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Abstract: Chytridiomycota (zoosporic true fungi) have a consistent presence in soils and have been
frequently identified within many diverse terrestrial environments. However, Chytridiomycota
and other early-diverging fungi have low representation in whole-genome sequencing databases
compared to Dikarya. New molecular techniques have provided insights into the diversity and
abundance of chytrids in soils and the changes in their populations both spatially and temporally.
Chytrids complete their life cycle within rapidly changing soil environments where they may be more
common within micropores due to protection from predation, desiccation, and extreme temperatures.
Reproductive and morphological changes occur in response to environmental changes including
pH, fluctuating nutrient concentrations, and metals at levels above toxic thresholds. Rhizoids share
some features of hyphae, including the spatial regulation of branching and the ability to attach,
adapt to, and proliferate in different substrates, albeit on a microscale. Soil chytrids provide a pool
of novel enzymes and proteins which enable a range of lifestyles as saprotrophs or parasites, but
also can be utilised as alternative tools with some biotechnological applications. Thus, 3D live-cell
imaging and micromodels such as MicroCT may provide insight into zoospore functions and rhizoid
plasticity, respectively, in response to various conditions. A combination of classical techniques of soil
chytrid baiting with simultaneous molecular and ecological data will provide insights into temporal
population changes in response to environmental change. The authors emphasise the need to review
and improve DNA-based methodologies for identifying and quantifying chytrids within the soil
microbiome to expand our knowledge of their taxonomy, abundance, diversity, and functionality
within soil environments.

Keywords: Chytridiomycota; early-diverging fungi; terrestrial; distribution; adaptations; zoospore;
rhizoids; metabarcoding

1. Introduction

Chytridiomycota have been isolated from many environments, studied, and de-
scribed [1,2]; however, their ecological importance within soil environments has been
neglected. Despite this, it is apparent that these fungi play a keystone role in many aquatic
environments [3]. The taxonomic classification and organisation of the phylogenetic tree of
the fungal kingdom is under constant review and evolution [4–7]. In particular, significant
caveats in phylogenetic and evolutionary knowledge concerning basal lineages of fungi
still exist. Early classification of zoosporic true fungi (chytrids) combined the group of
fungus-like species within the aquatic phycomycetes (sensu Sparrow 1960) [1]. Further
revision of the taxonomy of eucaryotic organisms assigned chytrids to the supergroup
Opisthokonta [8,9]. Later, zoosporic true fungi were split from the fungus-like zoosporic
members of the Opisthokonta, with chytrids being assigned to the kingdom Fungi [10].
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Chytridiomycota (chytrids), Neocallimastigomycota (neocallimastigos), and Monoblephar-
idomycota (monoblephs) are zoosporic early-diverging phyla under the sub-kingdom
Chytridiomyceta [11,12] (Figure 1), although the exact relationships between these phyla
are still to be determined [7].

Within Chytridiomycota there are currently 14 described orders: Caulochytriales,
Chytridiales, Cladochytriales, Gromochytriales, Lobulomycetales, Mesochytriales, Polychy-
triales, Polyphagales, Rhizophydiales, Rhizophlyctidales, Spizellomycetales, Synchytriales,
Zygophlyctidales, and Zygorhizidiales [7]. However, more than half of these orders still lack
sequence data. Nephridiophagids have also been recently shown to sit within the Chytrid-
iomycota phylum [13] and may form an additional order. For the anaerobic fungi phylum
Neocallimastigomycota, there is only one order, Neocallimastigales. For the Monoble-
pheridiomycota there is also one order, Monoblepheridales. Previously, Blastocladiomycota
was grouped within Chytridiomyceta but is now recognised as phylogenetically distinct
based on morphological and molecular analyses [14–17]. However, the position of Blas-
tocladiomycota on the fungal evolutionary tree has not yet been resolved [7]. More work
is needed to fully understand the taxonomy of early-diverging fungi. Recently, increased
phylogenetic diversity within the early-diverging taxa [7,11] has further highlighted the
need to resolve these relationships, including within Chytridiomyceta. This review focuses
on Chytridiomycota.
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Figure 1. Fungi classification at the higher taxonomic ranks of sub-kingdom and phylum as per 
Powell and Letcher 2014 [12], Tedersoo et al. (18S and 28S rRNA sequence data) (2018) [11], and 
James et al. (2020) [7]. Although our current understanding of classifications has been updated, 
James et al. (2006a, 2006b) [15,18] has provided foundational phylogenetic analyses using the 18S, 
28S, 5.8S, ITS, EF1α, RPB1 and RPB2 markers. The exact branching of Aphelidomyceta is still unclear 
(dotted lines). 

The morphological and physiological characteristics which allow chytrids to grow 
and disperse in soil environments are distinct and have been previously discussed [19]. 
The characteristic features of chytrids include chemotactic responses [20,21], motile zoo-
spores propelled by a posterior flagellum [1,22], the presence of cholesterol rather than 
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and Letcher 2014 [12], Tedersoo et al. (18S and 28S rRNA sequence data) (2018) [11], and James
et al. (2020) [7]. Although our current understanding of classifications has been updated, James et al.
(2006a, 2006b) [15,18] has provided foundational phylogenetic analyses using the 18S, 28S, 5.8S, ITS,
EF1α, RPB1 and RPB2 markers. The exact branching of Aphelidomyceta is still unclear (dotted lines).

