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Abstract: Stroke is one of the main causes of long-term disabilities, increasing the cost of national
healthcare systems due to the elevated costs of rigorous treatment that is required, as well as personal
cost because of the decreased ability of the patient to work. Traditional rehabilitation strategies
rely heavily on individual clinical data and the caregiver’s experience to evaluate the patient and
not in data extracted from population data. The use of machine learning (ML) algorithms can offer
evaluation tools that will lead to new personalized interventions. The aim of this scoping review is to
introduce the reader to key directions of ML techniques for the prediction of functional outcomes
in stroke rehabilitation and identify future scientific research directions. The search of the relevant
literature was performed using PubMed and Semantic Scholar online databases. Full-text articles
were included if they focused on ML in predicting the functional outcome of stroke rehabilitation.
A total of 26 out of the 265 articles met our inclusion criteria. The selected studies included ML
approaches and were directly related to the inclusion criteria. ML can play a key role in supporting
decision making during pre- and post-treatment interventions for post-stroke survivors, by utilizing
multidisciplinary data sources.
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1. Introduction

Stroke, as a result of either a sudden brain blood supply interruption or local brain
blood vessel eruption [1], may cause paralysis (plegia) or weakness (paresis), with detri-
mental consequences on daily activities, such as dressing, eating, and walking, as well as
problems with memory, cognition, speaking, emotion control, numbness, and pain [2–4].
An aging population and the interaction of risk factors enhance the risk of stroke, lead-
ing to an increased number of people with long-term disabilities [3,5]. Forms of stroke
rehabilitation include a mixture of pharmacologic and nonpharmacologic interventions
that target physiological and functional deficits; however, traditional one-size-fits-all ap-
proaches often leave a considerable portion of patients without effective treatment. The
design of effective interventions has proven a challenging task due to the high variabil-
ity of patients’ level of impairment and symptoms [6–8]. Hence, the development of
personalized assessment/prognostic tools that could lead to better risk stratification and
prediction of functional outcomes, based on past and current data, is necessary. Innovative,
evidence-based strategies that can utilize longitudinal, multisource population data could
aid individual rehabilitation by shaping personalized interventions, both at admission and
throughout the patient’s path of care.
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To this end, classical statistical approaches such as linear regression have been em-
ployed to model post-stroke rehabilitation and predict functional outcomes, using a binary
(good or poor) classification or specific score outcomes. These models, which are typically
based on standard scales and relevant clinical data, fail to incorporate meaningful factors
that are detrimental to patient-specific recovery pathways, such as the level of family or
community support and the cultural level. On the contrary, advanced artificial intelligence
(AI)-based correlation models, such as machine learning algorithms, can analyze large,
inhomogeneous datasets, map nonlinearities between multiple input and output variables,
and extract patterns among various clinical outcomes.

ML is the study of how machines (i.e., learning algorithms) can learn patterns or
complex relationships from daily data and produce trained mathematical models linking
target variables of interest with a huge number of covariates. Furthermore, deep learning
(DL) is defined as a subfield of ML concerned with learning algorithms inspired by the
function and structure of the brain [7]. DL provides an alternative architecture system by
overcoming the burden of feature engineering. Hence, ML has the ability to cope with
high-dimensionality data and complex cases [9,10], going beyond the traditional statistical
approaches and overcoming significant limitations in the prediction of the functional
outcome in the rehabilitation of post-stroke survivors, offering valuable tools in the field of
stroke rehabilitation [3].

Currently, various ML techniques have been employed to model individual disease
pathways, and their contribution plays a key role in the scientific community. For example,
in the case of knee osteoarthritis, several ML-based patient-specific prediction models have
been developed (e.g., ML models for diagnosis, post-treatment assessment, and segmen-
tation in knee osteoarthritis) [11]. Moreover, ML demonstrated excellent performances in
predicting the outcome for several neurosurgical conditions [12,13]. In addition, Bivard et al.
demonstrated the importance of AI and imaging in stroke management [14]. Furthermore,
they presented the need for AI tools for the quick assessment of meaningful imaging data
and to support clinical decisions.

In this context, the current scoping review was carried out to (i) investigate ML
methods employed to predict functional outcome in stroke rehabilitation, (ii) identify cur-
rent trends in this field, and (iii) identify the existing literature gap for future scientific
approaches. Compared to the already available literature on the field of post-stroke rehabil-
itation [15], this paper focuses specifically on the various ML models being used to predict
functional outcomes in stroke rehabilitation, as well as their specific characteristics and
underlying principles. By providing an in-depth examination of these models, the paper
aims to shed light on the current state of the field and identify trends and areas for future
research. Overall, the primary aim of the paper is to provide a comprehensive overview of
the ML approaches being used in this area of study.

2. Materials and Methods

This scoping review employed the 22-item Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) [16].

2.1. Literature Searches

The structured literature search was conducted using the online databases PubMed
and Semantic Scholar. Furthermore, a manual search was performed in order to add records
identified through other sources.

For the online databases, the search terms were as follows: “machine learning” OR
“deep learning” OR “artificial Intelligence” OR “neural networks” OR “support vector
machine” OR “random forest” AND “stroke” OR “brain ischemia” OR “cerebral ischemi*”
OR “post stroke” OR “poststroke” AND “rehabilitation” OR “physical therapy” OR “phys-
iotherapy” OR “rehab*” AND “prediction” OR “predict*” OR “prognosis”.
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2.2. Eligibility Criteria
2.2.1. Inclusion Criteria

In this survey, only peer-reviewed journal articles were considered by authors. Fur-
thermore, the time period for the literature review was determined to be from 2010 until 26
October 2022. This work only included studies for post-stroke patients that made use of AI
tools for the prediction of the functional outcome in rehabilitation.

