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Definition: In deep learning, large language models are typically trained on data from a corpus
as representative of current knowledge. However, natural language is not an ideal form for the
reliable communication of concepts. Instead, formal logical statements are preferable since they are
subject to verifiability, reliability, and applicability. Another reason for this preference is that natural
language is not designed for an efficient and reliable flow of information and knowledge, but is
instead designed as an evolutionary adaptation as formed from a prior set of natural constraints.
As a formally structured language, logical statements are also more interpretable. They may be
informally constructed in the form of a natural language statement, but a formalized logical statement
is expected to follow a stricter set of rules, such as with the use of symbols for representing the
logic-based operators that connect multiple simple statements and form verifiable propositions.

Keywords: large language models; deep learning; symbolic logic; propositional logic; logical reasoning

1. Background

The large language models of deep learning depend on natural language samples from
a large corpus of knowledge [1]. However, natural language is a communication form that
is derived from biological evolution [2–4] and is a descendant of the other related forms of
animal communication, a recent adaptation with roles in sociality, social organization, and
general behavior in a natural context [5]. It is also not considered a rigorous method for
communication of knowledge that includes the attributes of reliability and permanence [6,7].
Likewise, the common definitions of rhetoric include the act of effective writing—but as an
art form, not as a scientific practice [8,9]. This observation suggests that natural language is
limited in its capacity for the construction of reproducible knowledge, a problem studied
in philosophy, such as in the literature of epistemology and logic [6].

This problem is also studied in the context of deep learning models in computer
science [10–13]. For instance, Traylor and others [11] recorded visual data from experiments
for whether the logical operations of negation [14] and disjunction [15] are learned by neural
network models. They showed that these models acquire some generalized knowledge
of these tasks, but are not yet reliable for generating the elements of logical reasoning. In
another study, Evans and others [12] published a data set as a benchmark to test for logical
entailment, a subtype of propositional logic that relies on symbolic-based reasoning [16,17].
These formalized methods of logic may be contrasted against the more informal methods
of reasoning. However, the formality of propositional logic offers interpretability on the
processes of logical reasoning [18–24].

A strict method of application of propositional logic is to show the symbols of logic
as Boolean operators on statements of natural language. An example is negation of a
statement [14]. Given the statement “human perception is innate”, in a classical context,
the negation of this statement is formed by NOT as a Boolean operation on this statement.
Therefore, the negation of the statement is “human perception is not innate”. For the case
of disjunction in propositional logic, at least in a classical context, two simple statements
are joined by the Boolean operator OR [15]. Therefore, an example is “human perception
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is either innate or not innate”. However, other natural languages may represent a formal
disjunction using a different method, so it is necessary to contrast the pure forms of ideal
logic with its use in common practice [15,24,25]. Logic is a form of reliable expression of
concepts for compensation of vagueness and error in interpretation of statements across the
natural languages. Therefore, training a machine system on samples of natural language
is expected to reproduce these same errors. However, logic is taught, so it is possible to
acquire knowledge of logical reasoning.

The alternative to these formalized approaches is to rely on metaphysical and non-
mechanistic definitions of general and logical reasoning. A similar problem exists in the
common definitions of “intelligence”. These amorphously formed terms stem from concepts
that precede the best practices in science and knowledge of the mechanics of cognition
and perception. In this case, as for other natural processes, a mechanistic approach to the
explanation of phenomena favors experimentation, reproducibility, and scientific rigor. A
second alternative is to rely on definitions based on a naive perspective, and, therefore,
potential exclusion of the mechanistic basis of natural science and any of the rigor from
the methods of philosophy. Since the various schools and teachings of philosophy are not
expected to influence common sense as a population phenomenon, it is likely that common
sense is often formed by methods without a component of verifiability [26].

Deep learning and its models are a testbed for verification of information-based
phenomena [27,28]. For example, studies have shown that these models are capable of
generating machine-readable code from queries in a text-based prompt, such as in the
form of natural language requests; therefore, this capability shows that logic is computable
by the advanced large language models, as in GPT-4 [28,29]. Bubeck and others [29]
further showed that logical reasoning in the GPT-4 model is observed in its solutions
for mathematical and general reasoning problems. The higher-order capabilities of these
models are often referred to as emergent properties that arise from scaling the model with
the inclusion of “big data” sets [30].