The morphological and physiological characteristics which allow chytrids to grow and
disperse in soil environments are distinct and have been previously discussed [19]. The
characteristic features of chytrids include chemotactic responses [20,21], motile zoospores
propelled by a posterior flagellum [1,22], the presence of cholesterol rather than ergosterol
as the major sterol [23], and morphological adaptations to environmental cues at different
growth stages of the life cycle (Figure 2). These adaptations include changes in zoospore
size, shape, and release during zoosporulation, changes in the size of the sporangium, and
changes in the length and branching of the rhizoids after encystment [19] (Figure 3). A
further feature is the ability of the rhizoid to attach to and penetrate highly resistant solid
substrates, such as the hard outer casings of diatoms [24] and pollen grains [25] (Figure 3e).
Stress tolerance and ruderal ecological strategies may both be adopted by individual chytrid
species [19] in order to survive, grow, and complete their life cycle under a wide range
of environmental conditions. There are a number of species in Chytridiomycota that are
pathogenic in aquatic environments. Batrachochytrium dendrobatidis (order Rhizophydiales)
can be considered one of the most important infectious diseases impacting the biodiversity
of the amphibian population [26–30]. Members of Chytridiomycota have been associated
with phytoplankton, including diatoms, dinoflagellates, and cyanobacteria, as micropara-
sites [31–34]. They are well documented in bloom events in lakes [35,36] and algal blooms
in the Mediterranean Sea [37]. Data indicate that fungal parasites can potentially control the
fate of phytoplankton-derived organic matter by enhancing remineralisation and reducing
sedimentation in freshwater and coastal systems [31].

Encyclopedia 2023, 3, FOR PEER REVIEW 5 
 

 

 
Figure 2. Light micrograph of Spizellomyces sp. (order Spizellomycetales) culture capturing three 
characteristic stages of development; a mature thallus containing a large sporangium (S) and rhizoid 
(R) extensions (not all chytrid species produce rhizoids), sporulation to disperse motile zoospores 
(Z), and zoospore encystment which initiates maturation from a zoosporangium (ZS) into a mature 
thallus. Strains were revived from long-term stock cultures by aseptically removing a segment of 
agar containing mature sporangium and placing it inoculated side down onto fresh peptone, yeast, 
and glucose (PYG) medium (2.5 mM peptone, 4.56 mM yeast extract, 27.7 mM glucose, 2% w/v agar). 
A few drops of sterile deionised water were then added over the inoculated agar to promote spor-
ulation. Cultures were incubated at room temperature over the course of a week to observe the 
chytrid life cycle. 
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characteristic stages of development; a mature thallus containing a large sporangium (S) and rhizoid
(R) extensions (not all chytrid species produce rhizoids), sporulation to disperse motile zoospores
(Z), and zoospore encystment which initiates maturation from a zoosporangium (ZS) into a mature
thallus. Strains were revived from long-term stock cultures by aseptically removing a segment of
agar containing mature sporangium and placing it inoculated side down onto fresh peptone, yeast,
and glucose (PYG) medium (2.5 mM peptone, 4.56 mM yeast extract, 27.7 mM glucose, 2% w/v
agar). A few drops of sterile deionised water were then added over the inoculated agar to promote
sporulation. Cultures were incubated at room temperature over the course of a week to observe the
chytrid life cycle.
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taken using a light microscope, and (f–h) captured via scanning electron microscopy (SEM). As per 
Figure 2, strains were cultured and maintained on PYG. (a) Spizellomyces sp. (order Spizellomy-
cetales) chytrid during sporulation, identifying thallus structures including the sporangium (S), rhi-
zoids (R), discharge tube (DT), and released zoospores (Z). Spizellomyces sp. was cultured and pre-
pared for microscopy as per Hanrahan-Tan et al. (2019) [38]. (b) Rhizophlyctis rosea (order Rhi-
zophlyctidales) attached to lens paper (LP) as a cellulose substrate. Adapted with permission from 
Henderson et al. (2019) [39]. Copyright 2019 Nova Hedwigia. (c) Spizellomyces sp. attached to lens 
paper as a cellulose substrate. Culture plates were flooded with sterile deionised water from which 
an aliquot of active zoospores could be taken approximately 2 h later. The aliquot was then used to 
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using a light microscope, and (f–h) captured via scanning electron microscopy (SEM). As per Figure 2,
strains were cultured and maintained on PYG. (a) Spizellomyces sp. (order Spizellomycetales) chytrid
during sporulation, identifying thallus structures including the sporangium (S), rhizoids (R), discharge
tube (DT), and released zoospores (Z). Spizellomyces sp. was cultured and prepared for microscopy
as per Hanrahan-Tan et al. (2019) [38]. (b) Rhizophlyctis rosea (order Rhizophlyctidales) attached to
lens paper (LP) as a cellulose substrate. Adapted with permission from Henderson et al. (2019) [39].
Copyright 2019 Nova Hedwigia. (c) Spizellomyces sp. attached to lens paper as a cellulose substrate.
Culture plates were flooded with sterile deionised water from which an aliquot of active zoospores
could be taken approximately 2 h later. The aliquot was then used to inoculate a liquid medium
containing autoclaved lens paper baits (1.5 mm diameter). (d) Terramyces sp. (order Rhizophydiales)
attached to snake skin (SS) as a keratin substrate. (e) Spizellomyces sp. thalli attached to and penetrating
the tough exine layer of pollen grains (P) to access nutrients. As per (c), an inoculum of fresh zoospores
was added to liquid medium containing autoclaved pollen grains. (f) R. rosea thallus under normal
conditions on PYG prepared as per Henderson et al. (2017, 2019) [39,40]. Adapted with permission
from Henderson et al. (2017, 2019) [39,40] and reproduced with permission from The Licensor through
PLSclear. Copyright 2017 Taylor and Francis Group LLC (Books) US and copyright 2019 Nova
Hedwigia. (g) R. rosea thallus. Incubation on media containing 60 ppm copper over 5 days shortens
the length of rhizoids, increases the degree of rhizoid branching, and can lead to nodulation (N).
Image sourced from Henderson et al. (2017) [40]. Reproduced with permission from The Licensor
through PLSclear. Copyright 2017 Taylor and Francis Group LLC (Books) US. (h) Environment SEM
of Terramyces sp. colony grown on PYG medium. Sporangia appear as larger bumps (>20 µm) under
the surface of the biofilm while zoospores are encysted as small spots (<10 µm) in the biofilm surface.

