinal dataset of community-
and retirement-home-acquired UTI patients to deliver personalized drug-specific predic-
tions of resistance [37]. This study found that the risk of an infection being resistant to
antibiotics correlated with patient demographics (age, gender, pregnancy, and retirement
home living), past patient history, past antibiotic use, and antibiotic resistance in past UTIs.
When their model was applied retrospectively over a one-year test period, the number
of mismatched prescriptions significantly decreased. Thus, machine learning algorithms
can guide UTI treatments without urine culture [37]. A similar study examined machine
learning models to guide empiric antibiotic therapy in a children’s hospital in Cambodia.
They found that the time from admission to culture, age of the patient, age-adjusted weight
score, and if the infection was hospital- vs. community-acquired were the most important
predictors [38]. Thus, in resource-limited areas, readily available patient data can also be
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used to prescribe antibiotics appropriately. Another study developed machine learning
models with lab test results from suspected UTI patients and linked administration data
(individual and household background, employment, hospitalization, and prescription
histories) from a large medical laboratory in Denmark. The resulting model succeeded in
lowering antibiotic prescriptions for UTIs by 7.4% [39].

Machine learning models have been used to predict the risk of infection in hospitalized
patients. One such model identified patients at risk for drug-resistant P. aeruginosa infections;
the model was trained with ~3000 intensive care unit (ICU) admissions over a 13-year
dataset from a hospital in Spain. The model performed well with data on date of culture,
antibiotic used, the clinical origin of patient, disease reason for ICU admission, the time
between admission and culture, and APACHE II (Acute physiology and chronic health
evaluation) and SAPS 3 (Simplified acute physiology score) scores [40]. Another model was
developed with routinely available blood parameters (C-reactive protein, white cell count,
bilirubin, creatinine, ALT, and alkaline phosphatase) to predict infection/sepsis among
patients upon admission to a hospital [41].

5. Summary and Future Prospects

We have discussed here the various ways in which machine learning is poised to aid
emerging diagnostic technologies and enhance clinical decision-making. New methods
of pathogen identification and pheno-molecular AST rely on machine learning models
to deliver rapid results. Machine learning models are enabling clinical laboratories to
reduce workload and healthcare providers to make better decisions regarding diagnosis
and treatments. A large number of machine-learning-based studies in the last three years
have advanced the possibilities of sequence-based ASTs, making it likely to be a clinically
implemented tool soon. Furthermore, growing databases of pathogenic strains that are
collected from around the world are continuously being characterized (whole-genome
sequencing, AST/MIC tests, culture) and provided as a public resource for use in machine
learning training sets and algorithmic development (examples include the CDC & FDA
Antimicrobial Resistance Isolate Bank, the Active Bacterial Core Surveillance Isolate Bank,
and the Antibacterial Resistance Leadership Group Virtual Repository). Since isolates are
tested in the same parameters within a clinical diagnostic setting (for example, by CLSI
guidelines), these datasets are robust for machine learning and algorithm development for
pathogen detection and antibiotic resistance. Additionally, the antibiotic drug resistance
profiles are available for more than 100+ drugs, inclusive of dosing concentrations and
sensitive/intermediate/resistance (SIR) nomenclature. Such datasets hasten the develop-
ment of automated algorithms from real-world evidence of antibiotic resistance strains of
multiple genera and species. Machine learning can enable diagnostic development, new
antibiotic drug discovery, perform safety and efficacy profiles of antibiotics, discovery of
novel pathogenic mechanisms, and detection of new and unusual global public health
antimicrobial resistance threats.

Another molecular diagnostics area where machine learning may offer potential value
is in the use of multiplex PCR panels. Currently, such diagnostic panels exist for certain
diseases, such as panels for respiratory pathogens [42], gastrointestinal pathogens [43],
and meningitis/encephalitis pathogens [44]. It is conceivable to build multiplex PCR
panels that deliver both pathogen identification and tests for common antibiotic resistance
markers. Machine learning may be employed to predict AST based on qPCR detection
calls. This could provide a faster alternative to sequence-based diagnostics. Advances
in multiplexing capabilities in modern real-time PCR instruments enable multi-target
detection via coupling of multiple fluorophore probes. This further enables polymicrobial
detection capabilities which may be amenable to machine learning discovery diagnostics
for interactions between pathogens and resistance markers. Multiplex PCR offers high-
throughput, cost-efficiency, and molecular algorithm development opportunities to stratify
uropathogens and respective antibiotic resistance markers for UTI management.
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Machine learning offers the potential for rapid diagnostics and accelerated discovery
of translational research applications. The ability for machines to exponentiate intelligence
and guide clinical treatment decisions is important for reducing overall healthcare burden.
Antibiotic resistance is a growing public health concern. The ability for machine learning
to enable judicious selection of antibiotic therapies encourages antibiotic stewardship for
global public health. Continuous learning and complex stratification algorithms can enable
targeted antibiotic precision medicine and enhanced predictive power for recurrent and
emerging infectious states. For example, machine learning may aid in stratification of UTI
patient populations who can be divested into out-patient care (less expensive for external
clinics) vs. in-patient care (significantly more expensive for emergency room visits). This
can enable a significant reduction in economic waste, better patient management and
clinical decision-making, and early detection diagnostics coupled to efficient monitoring
protocols for better patient care. Therefore, machine learning offers promise to identify the
right patient at the right time for the right drug in the context of antibiotic resistance and
UTIs, which is analogous to the paradigm set in oncology diagnostics today.
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