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Poul Erik Hansen

Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark; poulerik@ruc.dk

Abstract: The present overview concentrates on recent developments of tautomerism of β-diketones
and β-thioxoketones, both in solution and in the solid state. In particular, the latter has been a matter
of debate and unresolved problems. Measurements of 13C, 17O, and 2H chemical shifts have been
used. Deuterium isotope effects on chemical shifts are proposed as a tool in the study of this problem.
Photoconversion of β-diketones and β-thioxoketones are discussed in detail, and the incorporation
of β-diketones into molecules with fluorescent properties is assessed. Finally, docking studies of
β-diketones are scrutinized with an emphasis on correct tautomeric structures and knowledge about
barriers to interconversion of tautomers.
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1. Introduction
1.1. β-Diketones

β-diketones is a very broad subject. The present paper concentrates on some recent
developments, primarily since 2008. The β-diketones (see Scheme 1) are a very versa-
tile group of molecules that easily can be synthesized [1], and hence be tailored to fulfill
different purposes. In addition, they can be isolated as natural products often with extraor-
dinary structures [2]. β-Diketones are very good synthons [1,3]; e.g., they can be converted
into β-thioxoketones (Scheme 2). In addition, they are known to have useful biological
effects [2]. A well know example is curcumin and derivatives thereof (Figure 1) [4–6]. The
physical properties are related to uptake [7]. β-Diketones can form a large number of metal
complexes [8]. A group of compounds with similar properties is the β-trioxoketones [9],
and a well-studied case is usnic acid [9]. Linear β-diketones may exist as different tau-
tomers (enol and keto- forms, Scheme 1). The key features of the enol forms are strong
intramolecular hydrogen bonds, tautomeric forms (see Scheme 1), and a very low barrier
to interconversion between the enolic forms.
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1. Introduction 
1.1. β-Diketones 

β-diketones is a very broad subject. The present paper concentrates on some recent 
developments, primarily since 2008. The β-diketones (see Scheme 1) are a very versatile 
group of molecules that easily can be synthesized [1], and hence be tailored to fulfill dif-
ferent purposes. In addition, they can be isolated as natural products often with extraor-
dinary structures [2]. β-Diketones are very good synthons [1,3]; e.g., they can be converted 
into β-thioxoketones (Scheme 2). In addition, they are known to have useful biological 
effects [2]. A well know example is curcumin and derivatives thereof (Figure 1) [4–6]. The 
physical properties are related to uptake [7]. β-Diketones can form a large number of 
metal complexes [8]. A group of compounds with similar properties is the β-trioxoketones 
[9], and a well-studied case is usnic acid [9]. Linear β-diketones may exist as different 
tautomers (enol and keto- forms, Scheme 1). The key features of the enol forms are strong 
intramolecular hydrogen bonds, tautomeric forms (see Scheme 1), and a very low barrier 
to interconversion between the enolic forms. 
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Scheme 1. Tautomers of β-diketones. a and b are enol forms, c is the diketo-form. 
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Figure 1. Curcumin. The second enolic tautomer is similar to acetylacetone (see Scheme 1). (a) is 
the enol form, (b) the diketo-form. 

1.2. β-Thioxoketones 
β-Thioxoketones (see Scheme 2) and β-diketones are in many ways complementary. 

Both types display strong intramolecular hydrogen bonds, show tautomerism, and have 
low barriers to interconversion [10]. The β-thioxoketones are by nature asymmetric and 
may actually show an open form (Scheme 2). β-Thioxoketones are colored, and they pro-
vide a way of exciting the molecules with visible light sources. β-thioxoketones form, by 
their nature, very good metal complexes [11], some of which also show biological effects 
[12]. Β-thioxoketones can be synthesized from β-diketones [13] and also from salicylalde-
hyde [14]. 

 
Scheme 2. Tautomers of β-thioxoketones plus the open form. 