This review examines the recent evidence for the presence and relative abundance
of chytrids in different soil environments. The authors examine the soil environment and
the functions and adaptive strategies of soil chytrid populations, particularly in light of
the recent additional knowledge on their morphology and functionality. The authors then
highlight the current research discussing potential applications in biotechnology. Finally,
the authors recommend innovative methods for further investigating the distribution and
ecology of chytrids in soil environments.

2. Chytrid Presence and Diversity in Soils

The relative abundance of chytrid sequences as a percentage of total fungal sequences
is high in high elevation soils, which was revealed through targeting the 18S rRNA marker
gene [41], as well as the 28S [5] and ITS regions [42], and were found to be the dominant
fungal phylum in unvegetated soils above a 5100 m elevation in the Himalayas of Nepal [41].
Relative chytrid abundance, determined by targeting the ITS2 marker region, was the
greatest at the highest elevation (3536 m) on Xinglong Mountain in Northwest China [43].
Chytrids have a high relative abundance (11% and greater) compared to total fungal
sequences targeting 18S rRNA using pyrosequencing in arctic tundra soils [44] and are
at least as abundant as Dikarya in association with arctic plant roots in the Archipelago
Svalbard, Norway, when comparing the relative abundance of total fungal sequences [45].
Chytrid populations may be among the dominant fungal phyla in the rhizosphere rather
than the bulk soil [46,47], but these populations are also sensitive to temporal factors and
higher chytrid populations have been noted within the rhizosphere at early stages of plant
development [46,48]. The ability of chytrids from soil environments to survive and grow
in a range of salinity levels is known to vary by species and isolate [49]. In a comparison
of community composition in marshland sediments, the highest relative abundance of
chytrids was found in the salt marsh sample (7%) compared to brackish (3%) and freshwater
swamps (1%) [50].

Chytrids may also contribute to the dominant fungal phyla in microhabitats, such as
in biological soil crusts where they have a higher relative abundance in the soil beneath
the crust based on the ITS marker analysis [51]. In biological soil crusts in the coastal and
central deserts of Oman, bare soil areas compared to cyanobacteria and lichen-dominated
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crusts had a higher relative abundance of chytrids, being up to 26% as a proportion of
total fungal abundance, compared to chytrid sequence abundances of less than 7%. The
dominant genus found using the ITS marker was Rhizophlyctis (order Rhizophlyctidales)
with a relative abundance from 8 to 25% as compared to the total fungal abundance in bare
sandy soils from the Omanian regions of Muscat, Sur, and Haat [52]. Increases in chytrid
populations using ITS2 markers occur in fire-affected biocrusts (genera Phlyctochytrium and
Spizellomyces) [53]; these genera are within the order Chytridiales and Spizellomycetales,
respectively, and their members are known to grow at high temperatures in vitro [54].

Molecular techniques have assisted with the identification of chytrids within soils from
a wide diversity of forest ecosystems. Earlier studies using baiting techniques found chytrid
diversity was higher in subtropical rain forest compared to open heath [55]. Relatively low
chytrid abundances (1.6%) were found in Norway spruce (Picea abies) forest rhizosphere
soils when using the ITS2 markers [56]. The three most common species were within the
genera Gaertneriomyces (order Spizellomycetales), Rhizophydium (including R. globosum)
(order Rhizophydiales), and Spizellomyces. Of the 42 taxa identified as chytrid, half had
no cultured representative in the GenBank (NCBI) database [56]. A chronosequence in
the subtropical Xishuangbanna forest of southwestern China also found proportionately
low chytrid relative abundances in soil. A trend of increasing chytrid relative abundance
was observed as forest age increased, and a negative correlation was found using the ITS
marker between chytrid populations and the water-soluble carbon and nitrogen content of
soils [57]. In contrast, in zinc/lead-contaminated Masson pine forest soil in Hunan, China,
chytrids were among the most abundant fungal phyla in both the bulk soil and rhizosphere,
with a relative abundance greater than 50% determined using the 18S rRNA gene [58]. Soil
inoculated with the ectomycorrhizal fungus Suillus luteus also led to increases in relative
chytrid abundance [58]. Chytrids from Spizellomycetales and Chytridiales, which are
commonly found in terrestrial soils, have also been isolated from tree canopy soils of
lowland rainforests in Australia and New Zealand [59,60]. Fungi that utilise spore dispersal
(which may include zoospores) over mycelial development may contribute to the distinct
fungal profile of the canopy of soils [61].

With recent advancements in high-throughput sequencing technologies and bioinfor-
matic platforms, not only is the number and variety of soil chytrid genera being revealed,
but also the functional community in which chytrids belong may be discerned with future
work. Despite the array of methods applied in determining soil microbial communities
and describing individual species, the setbacks and biases of each can limit the informa-
tion obtained. PCR applications, for example, are reliant on existing primer sets which
may discriminate against some fungal taxa. While fingerprinting DGGE or TGGE meth-
ods are limited to capturing the dominant phyla, usually with an abundance >1% [62],
metabarcoding at a sufficient sequencing depth reveals the relative abundance of rare
(<0.1% abundance) species [63].