2.2.2. Exclusion Criteria

Due to recent advances in big data analytics, today’s proliferation of data, and the
extended use of AI tools in the rehabilitation of post-stroke patients, articles published
before 2010 were excluded from the review. Conference proceedings, non-English papers,
and studies with non-survivors of stroke, nonhuman subjects, and nonhuman protocols
were excluded. In addition, review papers and unavailable full-text articles were excluded.

2.3. Data Extraction

Data extraction was performed by two reviewers (C.K. and G.G.) who screened the
titles, abstracts, and full texts of the selected studies. First, all studies were imported into
Mendeley in order to remove duplicates. Title and abstract screening was performed to
identify articles that generally met the inclusion criteria. Any disagreements on studies
with unclear relevance were resolved by discussion between C.K. and G.G. At the end,
studies were included if they met a list of specific requirements. Specifically, these were the
application domain, data sources, outcome assessment, number of subjects employed, ML
models (learning algorithms), validation, and findings.

3. Results

A total of 265 articles were recorded from the online search after the deletion of du-
plicated articles. Subsequently, after screening the titles and abstracts, 39 articles were
identified. Finally, 26 articles met the inclusion criteria and were, thus, considered accept-
able for qualitative synthesis. Figure 1 depicts the workflow diagram of the screening
methodology based on PRISMA-ScR guidelines.
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All the identified studies used ML techniques in order to predict functional outcomes
in the rehabilitation of post-stroke patients. Studies that (i) applied traditional statistical
approaches, (ii) did not include stroke patients (or stroke survivors), or (iii) did not perform
original quantitative research were excluded.
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The studies, which were recorded in this scoping review, were divided into two
categories with respect to the application domain: (i) motor function (17 studies), and
(ii) upper extremities (nine studies). Only one of 26 studies had the primary task of
predicting functional outcomes for both domains of application. This study was presented
within the motor function category.

3.1. Terminology and Definitions
3.1.1. Functional Outcomes

• Modified Rankin scale (mRS) is a measure for the degree of disability in post-stroke
patients, and it is used to identify the level of functional independence [17];

• Barthel index (BI)/modified Barthel index (MBI) measures somebody’s ability to
function independently [18,19];

• Functional independence measure (FIM) is an indicator of patient disability which is
based on the International Classification of Impairment, Disabilities, and Handicaps
for use in the medical system in the United States (McDowell and Newell, 1996) [20];

• Functional ambulation categories (FAC) test evaluates the ambulation ability. Specifi-
cally, FAC is a functional walking test [21];

• Fugl–Meyer assessment (FMA) scale assesses the sensorimotor impairment in post-
stroke hemiparesis patients [22];

• Modified Brunnstrom classification (MBC) score is used to categorize the function of
the affected hand [23];

• Wolf motor function test (WMFT) quantifies the motor ability for the upper extremities
(UE) through functional and timed tasks [24];

• Fugl–Meyer assessment, upper extremity (FMA-UE) consists of items that reflect
the motor function, and it is useful for an accurate evaluation of UE paresis and to
rehabilitation practice [25];

• Ten-meter walk test (TMWT) measures the walking ability in post-stroke patients [26];
• Six-minute walk test (SMWT) assesses the aerobic capacity and walking endurance [27];
• Berg balance scale (BBS) evaluates fall risk and balance outcomes [28];
• Motor activity log (MAL) measures the functional upper limb performance in

real life [29];
• National Institutes of Health stroke scale (NIHSS) rates stroke severity [30];
• Stroke impact scale (SIS) assesses physical functioning [31].

3.1.2. Prediction Horizon

The predictions of functional outcomes up to 3 months were considered as the short-
term prediction horizon. The prognosis for 3–6 months was defined as the long-term
prediction horizon (≥3 months).

3.1.3. Stages of Stroke Recovery

• The acute phase corresponds to the first 7 days, the early subacute phase extends
from 7 days to 3 months, the late subacute phase extends from 3 to 6 months, and the
chronic phase extends to ≥6 months

3.1.4. ML Terminology

• Classification is the task that predicts the class (or label) of given input data. A
common classification problem is the prediction of functional independence status
based on mRS, which is a binary problem (class 1: mRS < 2 and class 2: mRS ≥ 2) [32].
Regression predicts a continuous outcome (target variable) on the basis of values of
multiple predictor variables. For example, a regression task is the prediction of the
Barthel index score at discharge from a rehabilitation unit [33].

3.1.5. Abbreviations of the Employed ML Models

• Support vector machines: SVMs,
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• Decision trees: DTs,
• Logistic regression: LR,
• Regularized logistic regression: RLR,
• Extreme gradient boosting: XGB,
• Cox regression: COX,
• Naïve Bayes classifier: NBC,
• Random forest: RF,
• k-nearest neighbors: KNN,
• Linear discriminant analysis: LDA,
• Support vector regression: SVR,
• Epsilon regression: ER,
• Multiple linear regression: MLR,
• Chi-square automatic interaction detector: CHAID,
• Gradient boosting decision tree: GBDT,
• Convolutional neural network: CNN,
• Artificial neural network: ANN,
• Elastic net: EN,
• Enhanced probabilistic neural network: EPNN
• Neural dynamic classification: NDC

3.1.6. Performance Metrics

• Accuracy measures how often the classifier correctly predicts the label of an obser-
vation. Sensitivity provides how many of the actual positive cases are predicted
correctly (true positive) from the ML model. Specificity gives the number of actual
negative cases that are predicted correctly (true negative). Area under the receiver
operating characteristic curve (AUC) is an effective metric to summarize the overall
predictive accuracy.