The present review will concentrate on structural studies, including tautomers in the 
liquid and solid state. The importance of low barrier hydrogen bonds (LBHB) will be dis-
cussed and hydrogen bond strength, docking studies, and photoconversion will be as-
sessed. The primary experimental methods treated are NMR and isotope effects on chem-
ical shifts, X-ray structures, and infra-red spectroscopy. The experimental techniques are 
supplemented by theoretical calculations, including Density Functional Theory (DFT) cal-
culations [15,16]. In particular, the low barriers call for advanced calculations both in the 
liquid and in the solid state. 

2. Tautomerism 
2.1. Gas Phase 

Acac was studied in the gas phase using electron diffraction (GED). At 300 K, it was 
found to be fully in the keto-enol form. The percentage was reduced to 64% of the enol at 
671 K. The keto-enol tautomer possesses C-s symmetry with a planar ring and strongly 
asymmetric hydrogen bond. The experimental parameters could be reproduced well by 
B3LYP/aug-cc-pVTZ and MP2/cc-pVTZ calculations [17]. Dibenzoylmethane showed 
100% keto-enol tautomer at 380K. [18] 3-chloro-2,4-pentanedione showed 100% at 269 K 
[19], as did 5-hydroxy-2,2,6,6-tetramethyl-3-heptanone [20].  
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Figure 1. Curcumin. The second enolic tautomer is similar to acetylacetone (see Scheme 1). (a) is the
enol form, (b) the diketo-form.

1.2. β-Thioxoketones

β-Thioxoketones (see Scheme 2) and β-diketones are in many ways complementary.
Both types display strong intramolecular hydrogen bonds, show tautomerism, and have
low barriers to interconversion [10]. The β-thioxoketones are by nature asymmetric and
may actually show an open form (Scheme 2). β-Thioxoketones are colored, and they
provide a way of exciting the molecules with visible light sources. β-thioxoketones form,
by their nature, very good metal complexes [11], some of which also show biological
effects [12]. B-thioxoketones can be synthesized from β-diketones [13] and also from
salicylaldehyde [14].

The present review will concentrate on structural studies, including tautomers in
the liquid and solid state. The importance of low barrier hydrogen bonds (LBHB) will
be discussed and hydrogen bond strength, docking studies, and photoconversion will
be assessed. The primary experimental methods treated are NMR and isotope effects on
chemical shifts, X-ray structures, and infra-red spectroscopy. The experimental techniques
are supplemented by theoretical calculations, including Density Functional Theory (DFT)
calculations [15,16]. In particular, the low barriers call for advanced calculations both in the
liquid and in the solid state.

2. Tautomerism
2.1. Gas Phase

Acac was studied in the gas phase using electron diffraction (GED). At 300 K, it
was found to be fully in the keto-enol form. The percentage was reduced to 64% of the
enol at 671 K. The keto-enol tautomer possesses C-s symmetry with a planar ring and
strongly asymmetric hydrogen bond. The experimental parameters could be reproduced
well by B3LYP/aug-cc-pVTZ and MP2/cc-pVTZ calculations [17]. Dibenzoylmethane
showed 100% keto-enol tautomer at 380K. [18] 3-chloro-2,4-pentanedione showed 100% at
269 K [19], as did 5-hydroxy-2,2,6,6-tetramethyl-3-heptanone [20].