Predominantly, soil fungal community analysis has focused on internal transcribed
spacer (ITS) markers [42,47,51,52,64–69], while chytrid aquatic fungal community diversity
has been elucidated by targeting the 18S rRNA gene marker [41,70,71]. Non-Dikarya
lineages are at a particular disadvantage due to the lack of information about the diversity
within various groups [72], and the suitability of current markers is, therefore, likely
hampered. In particular, ITS markers are known to present biases regarding amplicon
length, taxonomy, and primer mismatch [73]. Relatively few studies have undertaken a
comparative analysis of metabarcoding methods for determining the fungal community
composition of soils, but nonetheless, a few studies suggest variable capabilities to identify
diverse fungal clades. A comparison of root-associated fungal communities in the arctic
tundra using both the 18S rRNA and ITS2 gene markers found ITS2 data were largely
missing the Chytridiomycota and Mucoromycota taxa, which were abundant in the 18S
rRNA data [45]. Analysis of organic sediment-rich cave ice samples found Ascomycota
dominated the total fungal community composition based on ITS2 Illumina sequencing [74],
while Illumina shotgun sequencing found Chytridiomycota to be the dominant taxon [75].
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Furthermore, Tedersoo et al. (2020) [76] resolved the issue of previously unidentified fungal
taxa at the class level by re-analysing a set of 214 global soil samples using the 18S rRNA
marker in combination with the ITS marker. Previously, the sample collection had only
been analysed by targeting the ITS region.

When examining the Global Biodiversity Information Facility (GBIF), Blaalid and
Khomich (2021) [77] observed that Synchytrium anemones (order Synchytriales) was the
most commonly recorded species in Norway, Sweden, and Finland, constituting 30% of the
entire genus record. As highlighted, this particular chytrid can be observed macroscopically
by eye due to its distinct phenotypic presentation as a plant parasite. It also highlights
the emphasis often placed on microorganisms that are agriculturally relevant compared
to those which may have less conspicuous roles. Data from the Global Soil Organisms
project (distribution of occurrences dataset) further highlights the vast difference between
the number of records of Dikarya phyla (>2 million records for both Ascomycota and
Basidiomycota) compared to Chytridiomycota (<1 million chytrid records) [78]. Of all
the fungi currently recognised, less than 10% are described, and the mass of data from
genomic investigations, such as molecular operational taxonomic units, provides a likely
pool of information regarding undescribed taxa [79]. For example, in a study of dust in
an urban area of the Negev, Israel, half of the unclassified eukaryotic sequences identified
with the 18S rRNA marker were similar to Rhizophlyctis rosea (order Rhizophlyctidales),
while others were closely related to known Chytridiomycota genera including, but not
limited to, Gaertneriomyces, Spizellomyces, and Powellomyces [80]. These genera are within
the order Spizellomycetales, the members of which are able to survive desiccation and
temperatures of up to 90 ◦C [81]. There is a need for more Chytridiomycota and Blasto-
cladiomycota genomes to be sequenced and assembled as these taxa are currently poorly
represented in genome databases (Figure 4). Only 1% of the currently described fungi are
from Chytridiomycota and less than 1% are from Blastocladiomycota. For marine benthic
environments where chytrids have been identified as dominant OTUs in ITS datasets,
they are rare in the associated metatranscriptome data [82,83]. As “dark matter” fungi
represent unexplored fungal diversity in marine environments [84], chytrids are likely
to have unexplored diversity in soils. Of the unclassified taxa isolated from Gelisol soils
in Alaska, 19.5% were identified at the order level with the 28S rRNA marker as belong-
ing to Chytridiomycota [85]. This is becoming a common observation throughout the
literature [13,76,77,85–87].
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omy Browser (n = 4211). Data from the NCBI Taxonomy Browser were accessed on 21 November
2022. Each fungal phylum was searched for at a filter level of one. The number of assembled genomes
compiled in the Entrez records table was recorded for each phylum and the percentage of genomes
representing each phylum was calculated. The 17 phyla recognised are included to highlight the
limited genomic data available across multiple lineages of early-diverging fungi [11].

3. The Soil Environment at the Microscale: Chytrid Distribution and Adaptations

Unlike aquatic environments, soil environments experience continuous and some-
times sudden changes in conditions; wetting and drying cycles cause changes in soil
pH [88], phosphorus levels [89], and availability of micronutrients and other metals at
the microscale. Likewise, soil structural components are not static. Soil is composed of
solid, liquid, and gaseous components, with the solid component consisting of particles of
different sizes arranged into microaggregates (53–212 µm) [90] containing pore spaces of
various sizes and connectivities. The ultrafine connected pores within aggregates are con-
tinually changing and evolving, with repeated wetting–drying cycles resulting in blocking,
reforming, and reconnecting of pore networks [91]. The soil pore network fundamentally
determines the ability of microbes to seek resources and evade predators [92]; however,
it is also continually evolving. Pore size and connectivity also regulate the availability
and transport of organic matter, water, and oxygen within microbial hotspots [93], while
pore networks and fissures in the micro- to nanosize range are important reservoirs of
soil organic carbon [91]. The size and physiology of soil microbes are expected to affect
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dispersal patterns in soil environments, and therefore, affect the composition of soil species
assemblages at the microscale. For example, filamentous fungi are more likely to populate
large air-filled pores >100 µm [94], and bacteria populate micropores <1.2 µm [95]. In forest
soils, Chytridiomycota abundance was positively correlated with an average pore diameter
in the <20 µm range [96]. Soil pore space affects predation by protists [97], and hence it
is possible that chytrid sporangia and zoospores may be protected in smaller soil pores
due to the limitation of predator body size. Rhizarian testate amoebae such as Euglypha
(Silicofilosea; Rhizaria) can reach 150 µm and are unlikely to reach into small spaces due
to a hard inflexible shell [97]. Instead, they are able to use thin filopodia (pseudopodia)
to forage within soil aggregates [98]. The size of zoospores and mature sporangia vary
with growth conditions [99]. However, it is not uncommon for rhizoids to be uniformly
1.5 µm in diameter and zoospores to be as small as 2–3 µm in diameter, such as described
for the soil chytrid Rhizophydium brooksianum [100]. Smaller pores also have higher resource
availability. Soil pores of 0.2–720µm in diameter were found to be strongly correlated with
the total soil organic carbon content [101]. The availability of organic matter, water, and
oxygen within micropores may render them microbial hotspots [93], where chytrids may
extract resources and also be protected from predation.