It may be that large language models are incorporating samples of propositional logic
during the training step, where the data source is a natural language corpus. However,
these capabilities may be contrasted against training a pretrained model on a large number
of samples with formal statements of propositional logic [25]. The presumption is that tok-
enization of these samples would better capture higher-order logic than “common speech”.
Another method is to connect external tools to the deep learning model using a translation
layer that communicates natural language into a machine-readable format [31]. These
exchanges between the model and external tools are information that is not incorporated
into the neural network itself, but these exchanges may be recorded and added to the model
during a later training phase.

2. Construction of Logical Statements
2.1. Deep Learning Models

The procedure to associate natural language samples with formal logical statements
is essentially a translation from one language to another. The vanilla transformer archi-
tecture is adapted for this kind of translation [28], including in its use of an encoder for
learning knowledge of the correspondence between a language sample and its translation
in the form of a logical statement [18,32,33], although it is an open question on the utility
of the formalism of symbolic logic, since propositional logic can be composed without
symbols. The transformer also has a decoder part which is coupled with the encoder, so the
encoded knowledge is transferred to the decoder which is capable of generating natural
language. Lastly, this procedure is expected to lower the dimensionality inherent in natural
language data, and likewise, there is an expectation for higher performance in identifying
the generalizable features [19,24].
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Large language models that include samples of logic may increase their reliability,
parameterization of the forms of logic, and interrelatedness of higher-order concepts.
Just as these language models are based on a network of artificial neurons, concepts
and their meanings are also an abstract form of a network. Both examples are essen-
tially communication systems since they move information from one node to another by
a connection.

Propositional logic is defined as a “ . . . branch of logic that studies ways of joining
and/or modifying entire propositions, statements or sentences to form more complicated
propositions, statements or sentences, as well as the logical relationships and properties
that are derived from these methods of combining or altering statements” [18]. Therefore,
this logic is applicable to the construction of complex ideas and descriptions of them. There
is also an assumption that the elemental (simplest) sentences that combine to form these
propositions are logically valid [18]. However, validation of the simple sentences may be
approached as a separate problem from identification and deconstruction of the varieties of
complex statements.

Natural language generally relies on an imprecise use of words and their meanings
for expression of strict logic, such as when using a conjunction in combining statements
with the word “and” or “but”. It is possible to form the same conjunction with either
of these words. However, symbolic logic offers precision in the expression of logic in
complex statements. The large language models may capture and represent logic by an
extensive sampling of a natural language corpus, but these models are expected to show
improvement where the training step includes a large number of samples along with
corresponding translations in a logic-based format.

It is also possible to train a deep learning model specific for translating natural
language samples to a logical format. In this case, the output may then be used as in-
put for any pretrained large language model. This is akin to a modularized design in
information processing.

2.2. Models of Tokenization

Another problem is in the data samples of natural language. Typically, tokens are
assigned to subwords for converting a natural language corpus to a machine-readable
format in deep learning. The layers of the neural network are capable of capturing the
higher-order representations in data [34], such as the semantic meaning of words in a
paragraph or the interrelatedness of ideas in a corpus. However, this training process is
not considered robust, since the large language models may generate output that does not
mimic common speech. In the context of human interpretation, this is often described by an
impression of output that is wrong or incorrect, although there are at least two causes for
this interpretation, one is that the output is not interpretable, such as from insufficient data
samples, or a limitation of the model itself, while the other is that the human interpreter is
stating a mere opinion with a high degree of certainty [6].

In the case of scientific data and application, deep learning is mainly free of the
subjectivity of human speech in the language models, but this application has insights
into the kinds of approaches for tokenizing data. The AlphaFold project [35] developed
a model for predicting the three-dimensional structure of cellular proteins. They used a
sequence model—a transformer architecture for the major computational step [28], and
this step includes data beyond the identification of amino acids in the protein sequence,
such as in use of the biochemical and geometric features inherent in the sequence data.
This is one approach. It also depends on a complex pipeline of processing biological data.
Instead, ESMFold [36] confined the model to the amino acid composition at the sequence
level without the appending of information on higher-order features such as geometrical
arrangements at the atomic level. Their model showed a high capability in generating the
three-dimensional structure of cellular proteins from sequence data, where the model was
scaled in size along with the inclusion of very large data sets in a format that incorporates
information on evolutionary relatedness [36].
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This is a case where data and the data types are adaptable to a tokenization process.
However, this process is not expected to fully capture the molecular dynamics of cellular
proteins, since these molecules undergo conformational changes over time, particularly in
their dynamics and interactions with other molecules. For this case, data on the temporal
dynamics of molecules are required in some form.