2.2. Liquid State

Linear β-diketones show two types of tautomers, as shown in Scheme 1. The OH to CH
tautomerism is slow as both are observed in 1H NMR spectra. The barrier to interconversion
is high [10] (for a discussion of barriers to interconversion see below and Docking), whereas
the OH to OH tautomerism is very fast as the barrier to interconversion is so low that the
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system can be classified as “low barrier hydrogen bond” (LBHB are defined as system with
matching pKa for the donor and acceptor) [21]. β-Diketones may serve as a testing ground
for this kind of hydrogen bond. The ratio between the enol and keto-forms depends on
the polarity of the solvent [22] and on the character of the substituents R1, R2, and R3;
thus, a number of properties can be tuned by a change of substituents [23–25]. The enol
content increases as the size of R1 and R3 increases, whereas the diketo-form increases
with the size of R2. Sloop et al. investigated electron deficient aryl β-diketones and found
that in the liquid state, that the compound (Scheme 1, R1 = Ph, R2 = H, and R3 = CF3)
existed primarily in the enol form with the OH hydrogen bonding to the C=O next to
CF3„ whereas the corresponding compound (Scheme 1, R1 = Ph, R2 = F, and R3 = CF3)
with fluorine at the central carbon existed primarily at the diketo-form [26]. Belova et al.
concluded that substituents such as H, CH3, CF3, and C(CH3)3 strongly favor the enol
tautomer, whereas substituents such as F, Cl, OCH3, and NH2 favor the keto-form. [27] The
keto-form is favored by methoxy groups in the para-position [28]. The effect of water has
also been investigated [29]. Computational results showed further that the polar solvent
dioxane enhances the enol form of these 12 molecules more effectively than water and
chloroform media [30]. Acetylacetone, trifluoroacetylacetone, and hexafluoroacetylacetone
were studied in supercritical CO2 solutions at pressures up to 3.1 kbar. The keto-form was
found to be favored at high pressure and low temperature [31]. Keto-enol equilibria were
also studied based on electron delocalization indices and delocalization tensor density [32].

The enol and keto-forms have different structures (see Scheme 1) and have differ-
ent dipole moments [33]. Keto-enol equilibria may also be modified by inclusion into
nanospaces [34] or calix [4] arenes [29].

Tautomeric analyses of a series of substituted β-diketones ((3-methylthio)-2,
4-pentanedione [35], (3-phenylthio)-2,4-pentanedione [36], 3-bromo-2,4-pentanedione [37],
and 1,1,1,trifluoro-2,4-pentanedione [38] have been performed in order to obtain hydrogen
bond strengths. A large number of curcumin analogues have been studied by 13C NMR
and DFT calculations in order to determine equilibrium constants of the keto-enol equilib-
rium [39]. Curcumin analogues have recently been investigated by applying quantitative
structure–activity relationship and absorption, distribution, metabolism, and excretion
(ADME) approaches. The enol-form is generally the more effective against cancer, especially
prostate cancer. The more OH and OCH3 groups, the better [40].

Mehrani et al. have investigated a large number of functional and basis sets to obtain
the energy of tautomers of acetylacetone also including methods such as the polarizable con-
tinuum model (PCM) [41], conductor-like polarizable continuum model (CPCM) [42], and
solvent model density (SMD) [43] models to take into account solvent effects. Sixteen dif-
ferent acetylacetone (acac) solutions and gas phases were investigated [44]. The conclusion
was that G3B3 and G3MP2B3 functionals gave reasonable results compared to experimental
values and the best result was obtained using B2LYP/6-31+G(2d,p) and CBS-QB3.

Roy et al. [33] found that for acetylacetone, the DFT functional B3LYP with the basis
set 6-311G(d) gave better thermodynamic results than MP2 with the same basis set. They
also calculated the interconversion barrier as ~59 kcal mol−1 in a vacuum. This number
decreases somewhat in polar solvents. A topological and energy partition analysis of acac
was done in the framework of the Quantum Theory of Atoms in Molecules (QTAIM) [45].
This showed that the activation barrier energy decreases from the gas phase to clusters with
up to three water molecules surrounding the acac and increases when four water molecules
were included [46].

An example of theoretical calculations not properly rooted in experimental facts is the
report based on DFT calculations, claiming that 1,3,5-trihydroxy-2,4,6-trihydroxybenzene is
tautomeric [47]. This was followingly shown not to be the case based on deuterium isotope
effects on 13C chemical shifts [48].

β-Thioxoketones show only “enol” forms (see Scheme 2). However, in this case, an
open form is also possible (see Figure 2). A large number of tautomers, rotamers, and
isomers are possible, as seen in Scheme 3.
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2.3. Solid State

Kong et al. [50] wrote “a unified picture of the H atom behavior in a LBHB hydrogen
bonded system, that can reconcile diffraction and solid-state NMR data is still lacking”.
This is clearly the case as will be obvious from the following.