Recently, fungal community profiling of soil microaggregates targeting the 18S rRNA
gene found a shift in the community structure at the phylum level as soil aggregate size
decreased from 250 to 2 µm [102]. Blastocladiomycota were predominantly associated with
the 20–63 µm aggregate size and Chytridiomycota were most abundant in association with
the 2–20 µm aggregate size. There is a negative relationship between aggregate size and
the number of soil pores, where a reduced aggregate size is associated with a significantly
greater soil pore number [103]. Chytrid association with the smaller soil aggregate size and
pore diameter is consistent with sporangial and rhizoidal size and the mineral particle size
range, which they are expected to interact with.

The biological functions of rhizoids in soil, including rhizoidal interactions with
substrates, are only beginning to be explored. Fungal hyphae, however, are known to
regulate the soil environment [92]. Arbuscular mycorrhizal (AM) fungi increase soil ag-
gregation [90,104–108] and slow the rate of macroaggregate turnover [90]. The hyphae
of AM fungi have the ability to change soil particle orientation at the µm scale [92] and
significantly increase soil mesopores (30–75 µm) and micropores (<30 µm) [109]. In clay
loam soil, the smaller aggregates (0.5 mm) contained 88% more pores than larger aggregates
(2–4 mm), and in sandy loam soil it was 92% more pores [109]. Recently, evidence has
emerged of the ability of Rhizoclosmatium globosum (order Chytridiales) rhizoids to adapt
by changing their morphology as they encounter different substrates, allowing them to
attach and proliferate where suitable substrates are found [110]. Similar to hyphae, rhizoids
exhibit polarised apical growth and fractal-like growth patterns which are modified by
environmental conditions such as resource availability [110]. The spatial regulation of
rhizoidal branching is controlled by the actin cytoskeleton which forms dynamic cellular
structures [111]. Although chytrid rhizoids are known to attach to numerous substrates,
including sand grains [19], the potential for chytrids to create pore spaces and assemble
microaggregates as soil microhabitat engineers is unknown.

Chytrids may also adapt to physical soil disturbance. Due to their smaller size as
compared to hyphae of arbuscular mycorrhizal fungi (AMF) (3–30 m g−1) [112], chytrid
rhizoids (µm scale) may be less vulnerable when exposed to tillage which is otherwise
destructive to AMF hyphae, as observed through population shifts in situ [113]. In addi-
tion to the negative mechanical disruption, tillage likely leads to drier soils in which the
desiccation-resistant sporangia structure is the primary defence mechanism [81], therefore
allowing population increases in some chytrid species under tillage [67,113].
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4. Chytrid Mechanisms and Adaptations to Extreme Conditions and Environmental
Gradients in Soil

Chytrids have been isolated from arid to semi-arid soils of the Western coastal regions
of Saudi Arabia [68] and dunes of the Namib desert [114]. It is of interest that Rhizophlyctis
sp. occurrence in desert soil is correlated with female but not male plants of the desert
gymnosperm Welwitschia mirabilis. This was postulated to be due to soil chemical changes
resulting from nectar accumulation in soil under the female plants [115]. In addition to
heat and desiccation tolerance, some chytrids have been shown to survive after exposure
to subzero temperatures [116]. It is not surprising then that chytrids have been isolated
from polar regions including sub- and periglacial environments in the Arctic and Antarc-
tic [41,86,117–119], as well as from Gelisol soils in Alaska [85]. Although considerable
variability between the population abundances observed across studies is to be expected,
there could be a notable distinction between the two terrestrial climates of deserts and
polar regions. Low soil moisture content may be one factor contributing to overall lower
population abundances (0.002–0.004%) in drier soils, such as in Saudi Arabia [68]. However,
chytrid populations can increase as the soil water content increases, as was observed in
arid soil in China [120]. Chytrids are reliant upon the presence of moisture to stimulate
zoosporulation and, subsequently, aid in dispersal. Recovery through rehydration was
used to determine the viability of dried chytrid thalli in vitro [81]. Due to the nature of
periglacial and arctic environments with seasonal freeze–thaw cycles, the soil under ice
layers is regularly saturated with water. The soil moisture content, therefore, fluctuates
between 10 and 40% and chytrid populations shift accordingly (0.4–7.0%) [41]. In Antarctic
soils, chytrids in the order Chytridiales were most abundant at higher soil moisture contents
of 8% [119]. Chytrid sequences found in the soil at Mars Oasis in the southern maritime
Antarctic were found to have close similarity to Chytridiales in soils with a relatively high
moisture content in proximity to a meltwater pond [119]. In one study, a positive correlation
between the presence of the sea ice-associated diatom Fragiliaropsis nitzschia and chytrid
populations was observed [87]. Some chytrids, including Powellomyces sp., grow within
pollen grains, which can then act as a protective casing in extreme environments [121].

Changes in nutrient levels produce changes in the morphology and reproductive
strategies of chytrids at various stages of the chytrid life cycle. Unique responses amongst
chytrid species even within the same order have been observed [38]. In one study, nitro-
gen starvation increased zoospore numbers for Gaertneriomyces semiglobifer but reduced
numbers for R. rosea when compared with nitrogen-replete conditions in vitro [38]. Ele-
vated phosphorus levels increased R. rosea zoospore numbers, while phosphorus scarcity
reduced zoospore lipid content as well as motility [38]. It is clear that fluctuations in soil
nutrient levels, such as through the addition of soil fertilisers, can lead to considerable
soil microbiome shifts where some species are resilient while others are sensitive [67]. R.
rosea sporangia exposed to toxic levels of zinc significantly reduced biomass production
but also significantly increased zoospore numbers [122], indicating a shift in resources to
zoospore production. Nutrients may change the morphology of rhizoids and sporangia—
for example, R. rosea rhizoidal branching increased in the presence of elevated levels of
copper [40].