• R2 or coefficient of determination is the proportion of the variation in the depen-
dent (target) variable that is predictable from the multiple predictor variables. Mean
absolute error (MAE) is the average of all absolute errors in a set of predictions. Root-
mean-square error (RMSE) or root-mean-square deviation (RMSD) is the standard
deviation of the prediction errors (residuals).

3.2. Motor Function

Studies in the motor function category (Table 1) were divided into two groups as
shown in Figure 2.
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3.2.1. Long Term Prediction Horizon (≥3 Months)

Overall, seven out of 17 studies in this category were aimed at predicting functional
outcomes 3 months or greater after the acute phase or the admission of post-stroke patients
in a rehabilitation unit.

Classification studies: To predict the modified Rankin scale (mRS) at 3 months, Park et al.
employed five ML models trained on a variety of features such as demographic factors,
laboratory findings, stroke-related factors, and comorbidities at the acute phase [32]. The
best performance was achieved from the regularized logistic regression model (AUC = 86%).
Lin et al. worked on the prediction of mRS employing a hybrid artificial neural network
(ANN) and three ML models (ANN, support vector machine (SVM), and RF) on preadmis-
sion and inpatient data (AUC: 94%) [34]. The prediction performance was further improved
(AUC = 97%) by adding data from the first follow-up visit at 30 days. In the task of pre-
dicting the Barthel index (BI) at discharge, Chang et al. trained eight well-known classifiers
on 77 predictors from early subacute recovery stage patients [35]. The best AUC score
(AUC = 88.7%) for the prediction of the BI status was achieved by a random forest (RF)
classifier. On the same task, Lin et al. employed RF, SVM, and logistic regression (LR) models
on a dataset including various motor function scores and clinical data [36]. They recorded
an AUC of 79% using either RF or LR algorithms. In contrast with the aforementioned
studies, Kim et al. utilized three well-known ML models, namely, LR, RF, and deep neural
networks (DNNs), for the prediction of motor outcomes at 6 months after stroke using
clinical data from early subacute recovery stage patients [23]. For the lower limbs, they used
a functional ambulation category (FAC) score as an outcome, and they achieved the best
performance with DNN (AUC = 82.2%). The outcome for the upper limbs was defined as a
modified Brunnstrom classification (MBC) score, and the best prediction performance was
also achieved by the DNN model (AUC = 90.6%).

Regression studies: Jiang et al. worked on the prediction of the functional outcome
(FO) in ischemic stroke at 3 months [37]. In order to improve the prediction of FO, they
proposed a new index for multiple chronic conditions (MCCs). They employed functional
outcomes and clinical data in combination with a multiple linear regression model, and they
recorded an R2 of 0.32. Furthermore, synergistic interactions and novel predictors, such as
the pre-stroke mRS score, congestive heart failure (CHF), and other neurologic disorders,
were identified. In addition, Katsuki et al. worked on the prediction of the functional
independence measure (FIM) score after the acute care hospital, utilizing a deep learning
framework [38]. They achieved the best score (R2 = 0.972) using data from the acute care
ward admission and Kaifukuki (convalescent) Rehabilitation Ward (KRW) admission. They
employed outcome measures for up to 150 days. Lastly, Lin et al. predicted the BI score at
discharge (3 months) using various motor function scores and clinical data from the early
subacute recovery stage as inputs [36]. A MAE of 9.86 was achieved by the SVM regressor.

3.2.2. Short-Term Prediction Horizon (<3 Months)

Classification studies: Thakkar et al. worked on the prediction of motor function
improvement 3–4 weeks after contemporary task-oriented interventions in chronic stroke
patients [39]. They utilized KNN and ANN classifiers to predict the FMA scale. Employing
features such as age, side of lesion, gender, baseline functional status, motor function time
since stroke, and quality of life 6 months or higher after stroke, they demonstrated that
the best AUC score of 89% was achieved by the KNN model. Furthermore, Liao et al.
worked on the same task [40]. They developed machine learning models in order to predict
health-related quality of life improvement (HRQOL) after sensorimotor rehabilitation
interventions at 3–4 weeks. They employed 132 chronic post-stroke patients, and they
achieved the best accuracy (85%) using an RF classifier. Sohn et al. worked on rehabilitation
prognosis in ischemic stroke patients by employing brainstem auditory evoked potential
(BAEP) and ML models [41]. They employed features such as the basal K-MBI score,
age, and three interpeak latencies (IPLs) from the early subacute phase. An AUC of 90%
was finally achieved for the prediction of the Korean version of the modified Barthel
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index (K-MBI) with an ANN model. In another work, Chen et al. using demographics,
medical history, and outcome assessments, proposed models for the prediction of 30 day
readmission for stroke [42]. They employed six well-known classifiers, and the best 93%
accuracy was achieved by an artificial neural network (ANN) in an external dataset.

In contrast with the other studies, Lai et al. worked on the prediction of mRS and
NIHSS at discharge (28 ± 3 days) using a pretrained VGG-16 convolutional neural network
(CNN) [43]. They employed 44 post-stroke patients at the acute phase, and they presented
92.7% and 93.2% accuracy for the prediction of NHSS and mRS, respectively. Campagnini et al.
proposed predictive models for functional prognosis based on MBI [44]. The best accuracy
(76.2%) was achieved by an RF classifier, and they used Shapley additive explanations (SHAP)
in order to highlight the contribution of each predictor in the model output. In the most recent
study, Lin et al. used pretrained deep learning models to predict Fugl–Meyer assessment of
the lower extremity 2 weeks after robotic-assisted stretching training in only 15 chronic stroke
patients [45]. They applied the leave-one-out cross-validation strategy, and they achieved
91.845% accuracy. Furthermore, they worked on the interpretation of the model output by
applying the SHAP model.