Natural language data has the same limitations. A generative model is dependent
on sufficient data sampling for constructing higher-order representations. The tokens are
directly dependent on a sampling process and that are tractable for study in overcoming the
limitations of a model. If a large language model is not reproducing logic from an existing
corpus, it is reasonable to first scale the model upwards, but the hypothesis should then be
posed on whether the appropriate tokens are present for training the model, including the
breadth in data sampling, and specifically how the data is tokenized for putative formation
of the higher-order features.

2.3. Prompt-Based Methods in Deep Learning

In the case of a large language model, the use of propositional logic may increase the
interpretability of the model’s output with the goal of finding the causes of unreliability in
the model [37]. A related approach is a procedure for prompting an advanced large lan-
guage model for directing the model to align the output with that of an expectation [37–41].
In particular, Creswell and others [37] formalized a procedure to train the neural network
on a type of step-by-step reasoning process. This allows for output that is more inter-
pretable, since each step is disentangled for analysis. Their study [37] also showed that the
model is fairly robust in the generation of simple statements, at least with use of additional
prompting, so the sharp limitations of the large language models are expected to mainly
occur in complex statements of logic.

These kinds of models—based on prompting or pretraining at the prompt—are capable
of logical reasoning by criteria; therefore, one approach is to automate away the multiple
prompting procedure, while another method is to assign a certainty score attached to the
model’s generative output. Probability scores can be derived internal to the model and
its computations if the expectations are explicit, such as with the use of symbolic logic in
the formal expression of concepts [23,24], while another is to have a judge that is external
to the model, such as by verification through the use of external tools. It is also possible
to combine these approaches, where the exchanges between the model and external tools
are subsequently trained into the model itself. In any case, it is important for the model
to identify statements as a probability of truthfulness by a criterion, and where uncertain,
generate output with the reasons for uncertainty.

2.4. Validation of Models

It is important to differentiate terminology based on metaphysics from that which is
scientifically verifiable in the context of a deep learning system. Terms should depend on
mechanistic science that is free of a metaphysical basis. In addition, the models themselves
should be studied in a scientific context for the advancement of knowledge [10]. Many of
the recent advanced large language models are used for their variability in the generation
of output and capability for imitating human appealing speech. However, for the purpose
of experimentation, the generative output should not depend on a high degree of variety
and aesthetics, but instead on validity and reproducibility [42]. This lowers the number
of external factors in a controlled experiment. An example of this is to switch to use of a
“greedy search” by the sequence decoder in a large language model, so an excess of output
variability is not a confounding factor.
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In the case of general reasoning in the large language models, it is a good practice to
describe hypotheses that are scientific and based on a mechanistic view, so the elements of
general reasoning are clearly defined. Furthermore, if model scaling does not capture these
elements from common samples, then propositional logic [18] and the tenets of science
are paths for enhancing a model’s reliability. Proper hypothesis testing, preferably with
falsifiable statements, is expected to reduce dependence on nonscientific description and
unverifiability of findings. However, the commercialization of these models is a separate
problem, with reliance on methods outside the tenets of scientific investigation.

3. Problems in Logic and Language
3.1. Internal Representations of Logic

Computational semantics [23], the bridge between the study of language and logic, is
a theoretical basis for predicting the capabilities and limitations inherent in a large language
model. Liang and Potts [23] reviewed this area of knowledge with a focus on two lineages
of study; one strives to map language upon the distinct forms of logic, while the other
pursues a distributed approach, as in the vector representations in deep learning, so as
to identify the mechanisms for natural language (re)cognition. They also introduce the
concept of generalization as a major tenet for the study of meaning and the structural
complexity in natural language.

Generalization is an insightful point, because without this property, it is expected that
knowledge would not be attainable, so instead, each problem in semantics would be unique
and distinct in origin. The concept of “logical forms” offers a theoretical basis [23], both as a
formalized description of semantics, and as an overarching principle, for hypothesizing on
the concept of meaning that is expressed in natural language [24]. The concept of meaning
is deconstructed in a mechanistic context by Liang and Potts [23], but a naive viewpoint on
the meaning in natural language may instead converge on solely a metaphysical view, such
as that meaning originates in mental processes ungrounded by the rules of the physical
world. Given a scientific viewpoint, the logical forms are expected to follow the rules of
information theory, with a dependence on information flow as a physical phenomenon,
and that these logical forms are expectedly resistant to information compression [43]. This
is unlike sensory objects as formed by percepts that originate in the physical world. These
latter forms are expectedly compressible, as observed in the deep learning models and their
capability for generalization in sampling visual data [44].