Metals, including those which are not essential for biological functioning, may affect
morphological development. As lead levels increased, rhizoid length and rhizoid number
per sporangium increased for R. rosea. This observation corresponded with an increase in
the number of sporangia attached to cellulosic substrates [39]. It may be physiologically
advantageous for the chytrid to attach to substrates or to form colonies in order to survive
toxic metal conditions, which may frequently occur in soil environments. The presence of
extracellular polymeric substances may also provide an additional barrier on the fungal
surface, thereby mitigating heavy metal toxicity [123]. A recent study looking at heavy
metal effects on fungal community diversity supports the notion that chytrids are resilient
to various heavy metals, but demonstrates the potential upper thresholds of this resilience,
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as chytrid OTUs were not isolated from the contaminated site where lead and chromium
were most concentrated (42.9 mg Kg−1 and 45.9 mg Kg−1, respectively) [124].

As aquatic chytrids are known to quickly adapt to sudden high nutrient inputs, re-
sulting in chytrid epidemics [125,126], so too can chytrids from soil environments. For
example, under laboratory conditions, R. rosea zoospore production increased with increas-
ing phosphate concentrations [38]. Rapid increases in some zoosporic true fungi have
been identified in natural environments [1,127]. Some chytrids adopt ruderal strategies
with rapid generation times, and are able to complete their life cycle in 48 h [128]. For
example, R. rosea rapidly colonises cellulose baits [129]. When favourable conditions are
present, the population density of R. rosea has also been observed to increase rapidly in soil
environments [129]. Spore motility and sensing allow for rapid, energy-efficient dispersal,
as well as survival in resource-scarce and resource-patchy environments.

Changes in soil pH also affect chytrid development in the soil. In one study under
low pH and high Eh, soil conditions were ideal for supporting the chytrid infection of
pollen grains [130]. Chytrid tolerance to more extreme pH ranges has been further shown
in vitro [131], but this tolerance is species specific and does not account for the influence of
other soil factors. For example, chytrid populations have been observed to have a positive
correlation with soil factors, including for properties such as fine texture, electric conduc-
tivity, sulphate concentration, and soil phosphorus, nitrogen, and carbon content [120,132].
The methods used in Zhou et al. (2021) [66] clearly mapped out both the microbiological
and biochemical changes in a soil ecosystem and provide an experimental guide for future
investigations. These observations suggest a need to continue unveiling the relationships
between abiotic factors and living microbial communities, including Chytridiomycota,
to evaluate risks and develop strategies for building resilient natural and agricultural
terrestrial environments.

5. Chytrid Roles in Soil Communities

Chytrids have a number of consumer strategies, including parasitism, saprotrophism,
and mutualism [133], which may alter the flow of energy and nutrients, change inter-
specific competition, and promote community diversity (Figure 5). Chytrids are able to
penetrate resistant structures, such as pollen grains (Figure 3), releasing recalcitrant carbon.
Saprotrophic chytrids efficiently digest cellulose, chitin, and protein typically found in soil
particulate matter, which is solubilised to become dissolved organic matter and dissolved
inorganic matter [134]. Soil chytrids may be hyperparasites of oomycetes and other chytrid
species and parasites or facultative parasites of plants, oomycetes, chytrids [135], and verte-
brates in soil systems, which increases the energy transfer and food web complexity. These
organic nutrients which are transferred to zoospores (termed the “mycoloop”) [136] are, in
turn, a valuable food resource for higher trophic levels as they contain organic phosphorus,
nitrogen, sulphur, and mineral ions and vitamins [134]. Members of the Blastocladiomycota,
especially the genera Coelomomyces and Catenaria, are common parasites of the soil-dwelling
Crustacea, Hexapoda (Diptera), and Nematoda [137,138]. Yet, the supposed contribution
of chytrids as parasites and saprotrophs to the soil fungal community and soil food web is
relatively unknown.

The genus Synchytrium is predominantly composed of pathogens of terrestrial plants
and algae and contains over 200 species [139]. Of the agriculturally important chytrids,
Synchytrium endobioticum is recognised globally as a quarantine pest responsible for potato
wart disease. Synchytrium anemones is a parasite of Anemone, a genus of flowering plants
including buttercups, which causes purple-brown lesions on the leaves and stems [140].
The leguminous Desmodium plants are also susceptible to wart infections by Synchytrium
desmodii [141]. In the rhizosphere of Fritaillaria taipaiensis (a medicinal flowering plant
species in the family Liliaceae), the Chytridiomycota genera, including Synchytrium, were in
the top 20 relative abundances of rhizospheric soil populations in the first cultivation year
but decreased significantly in abundance by the fifth year [66]. However, viable resting
spores of S. endobioticum can lay dormant in soil for decades, presenting a continuous risk
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to crops [142,143]. Some chytrid species are parasites that do not lead to pathogenic symp-
toms, including Rhizophydium gramanis which is a parasite of mono- and dicotyledonous
plant roots and was first observed in 1936 [144,145]. Less well-known examples include
the hyperparasitic Chytridium parasiticum (order Chytridiales). C. parasiticum is a biotroph
of Septosperma rhizophydii which is, in turn, a parasite of the plant chytrid Rhizophydium
macrosporum [146]. Nephridiophagids, which have recently been assigned to Chytrid-
iomycota, are parasites of insects, including cockroaches (order Dictyoptera) and beetles
(order Coleoptera) [147]. The Spizellomycetallean soil-dwelling G. semiglobifer has been
found to live parasitically on azygospores of Entomophaga maimaiga, a fungal parasite of the
gypsy moth [148]. G. semiglobifer is also known to be a parasite of the oospores of downy
mildew (Peronosporomycetes) [149]. G. semiblobifer rhizoids are able to penetrate the highly
resistant entomophthoralean azygospores, which are persistent and accumulate in soil due
to their thick double wall. Early observations also indicated the potential for the diverse
parasitic interactions of other early-diverging fungi. For instance, Catenaria anguillulae
of the Blastocladiomycota may be a less well-known endobiotic parasite of Phytophthora
cinnamomi and P. parasitica, which are important agricultural pests [150], and Catenaria
allomycis has been described as a mycoparasite of Allomyces arbuscula [151]. The chytrid
species Rhizidiomyces japonicus and Canteriomyces stigeoclonii are known hyperparasites of
Phytophthora megasperma [152]. Research in the field of chytrid suppression of terrestrial
plant diseases is generally lacking [135], but deserves attention with a focus on biocontrol
routes and the aid of current molecular technologies.