Regression studies: Harari et al. used baseline clinical data (acute phase) in combination
with a Lasso regression ML model [46]. They developed predictive ML models for four
different functional outcomes (FIM, TMWT, SMWT, and BBS) at discharge in early-stage
strokes (acute inpatient rehabilitation phase) and demonstrated an MAE of 13–15% for
predictions on new patients. Moreover, Sale et al. worked on cognitive and motor improve-
ment for early-stage stroke patients at discharge based on BI and FIM scores [33]. They
employed an SVM regressor and presented that the RMSE ranged from 4.28 for discharge
cognitive FIM to 22.6 for discharge BI. In another work, Rajashekar et al. proposed nested
regression models with the aim of predicting the 30 day NIHSS score [47]. They used
imaging data and measurable clinical data, which were obtained up to 6 h after stroke. In
this study, they developed a SVM regression model based on nonmodifiable and modifiable
risk factors and two nested SVM regression models that aggregate image-based and clinical
features that differ at the feature selection (FS) method. The first employed the relief FS
technique, and the second employed the lesion-symptom mapping technique. The best
performance scores were achieved by the Mrelief model (MAE = 3.55, RMSE = 4.34, and
R2 = 0.43).
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Table 1. Findings and characteristics of included ML studies for motor function category.

Authors Year Application
Domain Intervention Input Data Outcome

Assessment
Employed
Subjects

Learning
Type

Learning
Algorithms Validation Results

Lin et al.
[45] 2022

Prediction of a
treatment’s

outcome using a
deep learning

(DL) prognosis
model

Robotic-assisted
stretching
training

Biomechanical
measurement,

clinical
measurement, and
EEG measurement

FMA of lower
extremity at 2

weeks

15 post-stroke
(6 months) Classification

Pretrained DL
models and

SHAP

Leave-one-out
cross-validation

(LOOCV)
91.84% accuracy

Campagnini
et al. [44] 2022

Development of
predictive

models for the
functional

prognosis of
stroke patients

At least three
hours of

rehabilitation
per day

Demographics and
clinical, cognitive

and functional
evaluations

MBI at 40 days

278 post-stroke
at admission in

intensive
rehabilitation

treatment

Classification
EN RLR, SVM,
RF, KNN, and

SHAP

Fivefold
cross-validation loop

was deployed for
hyperparameter

optimization, while
an external 10-fold
loop was adopted

for test set
identification

RF obtained the best
overall results on the

accuracy (76.2%),
balanced accuracy

(74.3%), sensitivity (0.80),
and specificity (0.68)

Lai et al.
[43] 2022

Prediction of
functional

outcomes of
stroke

Hospitalization MRI

mRS and NIHSS
at admission

and discharge
(28 ± 3 days)

44 stroke
patients (acute

phase)
Classification Pretrained

VGG-16 CNN
Training

(90%)/testing (10%)

NHSS: mixed men and
women, the diagnostic

accuracy was 92.7%, the
sensitivity was 88.9%,

and the specificity was
96.4%. MRS: mixed men

and women, the
diagnostic accuracy was

93.2%, the sensitivity
was 90.0%, and the

specificity was 97.0%.

Chen et al.
[42] 2022

Prediction of 30
day readmission

for stroke
patients

Post-acute care

Demographics,
medical history, and

outcome
assessments

30 day
readmission

1476 patients
within the first
30 days of stoke

onset

Classification
ANN, KNN, RF,
SVM, NBC, and

COX models

Training data set
(70%) and a test

dataset (30%); 167
patients were used

for external
validation

ANN 93% in external
dataset

Liao et al.
[40] 2022

Prediction of
clinically

significant
HRQOL

improvements
of chronic stroke

patients

Sensorimotor
rehabilitation
interventions

Demographics and
baseline cognitive,

motor, sensory,
functional, and

HRQOL attributes

SIS at 3 to 4
weeks

132 people with
chronic stroke Classification RF, KNN, ANN,

SVM, and LR

Training data set
(70%) and a test

dataset (30%); 10-f
cv in training

The accuracy of the RF
model was 85%,

precision was 0.88, recall
was 0.85, the F1 score

was 0.85, and the
AUC-ROC was 0.86
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Table 1. Cont.

Authors Year Application
Domain Intervention Input Data Outcome

Assessment
Employed
Subjects

Learning
Type

Learning
Algorithms Validation Results

Park et al.
[32] 2021

Prediction of
functional
outcome at
3 months

Hospitalization

Clinical data of
personal and
stroke-related

factors (<7 days)

mRS

1066 patients
with acute

ischemic stroke
(mean age
65.8 ± 11.3

years favorable
outcome group
and 74.4 ± 11.4

years
unfavorable

outcome group)

Classification RLR, SVM, RF,
KNN, and XGB

Training data set
(70%) and a test

dataset (30%); 10-f
cv in training

RLR achieved 86% AUC

Chang. et al.
[35] 2021

Prediction of
post-stroke
functional

outcomes at 3
months

Post-Acute Care-
Cerebrovascular

Disease
(PAC-CVD)

program

Demographic
parameters,
functional

assessments,
comorbidities, and
complications (77

predictors, within 1
month post-stroke)