X-ray studies of β-diketones can be done at low temperature; however, this may
change the position of the OH proton as nicely demonstrated in the study of benzoylace-
tone [51]. The crystal structure of dibenzoylmethane shows that the carbonyl carbons of
the enol form are different due to twisting of one of the benzene rings. In addition to
X-ray studies, a neutron diffraction study was also performed. The latter showed that the
proton is located asymmetrical and the position is insensitive to temperature. The X-ray
measurement showed “a migration of the bonding density from an asymmetric position at
low temperature to an almost centered position at RT” [52]. Ultra-fast electron diffraction
yielded an asymmetric ground-state structure [53]. As mentioned above, Kong et al. [49]
investigated dibenzoylmethane as well as curcumin using both 17O, 2H, and 13C solid-state
NMR combined with CASTEP (Cambridge Sequential Total Energy Package) [54] com-
bined with ab initio molecular dynamics (MD) simulations. Two possible solutions, either
tautomerism or a single well potential, were arrived at.

Conradie et al. [55] showed that the enol proton is on the same side as the thienyl
group in 1-phenyl-3-(2-thionyl)1,3-propanedione from an X-ray study at 100K. This enables
for the determination of the conversion rate to the keto-form in solution. Nieto et al. [56]
studied the X-ray structures of a series of curcumins at ambient temperature and found that
only one of the enol forms were present. The same is true for 1-aryl-1,3-diketone malonates.
Four compounds (Scheme 1, R1 = Ph, 4-NO2, Ph, 4-MePh, and 2-naphthyl, R2 = H, and
R3 = CH2CH2CH(COOMe)2) were investigated. The nitro and the naphthalene derivative
showed delocalization parameters of 0.23 and 0.28, which were somewhat less than the
0.32 expected for a true keto-enol form. Parameters for a series of β-diketones are compared
in this paper [57].
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Sloop et al. [26] did not find a difference between the liquid (see above) and the
solid state for fluorinated β-diketones. 1,3-bis(1-adamantyl)propan-1,3-diones with phenyl
substituents at C-2 showed only the diketo-form [58]. X-ray studies of hexafluoroacetone
crystals grown in situ by means of the zone-melting technique at 93K, showed clear
evidence for distinguishable O-1-H and H...O-2 bonds [59]. The structure of 1-(thiophen-2-
yl)-3-(thiophen-3-yl)propane-1,3-dione showed a keto-enol form with the OH group close
to the 3-thiophene ring [60].

1-phenyl-1,3-butadione and 1-deuteroxy-2-deutero-1-phenylbut-1-en-3-one crystals
has been carried out at 160 K and 300 K on the Carr-Parrinello molecular dynamics
(CPMD) [61] level and at 300 K on the path integral molecular dynamics (PIMD) method [62]
level. The analysis of the two-dimensional free-energy landscape of reaction coordinates
and RO . . . O distances shows that the hydrogen (deuterium) between the two oxygen
atoms adopts a slightly asymmetrical position [63].