Mathematics is a different kind of language in that it relies on symbolic forms, precision
in meaning, and is lower in dimensionality than natural language. In this case, it is simpler
to show that meaning is derived from a set of learned rule sets, as observed in the symbolic
representations of mathematical concepts [45]. If a math problem is formulated by symbols
and their expressions, then these calculations are programmable. If they are programmable
in a computer language that translates to machine code, then a deep learning system can
train on and learn these rules [5,46,47]. This contrasts with natural language where the
rules are imprecise and not strictly bounded or defined. However, the scaling of large
language models, leading to very large parameter sizes, has led to capturing the structural
elements of natural language, such as the grammar rules, and the capability of generating
common samples of speech.

3.2. Potential Limitations of Logical Systems

There is an observation of brittleness in the large language models—that they are not
fully capturing the meaning of concepts [48]. This is not a result of a deficit in emulating a
mental process (non-physical phenomena), but instead a lack of data and the programming
of the model.
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There are at least two hypotheses on large-scale language models. One is that scaling,
including the size of the neural network, will lead to capturing the higher-level forms that
are inherent in natural language. The other hypothesis is that the computational complexity
will rapidly tend toward infinity, so progression in understanding, such as by complex
logic, would be limited by theoretical constraints on use of data and computational time.
Since the human brain is capable of finding meaning in natural language, support for
the latter hypothesis would suggest that any limits in deep learning are instead one of
optimization of methodology.

Using empirical findings and information theory as a guide [43], it is expected that
internal cognition is processing information at a high dimensional level (uncompressed)
and that its coding is organized in a heterogeneous and disordered fashion in the sys-
tem [49]. One hypothesis is that natural language sources are insufficient for learning and
making robust predictions about the world, but instead visual information—at least visual
representations—are required for robust predictions on the properties and interactions
of objects in the world, including those as perceived by the senses and those constructed
internally by pure cognition. An example of the latter is a mathematical object, such as an
arithmetic operator.

A second hypothesis, not exclusive to the first one, is that meaning is recognized by
processes that rely on spatial scale across natural language samples. It is presumed that the
higher-scale representations encoded by natural language are captured in the many layers
of the neural network in deep learning, but it is unknown whether tokenization of natural
language samples by the use of subwords is completely efficient. It may be that these neural
networks do not have the data nor network scale to robustly compute these higher-order
representations from current tokenization practices for natural language. In this case, a
model that can process a hierarchy of tokens at different spans across samples may be
considered. An analogy is in the construction of the monumental pyramids in ancient
Egypt. If they were constructed of small blocks, then it would be a more difficult assembly
process than the actual construction, which is based on assembly by very large blocks [50].
It follows that it would be difficult for a large language model to capture meaning in natural
language samples from tokenization at the character level. It does capture meaning at least
at a subword level, however, since these tokens have correspondence to the property of
“meaning”, and the models are capable of capturing the higher-level representations from
this procedure (Figure 1).

Figure 1. Tokenization of natural language samples. Each token may be assigned to a word or a
string of words in a document. Generation of a text sequence by deep learning is dependent on the
tokenization procedure. (A) The contiguous line represents a sequence of words as they appear in a
document. Above this line are dashed lines which are tokens that correspond to individual words in
the document. (B) Same as (A), except instead of subwords, the longer dashed lines represent a larger
sequence of text. Therefore, each dash is a token that corresponds to many words in a document.
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However, it is not certain that complex logic is easily captured by the above method.
It is possible that training on translations of natural language samples to a logical format
would increase performance of the large language models. Another possibility is that the
tokenization process should include the higher-order features of natural language that
correspond to logic, and other features that have a property of “meaning” in the context
of cognition.

4. Large Language Models and Society

Deep learning and large language models are areas of rapid technological advance-
ment, leading to impacts on society at this time [51]. As with the other important technolo-
gies and industries, there is competition across all levels of human society, from the blocs
of nations, to the research centers in corporations, to the technology workers [52]. This
activity occurs in many areas, including in the development of deep learning architectures,
the design of dedicated computer processing units, investment in commercialization, and
methods of trade to encourage development while discouraging competitors. Reflections
and opinions on these activities are more easily heard in the form of reports by news media
and other kinds of public communication. These methods of communication may range
from informational on scientific discoveries to strong persuasion for increasing public
support for a governmental policy [53].