BI at discharge

577 post-stroke
patients (mean
age 64.6 ± 12.6

years)

Classification

DTs, NBC, KNN,
LDA, AdaBoost,
SVM, LR, and

RF

Fivefold cv

ML models AUC scores
ranged from 0.83 to

0.887. RF achieved the
best AUC score.

Katsuki et al.
[38] 2021

Prediction
models for total

FIM scores at
the discharge of
KRW (up to 150

days)

Rehabilitation
up to 150 days
at Kaifukuki

(convalescent)
Rehabilitation
Ward (KRW)

system

Clinical data and CT
at acute care ward

and functional
assessments at KRW

(2–4 weeks after
acute care ward)

FIM score at
discharge

122 stroke
patients (mean
age 71 years)

Regression

Prediction One
(Sony Network

Communica-
tions Inc., Tokyo,

Japan)

Training (50%,
inside 5-fold

cv)/validation
(50%).

R2 up to 0.972

Rajashekar
et al. [47] 2021

Prediction of the
30 day NIH
stroke scale

(NIHSS) at 30
days after stroke
symptom onset

Hospitalization

Imaging features
from MRI or CT scan
(acquired between

18 h and 5 days from
symptom onset) and
measurable clinical
data (obtained after
stroke and up to 6 h

post)

NIHSS

221 acute
ischemic stroke
patients (mean
age: 69 years)
from ESCAPE
and iKNOW

trials

Regression

ER mode was
implemented

using in a radial
kernel SVR
framework.

Three proposed
models: an SVR,

an SVR with
Relief, and a
SVR with le-

sion/symptom
mapping
technique

Training (80%)/
testing (20%)

Mrelief achieved
MAE = 3.55,

RMSE = 4.34, and
R2 = 0.43
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Table 1. Cont.

Authors Year Application
Domain Intervention Input Data Outcome

Assessment
Employed
Subjects

Learning
Type

Learning
Algorithms Validation Results

Kim et al.
[23] 2021

Prediction of
motor function

outcome in
stroke patients

at 6 months

Rehabilitation
center

Clinical data (14
input variables,

from early stage at
7–30 days after
stroke onset)

MBC for upper
limbs and FAC
for lower limbs

1056 consecutive
stroke patients

(mean age
59.92 ± 13.94

years)

Classification DNN, LR, and
RF

Training
(70%)/validation set

(21%)/testing set
(9%)

Upper-limb function:
DNN model achieved

AUC = 0.906
Lower-limb function:

DNN, LR, and RF
models achieved AUC
scores 0.822, 0.768, and

0.802, respectively

Sohn et al.
[41] 2021

Prediction of
rehabilitation
prognosis in

stroke patients
using Brainstem

Auditory
Evoked

Potential (BAEP)
at 8 to 114 days

Brainstem
auditory evoked

potential
A proper

rehabilitation
program was

applied during
hospitalization

Basal K-MBI score,
age, and three IPLs

(2 weeks of
admission on

average)

Korean version
of the modified
Barthel index

(K-MBI)

181 subjects
with ischemic
stroke (mean
age 68.15 ±
11.68 years)

Classification
and

regression
ANN and SVM

Training (70%,
inside 5-fold

cv)/testing (30%)

ANN exploiting the
BAEP IPLs together with

the basal K-MBI score
and age achieved 92%

sensitivity, 90%
specificity, and 90% AUC

Jiang et al.
[37] 2021

A new index for
multiple chronic

conditions
(MCCs) was
proposed for
prediction of
post-stroke
functional

outcome (FO) at
90 days

Hospitalization

Pre-stroke
functional, cognitive,

and psychosocial
impairments was

ascertained from the
baseline interview

(after 24 h)

MCCs

1035 patients
with ischemic
stroke (mean
age 68 ± 12.1

years)

Regression MLR
Training (90%,
inside 5-fold

cv)/validation (10%)
MCC by MLR: R2 = 0.32

Thakkar
et al. [39] 2020

Prediction of
motor function
improvements

in chronic stroke
patients after
3–4 weeks of
rehabilitation

Contemporary
task-oriented
intervention

Age, side of lesion,
gender, baseline
functional status,

motor function, time
since stroke, and

quality of life (more
than 6 months post

stroke)

FMA

239 chronic
stroke patients

(mean age
54.72 ± 11.12

years)

Classification KNN and ANN
Training (80%,
inside 10-fold

cv)/testing (20%)

KNN model
accuracy = 85.42% and

AUC = 0.89
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Table 1. Cont.

Authors Year Application
Domain Intervention Input Data Outcome

Assessment
Employed
Subjects

Learning
Type

Learning
Algorithms Validation Results

Harari et al.
[46] 2020

Development of
predictive

models for four
standardized

clinical outcome
measures at

discharge (acute
phase)

Acute inpatient
rehabilitation

Demographics,
stroke

characteristics, and
scores of clinical

tests at first week of
admission

FIM, TMWT,
SMWT, and BBS

50 stroke
survivors (mean
age 57.5 ± 14.15

years)

Regression Lasso regression LOOCV

R2 = 70–77% and
MAEn = 13–15% for

predicting the outcomes
of new patients

Lin et al.
[34] 2020

Prediction of
functional mRS

outcome at
90 days after

stroke

Hospitalization

Clinical data
(impatient elements

and data from 30
days follow-up visit)

mRS

5328 females
and 24,965

males (mean
onset age 69.71
± 12.62 years
and 65.40 ±
12.64 years)

Classification
SVM, RF, ANN,

and hybrid
ANN

10-time repeated
hold-out (30%) with
10-fold cv in training

Baseline and follow-up
data achieved improved

AUC scores to 0.97

Sale et al.
[33] 2018

Prediction of
functional

outcomes at
discharge in

ischemic stroke
patients in early

stage after
rehabilitation

treatment

Daily 3 h
physiotherapy

session

Functional and
clinical data (24 h

from the admission
at the rehabilitation

unit)

BI and FIM

55 sub-acute
stroke patients
(15 ± 10 days
from stroke

onset)

Regression SVM

20
repetitions-training
(70%, inside 5-fold
cv)/testing (30%)

RMSE ranged from 4.28
for discharge (T1)

cognitive FIM to 22.6 for
discharge (T1) BI.