Deuterium isotope effects on 13C chemical shifts (see Experimental) have been used
in a few cases to investigate tautomeric equilibria in the solid state. These studies can
be done at ambient temperature. An example of the use of deuterium isotope effects on
13C chemical shifts is in pyridoylbenzoyl β-diketones (Scheme 4) [64]. For 2N and 3N
(Scheme 4), C-1 is shifted 0.8 and 1.2 ppm to lower frequency upon deuteriation, whereas
C-3 shows no isotope effect. This points towards the B-form being dominant. For 1N, the
effect leads for C-1 to a change of 2.4 ppm to a higher frequency, whereas C-3 is shifted from
0.7 ppm to lower frequency. As the average is very different from 0.6 ppm (the average
found in solution), it was suggested that crystal effects due to deuteriation was at play. The
findings for 2N and 3N in the solid is opposite to those observed in the liquid state [64]. The
X-ray structures have been determined; for 1N and 2N, the proton is closest to the pyridine
ring, but for 3N, it is closest to the phenyl ring [65]. The pyridoylbenzoyl β-diketones were
also co-crystallized with perfluorinated iodobenzenes to give the tautomer with the OH
group next to the pyridine ring (see Figure 2) [66]. Studies of other β-diketones are under
way [67].
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As is evident from the text above, more tools are desirable in the study of tautomerism
of β-diketones in the solid state. One such tool could be deuterium isotope effects on 17O
chemical shifts. An example in the liquid state is in 1-(2-hydroxycyclohex-1-en-1-yl)ethan-1-
one deuteriated at the OH proton. Two characteristics, including the large effects and opposite
signs of 1∆17O(D) = 9.63 ppm and 5∆17O(D) = −11.65 pm are useful [68]. The large effects
make it likely to observe the effects in the solid state, at least for asymmetric β-diketones.

First of all, the X-ray structures of β-thioxoketones show no diketo-forms. Secondly,
the enol-thione form is the only enolic form in the solid state [69]. This was confirmed
for thiodibenzoylmethane (see Scheme 2) using deuterium isotope effects on 13C chemical
shifts. For deuteriated β-thiodibenzoylmethane in the solid state, the C=S carbon showed
an isotope effect of 1.2 ppm at −40 ◦C, whereas the carbon with the OH group attached
showed an effect of 0.8 ppm. Both effects were ascribed to intrinsic effects. In other words,
no tautomeric equilibrium was formed. Measuring the 13C chemical shift is following a
way to obtain reference 13C chemical shifts for the enol-thione form.

3. Photoconversion
3.1. β-Diketones

Dibenzoylmethanes (Scheme 1, R1=R3=Ph-4R and R2=H and R2=F) can be converted
fully into the diketo-form by irradiation at 365 nm at RT in acetonitrile. Subsequently, the
diketo-form will return to the initial 90% keto-enol form in the dark. The back reaction
can be promoted by additives; water is especially effective [70]. A theoretical study of the
sunscreen, Avobenzone (4-tert-butyl-4-methoxydibenzoylmethane), showed that irradia-
tion leads both to the diketo-form, an open form (similar to that seen for β-thioxoketones
in Scheme 2), and cis-trans isomerisations [71]. Other compounds, such as difuruyl and
ditheonyl methanes (Scheme 1, R1 = R3 = furane or thiophene and R2 = CH3 or n-C3H7),
were converted into the diketone form upon irradiation. The diketo-form returned to the
keto-enol form in the dark after some days [72]. Recently, triphenylamine (TPA) with
β-diketone side chains (Figure 3) was studied by ultrafast spectroscopy. Transient spectra
data showed that an intramolecular charge transfer (ICT) takes place from TPA units to
β-diketones units after photoexcitation [73].

Ultrafast electron diffraction studies of acac showed that the chelate proton is clearly
at one oxygen at the time in the electronic ground state, whereas it is at the center of the
hydrogen bonded system in the excited state [53]. Vertical laser excitation of the p-p band
(S0 to S2) leads to excited state intramolecular proton transfer (ESIPT). The process is more
complex than simple ESIPT, as seen in Scheme 5.
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An excitation study of the enol form of 2-acetylindan-1,3-dione (AID) [75] leads to
fluorescence, as seen in Figure 4. 2-acetylindan-1,3-dione is found to exist exclusively in
the enol form. The first excitation at 300 nm is to S1

A, which initiates ESIPT to tautomer B
(Scheme 6).
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This is followed by vibrational relaxation; from the S1
B state, it is relaxed to the ground

state S0
B. The ground state relaxes back to tautomer A. One drawback of this system is that

a cis-trans isomerization is invisible. Furthermore, the ESIPT product cannot be isolated.
Li et al. [76] investigated the ESIPT using DFT, time-dependent DFT, and DFT in two

solvents, hexane and acetonitrile, and explained the experimental results described by
Verma et al.