Chytridiomyceta and Blastocladiomycota have low representation in whole-genome
sequencing databases compared to fungi generally (Figure 4), while less than a third of the
NCBI chytrid genomes are from terrestrial chytrids (Figure 6). R. rosea and numerous other
species are commonly isolated from soil using well-known baiting techniques. R. rosea
was isolated from four agricultural soil types and from various land uses and vegetation
types in Eastern Australia [55,129]. Often, studies attribute lower relative abundances of
chytrids in soil to the belief that they are predominantly found in aquatic environments,
which are thought to be more favourable to their growth. Chytrids may occur as relatively
rare taxa in soil environments; however, they perform functional roles as decomposers, bio-
logical controllers, and potentially, as ecosystem regulators underpinning soil community
resilience [41,153]. Soil fungal communities are known to modify rare taxa in response to
changes in local soil environments, including in carbon to nitrogen ratios [154]. Commu-
nity changes in response to environmental stress may also favour chytrids—for example,
chytrid abundance significantly increased with saline irrigation in desert soil [155] and
with increased carbon dioxide content in black clay soil [69]. Recently, chytrids have been
implicated in fungal community resistance to conditions expected under climate change.
Chytridiomycota dominated the fungal community composition of 900-year-old ice cores
containing high organic sediment content from Scarisoara Cave, Romania [75]. Of the
Chytridiomycota, Rhizophydium was the dominant genus. Heat shock treatment caused a
55% increase in the relative abundance of Chytridiomycota after seven days of incubation.
The relative abundance of Blastocladiomycota also increased from 5 to 11% seven days after
heat shock treatment. In soils subjected to seven years of simulated drought conditions,
Chytridiomycota were correlated with the maintenance of soil functionality, specifically,
the resistance of the soil nitrogen mineralisation rate and both resistance and resilience of
soil phosphorus enzymes [156].
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Figure 5. Possible roles of soil chytrids in a hypothesised food web. All arrows indicate energy
transfer from one source (origin of line) to another (arrowhead). The zoospore pool is a food
source containing macromolecules (lipids) which can be consumed by grazers (ciliates, amoeba,
heterotrophic bacteria (H Bacteria)) and heterotrophic nanoflagellates (HNF)) in soil ecosystems.
Chytrids are both parasites and hyperparasites (red dotted lines), but may also be grazed on (green
dotted lines). Some chytrids are saprotrophs (yellow line) and contribute to the decomposition of
particulate organic matter (POM) including both allochthonous (leaf litter, pollen, other debris) and
autochthonous (dead insects, exoskeletons), into dissolved organic matter (DOM) and dissolved
inorganic matter (DIM) which can then be utilised by plants and other microorganisms.

The relationships between communities of saprotrophic microbes are beginning to be
explored. For example, the co-occurrence of bacterial and fungal decomposers of leaf litter
produces accelerated decomposition in aquatic ecosystems [157]. Synergistic interactions
are common between bacteria and fungi [158]. However, the study of synergistic and other
interactions between fungi and bacteria in soil systems is rudimentary compared to the
study of fungi–bacteria interactions in aquatic systems. Nonetheless, soil chytrids may
play keystone roles within terrestrial communities. The aquatic chytrid Rhizoclosmatium
globosum, through the colonisation of chitin microbeads, increased the diversity of the
subsequent bacterial community potentially through the provision of dissolved organic
carbon [159] and may have influenced bacterial community succession. The authors
contend that chytrids in soil environments may have similar roles.
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cota) genomes available in the NCBI Taxonomy Browser (n = 36) based on primary habitat (aquatic,
terrestrial, ruminal/anaerobic). Neocallimastigomycota are only resolved at the class level in NCBI
and classified under the phylum Chytridiomycota. No genome sequence data are available on NCBI
for Monoblepharomycota. Data from the NCBI Taxonomy Browser were accessed on 21 November
2022. Genomes belonging to the Chytridiomycota phylum were searched for at a filter level of one.
The genome data from the Entrez records were accessed and the primary habitat of each assembled
chytrid species was determined by location from which the species was isolated or its known mode
of life [149,160–170].

6. Further Research

Combinations of molecular and imaging techniques, such as confocal microscopy,
along with culture-based analysis may further elucidate the roles of chytrids in soil envi-
ronments and their interactions with other organisms. A study of population size changes
within soil could use the methods adopted by Van den Wyngaert et al. (2022) [35] modi-
fied for the study of soil chytrids. This would involve classical techniques of soil chytrid
baiting with simultaneous molecular and ecological data, allowing the study of temporal
population changes in response to environmental change.