Lin et al.
[36] 2018

Predicting the BI
statuses of the

patients at
discharge after

PAC-CVD
program at
3 months

PAC-CVD
program

MRS, BI, FOIS,
MNA, QoL, IADL,

BBT, gait speed,
6MWT, FuglUE,

FuglSEN, MMSE,
MAL, CCAT, age,

and length of stay in
the acute stroke
ward prior to

admission to the
PAC-CVD ward

(stroke onset time
within 1 month)

BI status at
discharge

313 post-stroke
patients (mean
age for patients
with high BI at
discharge 58.25
± 13.44, with

medium BI 63.20
± 11.34, and low
BI 69.77 ± 11.89)

Classification
and

regression

LR, SVM, and
RF

(classification
task)

SVM with linear
kernel and

linear regression
(regression task)

Fivefold cv

AUC score for LR and
RF algorithms was 0.79
and for SVM algorithm

was 0.77
SVM and linear

regression models
achieved mean absolute
errors of 9.86 and 9.95,

respectively
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3.3. Upper Extremities

Studies involved in the upper extremities category also showed variability with re-
spect to the functional outcome prediction horizon (Table 2). Specifically, the short-term
prediction horizon group included (i) one study with a prediction horizon of 4 weeks,
(ii) one study with a prediction horizon of 6 weeks, (iii) two studies with a 3 week predic-
tion horizon, and (iv) two studies with a 2 week prediction horizon. Only one study with
a 9 month prediction horizon and two studies with a 3 month prediction horizon were
included in the long-term prediction horizon group (Figure 3).
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Figure 3. Employed studies in upper extremities category according to prediction horizon.

3.3.1. Long-Term Prediction Horizon (≥3 Months)

Both studies in this category focused on the prediction of the FMA-UE score as the
main outcome at 3 months. Liu et al. employed bagging and gradient boosting decision tree
(GBDT) classifiers with the aim of predicting individual motor outcomes after stroke [48].
On the basis of baseline whole-brain volumes and motor data from the acute phase, the
Bagging classifier achieved the best AUC score at 89.74%. In the latter study, Koch et al.
predicted the natural recovery (differences between FMA-UE) using SVM classifiers [49].
This study employed three different MRI (3T) datasets 2–4 weeks after stroke onset, namely,
SEOUL, GENEVA, and PARIS. The SEOUL dataset was used for the training and internal
validation of the trained models. The GENEVA and PARIS datasets were used for external
validation and generalization, respectively. In external validation, employing the GENEVA
dataset, an accuracy of 60% was achieved. In another study, Razak et al. worked on the
long-term prediction of mRS at 9 months. They applied three ML models and achieved the
best AUC score of 97.7% by using LR [50].

3.3.2. Short-Term Prediction Horizon (<3 Months)

Classification studies: Three out of five studies in this subcategory applied interven-
tions based on constraint-induced movement therapy (CI therapy) to predict functional
outcomes at 2 up to 3 weeks for chronic stroke patients. Rafiei et al. proposed an enhanced
probabilistic neural network (EPNN) model for the prediction of the improvement of the
more affected arm in use for daily activities [51]. Employing features such as demographics
and baseline clinical characteristics (e.g., MAL, WMFT, SWMT, and MCA) they achieved
accuracy nearly at 100% for the motor activity log (MAL). In another study, George et al.
worked on the prediction of the response to upper extremity rehabilitation based on the
Wolf motor function test (WMFT) [52]. They concluded that gross motor ability plays
a key role, and they demonstrated 94.7% accuracy by employing data from somatosen-
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sory and motor in combination with an EPNN model. Using the same outcome (WMFT),
George et al. worked on the prediction of motor recovery for upper-limb motor ability by
using three ML models (EPNN, PNN, and KNN) and data such as tactile sensation, proprio-
ceptive function, motor performance, and the stroke-affected side [53]. They demonstrated
almost perfect predictive performance in this task (100% accuracy) from the EPNN model.
In contrast with the aforementioned studies, Iwamoto et al. applied single-joint hybrid
assistive limb (HAL-SJ) rehabilitation in order to identify stroke patients with improvement
of upper-limb motor function based on the difference of the FMA-UE at 30 days [54]. They
used the chi-square automatic interaction detector (CHAID) model, and they achieved
81.7% classification accuracy.

Regression studies: Lin et al. proposed a CNN-based approach for the prognosis of
the recovery rate at 2 weeks after the brain–computer interaction (BCI) rehabilitation
for patients in the late subacute stage of recovery [55]. This rate was derived from the
FMU score after the 2 weeks of BCI training minus the baseline score, and then divided
by the baseline FMU score minus the maximum score. Employing a CNN model on
electroencephalographic (EEG) functional connectivity and EEG power spectrum baseline
data, they presented an excellent R2 of 0.98. In another study, Tozlu et al. employed several
ML models for the prediction of the post-intervention FMA-UE score at 6 weeks for chronic
stroke patients [56]. In this task, the elastic net (EN) trained on demographic, clinical,
neurophysiological, and imaging data (3T MRI) presented significantly better scores than
the remaining ML models (R2 = 0.91).
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Table 2. Findings and characteristics of included ML studies for upper extremities category.