ESIPT has been demonstrated in OLED’s, as seen in Figure 5, using the PXZDO
molecule of Figure 6 [77].
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planar by the extra hydrogen bond. The molecular planarity is important for the genera-
tion of highly emissive crystals [79,80]. The hydrogen bond motif is akin to that of tetra-
cycline [9]. A slightly different construction, alkene-linked 1,1′-bi-2-naphthol-β-diketones, 
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Figure 6. Enolic structure of 1,3-bis(4(10H-phenoxazin-10-yl)phenyl)3-hydroxyprop-2-en-1-one
(PXZDO). Taken from Ref. [77] with permission from the American Chemical Society.

The molecules are of the D-P-A-P-D type (D = donor, A = acceptor). As the core of
molecules are β-diketones, they may exist both as enols and ketones.

A number of recent papers discuss fluorescence. An example is the modified boron-
difluorid dipyrromethene (BODIPY), as seen in Figure 7. Solvent dependence was inves-
tigated and for hydrogen bonding solvents interactions were found in the excited state
between the OH group and the solvent [78]. The structure of DPHND (Figure 8) is held pla-
nar by the extra hydrogen bond. The molecular planarity is important for the generation of
highly emissive crystals [79,80]. The hydrogen bond motif is akin to that of tetracycline [9].
A slightly different construction, alkene-linked 1,1′-bi-2-naphthol-β-diketones, was also
shown to be highly emissive [81].
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3.2. β-Thioxoketones

The β-thioxoketones are characterized by a tautomeric equilibrium between an enol-
thioketone and a keto-thiol form (see Scheme 2). As has been discussed earlier, an open
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form may also exist. The OH forms a very strong hydrogen bond (chemical shift ~17 ppm),
whereas the SH group only forms a weak hydrogen bond (chemical shift ~3–5 ppm) [82].
However, due to the low barrier [49] between the two tautomers, only an averaged NMR
spectrum is observed.

To study the photoconversion of β-thioxoketones, it is necessary to know the ground
state structure, in this case the tautomeric situation, and as excitation experiments are often
done at low temperature, the ground state situation at low temperatures must be known.
Furthermore, the substituent R1 and R2 may also play a role, as well as the solvent. Oxygen
should be avoided as this may lead to unwanted products and not only quenching.

Despite the fact that NMR leads to averaged parameters (see previously), NMR is
a very suitable tool in the study of the tautomerism of β-thioxoketones. The reason is
that the difference between the OH and the SH chemical shifts is very large (see above).
The same is true for the C=O, COH, and the C=S, CSH pairs, when measuring 13C NMR
spectra. A variable temperature study gave the following values for 1. ∆(C=S) = 217 ppm,
δ(CSH) = 163 ppm, δ(C=O) = 198 ppm, and δ(COH) = 186 ppm [82].

For the monothioacetylacetone (1), an open form is indicated by the fact that a plot of
XH(OH,SH) chemical shifts vs. temperature showed a broadening at 200 K. For 1 and 2,
a plot of deuterium isotope effects (XH partially deuteriated) vs. temperature (Figure 9)
showed a large drop around, again indicating the presence of the open form.
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For 3 and 4, this is not the case (not shown). The cyclic β-thioxoketone 5 (Figure 10)
showed no discontinuity in the XH spectrum vs. temperature [83]. Thus, 4 and 5 are
suitable for photochemical conversion studies; 5 has the advantage that the oxygen is part
of the ring, eliminating the possibility that the oxygen can be “trans”, as seen for 4.
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Figure 10. Structure of compound 5.

The UV-vis spectrum of 4 is shown in Figure 11. The band at 410 nm is ascribed to the
π,π* transition. The figure shows which bands disappear upon irradiation at 410 nm [84].
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Figure 11. UV spectrum of 4, trace a in 3-methylpentane at 90 K. b, c, d is after irradiation at 410 nm
for 10, 20, and 30 min. Taken from Ref. [84] with permission from Elsevier.