Deep learning models are already impacting scientific research and investigations
into natural phenomena [54,55]. In addition, there are current efforts for commercializing
the large language models as a generalized method of searching for knowledge and to
intelligently process multimedia data [56]. These efforts are supported by financial markets,
news media, and policies at the national level. Not all technologies rapidly spread across
society, but the software and algorithmic elements of deep learning are not bounded
by regulation or cost, so advancement has and is expected to continue at a high rate.
The ability to confidently predict the impact of science and technology is not possible,
otherwise, the financial market of corporate shares in this industry would be deterministic;
therefore, public discourse is unable to find a definite consensus on how to approach these
technologies and their impacts on industry and government.

This entry is on the topic of logical reasoning for an increase in the interpretability
of deep learning models, and for validating the generative output, such as the truth or
falsehoods in natural language samples. Even though the construction of logical statements
is not a universal necessity in human society, the use of logical reasoning in large language
models has the potential for constructing knowledge with a higher degree of reliability
than that constructed by traditional practices, such as rhetoric as bounded by historical
constraint [6]. It is an open question on whether these traditional practices, as practiced in
a society, are any more verifiable by a logic-based model than that generated by a robust
large language model.

The problem of large language models in society is that information and commu-
nication is highly regulated and safeguarded by stakeholders involved in public policy
and technological development. This would invite conflict between official statements
of government and these models. It is also arguable that much of the communication
in society is not based on verifiable evidence as in the natural sciences, so a large lan-
guage model trained on logical reasoning can potentially measure and validate official
speech, instead of relying on arguments by use of the rhetorical arts. While rhetoric may
rely on methods outside logic and scientific evidence for a measure of truth, a model
trained on logical reasoning is expected to be resistant to the persuasive methods of speech
and propaganda.

Lastly, large language models are not incorporated into the current regime of laws
and their interpretations, so as a result, it is not yet certain how deep learning will impact
the assignment and development of intellectual property, such as in art and in music, and
whether speech as generated by these models is protected by the lofty ideals of freedom of
expression. These problems have arisen since these models have recently been released
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for public use. While policy makers are forming opinions and finding solutions to open
questions on regulation of this area of technology, the advancements in deep learning, as it
pertains to both the natural sciences and natural language generation, are ongoing. As a
confounding factor to the public discussion, large language models are becoming available
that are effective yet contain fewer parameters; therefore, these models are potentially
applicable for use in desktop computer systems [57].

The tension between policies at all levels and the deep learning technologies is ongo-
ing. It is difficult to construct trade barriers to computer processors where the software
technology is accelerating the computational efficiency of deep learning. Likewise, it may
be difficult to regulate machine-generated speech and other generative output without
limiting free expression by individuals in society. Lastly, there are existential questions
on the unexpected use of deep learning technologies by corporations and governments.
The most parsimonious answer to these questions is to use history as a guide. History is
replete with examples of technology, its use in a society, and its use against competitors.
While individuals vary in their personality and character traits, societal level institutions
are often confined by rules and goals, such as a corporation in pursuit of profit and labor,
or the allocation of wealth for increasing the standing of a nation among others [52]. It is
expected that deep learning technologies will lead to a race for development of industry
and national wealth, a race with a prize that may greatly exceed that of the marvels from
the miniaturization of electronics [58].

5. Conclusions

The corpus of knowledge offers a great number of natural language samples to
train a large language model by deep learning [1]. These models are capable of natural
language prediction by this methodology. This predictive capacity is derived by training
the model on big data and capturing the higher-level representations in the neural
network [28]. It is also dependent on context size for finding associations across samples
in this data. The larger the context size, the more easily the model is expected to capture
the higher-level representations, in particular regarding the associative text samples
that are not neighbors in the corpus (Figure 2). It is possible that scaling the size of
these deep learning systems will continue to lead to increased capability and reliability
in the generation of output [30]. However, it is also possible that the higher-order
representations are not easily captured by this framework. This occurrence would arise
if the data sample size would have to tend toward infinity for the purpose of capturing
the complexity of propositional logic and other higher-order features inherent in natural
language. An approach which considers symbolic and non-symbolic logic is a path
for further development of large language models [23–25], and for training them to
approach and then exceed those of their biological counterparts.
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Figure 2. Associations between words in a document are frequently in close proximity, but they may
also occur over a longer span in a document. (A) The contiguous line represents a sequence of words.
Above this line are two arrows that point to sections of words in a document. Both these sections
are associated and nearby one another. (B) Same as (A), except the associated sections are distantly
located in the document.
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