The 3D live-cell imaging of zoospores with laser-scanning confocal microscopy may
provide further insights into the attachment of zoospores to host cells, including the lo-
cation and production of adhesives. The variation in size and shape of zoospores [171]
in response to substrates and environmental factors, as well as the ameboid-like nature
of movement once in contact with substrates, has not been sufficiently examined. The
variation in zoospore motility, chemotaxis, the length of time of motility, and the cues for the
attachment, encystment, and germination of zoospores remain unelucidated [19]. Live-cell
imaging, such as the use of the fluorescence staining of zoospore lipids, allows for the
measurement of zoospore mobility [38] and is another promising technique (Supplemen-
tary Video S1a–c). Exploration of chytrid photoreceptors and the degree of phototaxis has
also progressed slowly. Early observations of the parasitic Blastocladiomycota fungi Coelo-
momyces dodgei indicated light-sensitive spore release [172]. Allomyces reticulatus zoospores
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(Blastocladiomycota) are also known to be guided by phototaxis due to the presence of
rhodopsins [173]. Unlike the Dikarya, which contain Type I opsins (bacteriorhodopsins),
chytrids are now understood to contain rhodopsins homologous to type II opsins, which
are classically of metazoan origin [174]. Not only does this finding highlight the distinct
proteome of chytrids compared to other fungi, but also provides an alternate route for
investigating biotechnology applications such as in optogenetics [175,176]. The aquatic
chytrid Rhizoclosmatium globosum has been found to house an unexplored rhodopsin, Ne-
orhodopsin (NeoR) [176]. This rhodopsin is of biotechnological interest as it is bistable and
photoswitchable due to its geometric and chemical fluidity when exposed to either near-
infrared light (NIR) or non-fluorescent UV light. Bioengineering of this chytrid rhodopsin
could allow for the development of non-invasive tools for neuronal stimulation as it is not
limited by the low penetration depths of current rhodopsin models [175,176].

While advances have recently been made in understanding the morphological develop-
ment of the rhizoid [110] and the functions of the cytoskeleton [111], further investigation
is necessary into the characteristics of rhizoids during different stages of the life cycle,
including attachment. Study of the rhizoid can be undertaken in relatively small substrate
volumes and could inform our understanding of rhizoidal development. MicroCT has
been developed for 3D imaging of zoosporic and other fungi within a polystyrene bead
matrix [177]. The introduction of resource heterogeneity or abiotic gradients into these
matrices is also possible. Another potential method to examine rhizoid penetration is with
a soil-like micromodel involving a siloxane polymer PDMS coated with O2 plasma [178].
Utilisation of cell staining for photomicrography and image processing software could also
provide an insightful tool for measuring rhizoid growth and development [112].

A focus on progressing DNA-based methodologies, including the primers and markers
specifically relevant to Chytridiomycota, is essential to conduct soil microbiome inves-
tigations [179] and better our ability to combat the current challenges of soil security in
line with both agricultural and natural ecologies. Whole-genome sequencing can provide
information about soil chytrid secretomes, and therefore, the likely functions of the fungi.
The combination of 5.8S with ITS2 markers may allow for greater discernment of chytrid
taxonomy [180].

Pectinase, cellulolytic, and xylanolytic enzymes have been identified from various
chytrids, and those from aerobic chytrids share a common ancestor to the plant cell wall-
degrading enzymes from Dikarya fungi [181–183]. The soil chytrid R. rosea is known to
house an array of these enzymes and holds the potential to be a model organism for study-
ing the secretomes of chytrids and other early-diverging fungi [181]. Comparative analyses
of genomes between chytrids and other early-diverging, zoosporic fungi are becoming
more accessible with the latest databases, models, and proteomic analysis methods [184].
Identifying the types of enzymes in secretomes would not only provide valuable informa-
tion on the different ways the chytrids have adapted to different environments, but also
regarding their potential applications [184].

Anaerobic fungi in the phyla Chytridiomycota and Rozellomycota (an early-diverging
lineage [7,11,79]) have been found to significantly promote lignin degradation in subsurface
sediment [185]. This is a significant observation and has implications in terms of biore-
mediation. The accumulation and deposition of organic matters in freshwater lakes has
become a serious problem over the last few decades. The use of lignocellulose-producing
species from these phyla could be used to degrade recalcitrant organic matter [185]. The
presence and survival of Chytridiomycota and other key phyla in heavy metal soil samples
suggest the potential use of tolerant species in bioremediation [124]. It was observed
that fungal communities, including the taxa of Chytridiomycota, in rivers impacted by
rare-earth-element acid mine drainage respond more robustly compared to prokaryotic
networks [186]. These observations suggest that our further understanding of what mech-
anisms influence changes in microbial communities is required to reduce the impact of
these pollutants on the microbial diversity of an environment. There are also potential
“green” biotechnology benefits—in terms of the production of biofuels, biopolymers, and
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chemicals—in optimising these resources and processes [187,188]. Identifying the range of
enzymes produced by microorganisms such as chytrids would provide more opportunities
to understand and utilise these resources. Continuing to build on this knowledge is essen-
tial for both our comprehension of chytrid ecology in soil environments and for exploring
potential biotechnological applications.

7. Conclusions

Soil chytrids are ubiquitous in terrestrial environments and are commonly found
within many diverse soil microbiomes with a range of abundances. They have novel
secretomes and play roles in nutrient cycling in the transformation of nutrients from
organic to inorganic forms and in carbon cycling in the breakdown of complex organic
materials. Many chytrids from soil environments are also parasites of plants and animals
and may exert top-down control of prey populations and facilitate energy transfer within
their ecosystem. The zoospore is a key unique characteristic of chytrids which allows for
the dispersal and location, through chemotaxis, of suitable resources in order to perpetuate
survival. Here, the authors reviewed new information on chytrid population distributions
in soil environments that was discovered using recent advances in molecular techniques.
The current focus on soil fungal community analysis by targeting internal transcribed
spacer (ITS) markers may underestimate chytrid taxa and abundances, while the 18S
gene marker could provide greater discernment. There is also a requirement for more
sequenced genomes of terrestrial chytrids as they are currently poorly represented in
genome databases. Furthermore, a more extensive database would allow for an in-depth
investigation into gene–function relations. The authors also discussed new information on
the soil environment and the implications for the chytrid life cycle. There is evidence that
chytrid populations are distributed uniquely at the microscale, increasing in abundance in
the rhizosphere and within microaggregates and micropores. The role of chytrid rhizoids
in this process is promising but still unclear. The potential contributions of chytrids in
soil microbial communities are only beginning to be explored. The authors encourage a
combination of traditional and emerging techniques for research into the ecological roles of
these understudied soil microorganisms.
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