The UV spectrum show disappearance of the C=S chromophore on irradiation at
410 nm. This corresponds to the formation of the open form (t-TCC, Scheme 1). This was
also demonstrated upon irradiation of 4 in an argon matrix [84]. This was very clearly seen
by a comparison of the experimental with the DFT calculated IR spectrum (Figure 12).
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Figure 12. Top: Infrared spectrum of open form (t-TCC) obtained after irradiation of 4 in an argon
matrix at 20 K. Bottom: Calculated DFT spectrum (B3LYP/cc-pVTZ). Taken from Ref. [85] with
permission from Elsevier.

A very efficient way of studying photochromic reactions, in this case for 4, is to
combine laser irradiation with NMR detection (“hyphenation”) typically in one step by
using a designed unit of laser, mirrors, and a quartz rod to guide the laser light into the
NMR tube [49]. Other setups have been used, as described in Ref [86].

The irradiation of 4 in CD2Cl2 at 183 K in the NMR instrument leads to a mixture of
t-CTC and t-TTC (Scheme 3). It was speculated that the less restrictive matrix allowed the
rotated products [49].

The NMR experiments are combined with DFT calculations as well as time-dependent
DFT (TD, DFT).
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Hyphenated laser-NMR experiments of 5 in CD2Cl2 at 203 K (irradiation 365 nm) led
to the products seen in Scheme 7. Optimized lowest energy structures are seen in Scheme 8.
Reaction products with water were also observed.
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Dosli´c and Kühn et al. discussed the laser control of proton transfer in thioacetylace-
tone and acetylacetone [87].

4. Docking

Docking of small molecules, in this case β-diketones, is a physico-chemical process
that may involve hydrogen bonding, π-π interactions, steric, hydrophobic, as well as ionic
interactions. In case of β-diketones, it is absolutely necessary to know if binding occurs to
the keto- or the enol-forms [9]. This seems to not always have been considered. A couple of
cases are discussed in Ref. [2]. To get a realistic picture, it is necessary to know the barrier to
interconversion and the rate of interconversion between the keto and the enol forms. This
has been investigated in a few cases. Conradie et al. [55] determined the rates for thienyl
β-diketones. The keto-enol conversion of 3-chloropentane-2,4-dione to the diketo-form was
shown to be fast in an aqueous solution of sodium dodecylsulfate (SDS), leading to 65%
diketo-form [88]. Curcumin was docked to acetylcholine esterase on the diketo-form, but
the enol form was not tested [89].

A very peculiar case is the study of 1-(6-methoxy-2-naphthalene-2-yl)-3-(tosylpyrrolidine-)2-
yl) propane-1,3-dione (Figure 13), in which the structure all of a sudden is a trans-form
(Figure 14) [90].
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Figure 14. Structure of 1-(6-methoxy-2-naphthalene-2-yl)-3-(tosylpyrrolidine-)2-yl) propane-1,3-dione
docked to cyclooxygenase (COX-1). Taken from Ref. [90] with permission from Elsevier.

5. Experimental

NMR. As mentioned earlier we are dealing with a slow equilibrium between diketo
and keto-enol forms and a fast equilibrium between the two keto-enols forms (see Scheme 1).
The former equilibrium can easily be determined from integrals of 1H NMR spectra.] [91].
Tautomeric equilibria may be determined by use of chemical shifts [92]; however, for
the latter type, this requires the knowledge of chemical shifts of the individual keto-enol
tautomers. A comparison between experimental 13C chemical shifts and calculated nuclear
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shieldings (chemical shifts) is also useful (see Figure 15) [93]. Other similar examples are
shown in Ref. [94].
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In addition to measurement of chemical shifts, two-bond 2J(C,OH) coupling constants
may also be used to determine tautomeric percentages, as demonstrated for pyridoylben-
zoyl β-diketones [64]. Deuteriation, in the present case primarily of the chelate proton,
leads, in general, to deuterium isotope effects on chemical shifts and is referred to as
intrinsic isotope effects. This type of isotope effect is secondary. Isotope effects on chemical
shifts are defined as:

n∆X(h) = δX(l) − δX(h) (1)

where h is the heavy isotope and l the lighter one. N is the number of bonds between the
observed nucleus, X, and the isotope.