Authors Year Application Domain Intervention Input Data Outcome Assessment Employed
Subjects Learning Type Learning

Algorithms Validation Results

Iwamoto
et al. [54] 2022

Identification of stroke
patients who will
obtain clinically

important
improvement at

30 days

Single-joint hybrid
assistive limb

(HAL-SJ)
rehabilitation

Sex, age, days from stroke
onset to the initiation of
HAL-SJ rehabilitation,

cognitive functions, and
upper-limb motor functions

Difference of the
FMA-UE at 30 days

71 patients with
subacute stroke Classification DT analysis

CHAID model - Acc = 81.7% and
AUC = 0.89

Razak et al.
[50] 2022

Prediction of ipsilateral
hand (ILH)

impairment at 9
months

Hospitalization

Demographic variables,
behavioral, clinical, and
neuropsychological data,

medical history,
thrombolysis treatment,
stroke delay, and NIHSS

discharge

mRS at 9 months 209 subacute
patients Classification

LR,
LR-bootstrapping,

and cv with
LASSO and RF

Training
(70%)/testing

(30%) for the LR

LR achieved
AUC = 0.98

Liu et al.
[48] 2022

Prediction of motor
improvement outcome

at 3 months

Routine
rehabilitation

therapies

Baseline whole-brain
volumes and motor data
(FMA-UE scores) 1 week

after symptom onset
(<7 days)

Differences between
FMA-UE from Week 1

to Week 12
(84 ± 4 days)

56 patients with
subcortical

infarction (mean
age 53.5 years at

proportional
group and 53
years at poor

group)

Classification Bagging and
GBDT Fivefold cv

Bagging classifier
achieved 87.71%
accuracy, 93.77%
sensitivity, and

89.74% AUC

Lin et al.
[55] 2021

Prediction of the
outcome of BCI

training for upper
limbs at 2 weeks

Brain-computer
interaction (BCI)

training

EEG functional connectivity
and EEG power spectrum
(first-ever stroke within 6

months)

Recovery rate
(FMA-UE score after
the 2 weeks of BCI
training minus the

baseline score and then
divided by the baseline
FMA-UE score minus

maximum score)

11 stroke patients
(aged 20–80 years) Regression CNN LOOCV R2 = 0.98 and

RMSE = 0.89

Koch et al.
[49] 2021

Prediction of structural
connectome and motor

recovery for upper
limbs in natural

recovery at 3 months

Natural recovery

SEOUL dataset (3T MRI),
GENEVA dataset (3T MRI),
and PARIS dataset (3T MRI)
were recorded at 2–4 weeks

after stroke

Proportional recovery
(the change in FMU

over time was related
to the maximal amount
of potential recovery)

92 after stroke
patients (SEOUL:

mean age
58 ± 12.6 years,
GENEVA mean

age
58 ± 12.2 years,

and PARIS mean
age 55 ± 16.7

years)

Classification
SVM

(classification
task)

SEOUL dataset in
5-fold cv as

internal valida-
tion/GENEVA

dataset as external
validation

At GENEVA
dataset (external

validation) an
accuracy = 60%

and
precision = 53%
were achieved

Tozlu et al.
[56] 2020

Prediction of the
individual upper-limb
motor impairment in

chronic stroke at
6 weeks

18 therapeutic
sessions over a
6-week period

Demographic, clinical,
neurophysiological, and

imaging variables (3T MRI)
with first-time hemorrhagic
or ischemic stroke within 3

to 12 months

FMU 102 stroke patients
(aged 54–66 years) Regression

EN, SVM, ANN,
classification and
regression trees,

and RF

10-fold cv

R2
EN = 0.91,

R2
RF = 0.88,

R2
ANN = 0.83,

R2
SVM = 0.79,

R2
CART = 0.70
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Table 2. Cont.

Authors Year Application Domain Intervention Input Data Outcome Assessment Employed
Subjects Learning Type Learning

Algorithms Validation Results

Rafiei et al.
[51] 2019

Prediction of the
improved use of the

more affected arm at 3
weeks

Constraint-
induced

movement
therapy

Demographics and baseline
clinical characteristics

(MAL, WMFT, SWMT, and
MCA) (admission date: >6

months of stroke onset)

MAL

47 people with
chronic (>6

months) mild to
moderate

upper-extremity
hemiparesis

Classification EPNN and NDC
algorithm

Leave-one-out
approach Accuracy ≈ 100%

George
et al. [52] 2017

Prediction of the
response at 2 weeks of

upper-extremity
rehabilitation

Virtual-reality
gaming

(constraint-
induced

movement
therapy was

incorporated)

Data from motor and
somatosensory (at

admission >6 months after
stroke)

WMFT

19 patients with
chronic stroke (>6
months) with mild

to moderate
upper-extremity

hemiparesis (aged
14.1–69.6 years)

Classification EPNN Leave-one-out
approach

Accuracy for the
gaming (94.7%)
and combined

datasets (94.5%)

George
et al. [53] 2017

Prediction of the extent
of motor recovery for

upper-limb motor
ability at 3 weeks

Constraint-
induced

movement
therapy

BKT, SWTM, 15 timed items
of the WMFT, and

stroke-affected side (at
admission >6 months after

stroke)