In asymmetric tautomeric cases, deuteriation leads to a change in the chemical equi-
librium, and therefore, to an equilibrium isotope effect on chemical shifts, as described in
Equation (3), and a total deuterium isotope effect on chemical shifts, as seen in Equation (4).

n∆X(D)int = (1 − xD) n∆X(D)OH + xD
n∆X(D)NH (2)

n∆X(D)eq = (δXNH − δXOH) ∆x (3)
n∆X(D)OBS = n∆X(D)int + n∆X(D)eq (4)

Examples from 1-(2-hydroxyphenyl)-3-aryl-1,3-propanediones (see Scheme 1,
R1 =2-hydroxyphenyl with substituents, R2 = H and R3 = phenyl or substituted naphtal-
enes) [94]. Deuterium isotope effects on 17O chemical shifts may also be used. A drawback
is the broad lines of 17O resonances. An advantage is the large chemical shift range.

Isotope effects on chemical shifts are best determined in a one-tube experiment with
both the H and the D isotopomer present and with the isotope in slow exchange. However,
they may also be determined in protic solvent, but this requires a series of experiments
with different degrees of deuterium contents.

Deuteriation at carbon in a symmetric β-diketone may lead to a lifting of degeneracy,
as demonstrated in monodeuterated malonaldehyde (Scheme 1, R1 and R2=H, R3=D) [95].

For a more detailed review on the use of isotope effects in tautomeric systems, see
Ref. [96].

Primary isotope effects have been determined. For 2H (D) they are defined as:

P∆H(D) = δ(H) − δ(D) (5)

Early on, Altman et al. [97] showed how primary deuterium isotope effects can
distinguish between single and double hydrogen bond potential wells. However, if an
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equilibrium is at play, this must be considered [96]. Primary deuterium isotope effects may
be hampered by the rather broad deuterium resonances. A special case is the determination
of tritium primary isotope effects. Tritiation gives both sharp resonances and larger isotope
effects, but the drawback is the difficulty of finding a tritium enrichment facility and the
fact that the samples deteriorate over time.

A comparison of the different types of isotope effects are shown in Figure 16.
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For tautomeric systems, the isotope effects on chemical shifts may vary strongly with
temperature. This is seen from Figure 17, and is related to the dependence of the mole
fraction, as seen in Figure 18 [99].
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Figure 17. Top: Primary tritium, deuterium isotope effects. Bottom: Deuterium isotope effects on 13C
chemical shifts. Taken from Ref. [98] with permission from John Wiley and sons.
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6. Conclusions

An important physico-chemical feature of β-diketones and β-thioxoketones is clearly
tautomerism. In the case of β-diketones, both an enol and a diketo-form exist. Studies
are conducted both in the liquid and in the solid state. In the liquid state, the present
techniques can usually establish the dominant form of β-diketones, whereas in the solid
state, tautomerism is much more difficult to establish. There is a need to have a much
clearer picture of the dependence of the hydrogen bond potential form of the β-diketones
as a function of structure and temperature.

For β-thioxoketones, deuterium isotope effects on chemical shifts have proven useful
due to the large chemical shift differences between identical nuclei in the two tautomers.

In case of docking studies, it is important to establish the correct tautomer [9] and is
even more important to determine the barrier to interconversion between tautomers.

The study of the excited state has taken a great leap forward; however, especially for
β-thioxoketones, there is a need for a full picture and, likewise, to investigate the use of
photochemically excited molecules in reactions, e.g., with oxygen, but these kind of studies
could also be extended to other reagents. The use of β-diketones elements in molecules for
OLED´s has proven useful; however, to reach the full potential, more research is needed.
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