WMFT
35 post-stroke

patients (mean age
60 years)

Classification EPNN, KNN, and
PNN

Leave-one-out
approach

EPPN yielded
100% accuracy
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4. Discussion

In this scoping review, 26 original articles were identified that presented the current
usage of ML techniques in the challenge of predicting both short- and long-term functional
outcomes prior to rehabilitation interventions in post-stroke survivors. Figure 4 depicts
the increasing trend of published ML related studies in the field. This work reinforces
the need for (i) new AI tools that could predict long-term recovery rates from the first
hours of hospital admission after stroke, and (ii) furthering our understanding of the
mechanism behind the rehabilitation progress toward the formulation of personalized
rehabilitation strategies for stroke patients. ML techniques could play a prime role in
these directions by extracting valuable knowledge from various types of clinical data (e.g.,
images, musculoskeletal biomarkers, and kinematics data) and finding new strategies that
could utilize data from every possible data source.
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In earlier years, the lack of computational power, the limited ability to collect data
from different sources, the reduced capacity to store big data, and the nature of the disease
(e.g., limited number of study participants) could be characterized as blocking factors for
the development of related studies. All of the above contributed to the reduced number of
studies before 2019, as observed by the literature review.

In the motor function category, the authors observed that the interval for predicting
functional outcomes varied from 8 days to 6 months. The majority of the studies focused
on predicting functional outcomes within the first 3 months (10 out of 17 studies) from the
beginning of the respective intervention. All these studies employed early-stage post-stroke
survivors. They also noted that the baseline recordings at admission range from 18 h up to
1 month after stroke onset.

In the upper extremities category, the long-term prediction of functional outcome
also varies. Specifically, two studies at 2 weeks, two studies at 3 weeks, one study at
4 weeks, one study at 6 weeks, two studies at 3 months, one study at 6 months, and one
study at 9 months were recorded. In this category, the baseline recordings were quite
different. These studies included measurements for patients who developed a stroke within
6 months before admission, studies with patients older than 6 months, and three studies
with measurements from early-stage patients at 7–30 days after stroke onset.

Overall, nine regression and 20 classification approaches were recorded. Regarding
the type of the ML models that were reported in this scoping review, SVMs and applications
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of NN models proved to be the most frequently used models in both survey categories.
The choice of SVMs could be attributed to the fact that this classifier is computationally
efficient in high-dimensional spaces and generalizes well in practice. Image-based features
(e.g., MRI and CT) were included in only six of the 26 studies. These studies first applied
feature engineering techniques and then various ML models, with SVMs being the most
frequently used. EEG data as the main input were also employed only in one study
that used CNNs to predict the outcome of BCI training during the first session. Several
approaches were recorded as validation strategies. The two most common strategies were
k-fold cross-validation and hold out (10–30%) with k-fold cross-validation on the training
set. Furthermore, it is worth noting that two of the 26 studies used unknown datasets for
external validation.

Various functional outcome assessment scores were used. The most frequent scores
were FMA, FMU, BI, FIM, and mRS. Overall, only five of the recorded studies relied on data
from the acute stage of patients’ recovery (1–7 days) to develop ML prediction models. In
addition, 15 of the recorded studies were based on data from early subacute stage patients
(7 days to 3 months) for both categories. Furthermore, in the upper extremities category,
the majority of the studies employed chronic stroke survivors.

It is worth noting that a small number of the studies included in our review (two
out of 26) employed explainability techniques, such as the SHAP model or graphical
models, to interpret the results of their machine learning models. Additionally, two of
the studies made use of transfer learning, a technique commonly used in deep learning
to address the challenge of limited data availability and provide effective solutions for
medical prediction tasks. In these studies, pretrained models such as the VGG-16 CNN
were utilized, and deep learning was employed for both classification and regression tasks.
Although some of the studies included relatively small sample sizes (n ≤ 50), the deep
learning models performed satisfactorily in these cases. However, it is important to note
that further validation of these models using external datasets is necessary to fully establish
their validity and generalizability. Future work should focus on developing new advanced
AI tools such as graphical models, explainability models, transfer learning, and Siamese
CNN to enhance our understanding of the mechanism behind the decision-making process
of the proposed predictive models. Additionally, combining data (at patient admission
with less than 72 h from stroke onset) from a variety of data sources (e.g., imaging from MRI
and CT, musculoskeletal biomarkers using OpenSim, and electroencephalogram) with the
aforementioned AI tools could provide robust decision support tools capable of formulating
or implementing appropriate personalized rehabilitation protocols for each patient.

The exclusion of the gray literature and the fact that only two online databases were
used may have led to the identification of a relatively small number of included studies,
and this could be considered a limitation of this scoping review.

5. Conclusions

This scoping review focused specifically on the identification of best-performing ML
models being used to predict functional outcomes in stroke rehabilitation. AI tools could
play key role in the management of the post-stroke patients. Specifically, state-of-the-art
ML models have already been used for the prediction of the functional outcomes in the
rehabilitation of post-stroke patients. This scoping review led to the conclusion that AI
tools could predict long-term recovery rates from the first hours of hospital admission after
stroke. To achieve this goal, big data and the use of pretrained deep learning models are
required. In conclusion, the authors are convinced that understanding the mechanism
behind the recovery of post-stroke survivors, on the basis of the extraction of knowledge
from reliable, multisource data using advanced ML tools, could augment our ability to
reliably assess the recovery progress before any clinical intervention. Hence, ML in this
field could have a prime role in shaping new personalized rehabilitation strategies with a
direct impact on the quality of life of stroke survivors and the healthcare system.
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