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Definition: Antipsychotics (APs) are psychotropic drugs that generally have a psycholeptic effect,
capable of reducing psychotic symptoms and psychomotor agitation. This class of drugs is widely
used in psychiatric practice, especially for the treatment of psychosis in schizophrenia and other
psychotic disorders. Most APs pass through a biotransformation process, or metabolism, after they
enter the body before being eliminated. There are three phases of AP metabolism. Cytochrome P450
(CYP) monooxygenase (mixed-function oxidase) plays a central role in most AP biotransformation.
CYP’s functional activity depends on gene–drug and drug–drug interaction and influences on
the occurrence of adverse drug reactions (ADRs). So, it is extremely important for a practicing
psychiatrist to know the oxidation pathway of APs, since most of them are metabolized in the liver.
This is important both to prevent ADRs and to avoid unwanted drug–drug interactions, which will
undoubtedly increase the effectiveness and safety of AP therapy.
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1. Introduction

Antipsychotics (APs) are a class of psychotrophic medication primarily used to man-
age psychosis (including delusions, hallucinations, paranoia, or disordered thought), espe-
cially for the treatment of psychosis in schizophrenia and other psychotic disorders [1,2].
They, along with mood stabilizers, are also the first line of treatment for bipolar affective
disorder [3]. First-generation APs (FGAs), conventional or typical antipsychotics, have
significant potential to cause extrapyramidal syndrome (akathisia, acute distonic reactions,
tardive dyskinesia, pseudo-Parkinson’s, and others) [4]. The main difference between FGAs
and second generation APs (SGA) is the predisposition to cause these type of adverse drug
reactions (ADRs) [5]. In other respects, such as other ADRs and their mechanism of action,
the two classes have substantial overlap and comparable efficacy [6].

Most APs pass through a biotransformation process, or metabolism, after they enter
the body before being eliminated [7]. In the course of biotransformation, APs are converted
into more water-soluble suspensions, and, therefore, are subsequently more easily excreted
from the body.

In the process of AP metabolism, most initial APs lose their pharmacological action
and are removed from the body through excretion. During biotransformation, produced
metabolites usually are more polar or charged than the parent APs, which increases the
rate of clearance; this modification can also decrease reabsorption in the tubules [8].

In the process of biotransformation, APs usually become less pharmacologically active
or completely inactive compounds, but also newly formed metabolites can be equally phar-
macologically active and even more pharmacologically active compounds if the original
APs was a prodrug. As a result of AP biotransformation new metabolites are formed: With
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changed and new pharmacological actions, these new metabolites may have both lower
and higher potencies in comparison with initial APs; new metabolites may also have a toxic
effect, or new metabolites may be active, if the parent APs were prodrugs [9].

Biotransformation reactions of drugs and endogenous substances often develop over
sequential stages, such reactions occur with the participation of enzymes and enzyme
systems. Most APs undergo biotransformation in the liver, also some APs are metabolized
in other organs and tissues [10].

Biotransformation reactions occur with the participation of specific enzymes or enzyme
systems. These enzymes can catalyze both xenobiotic metabolism, in this case APs, and
substances with endogenic origin, such as hormones. Most often, AP biotransformation
reactions occur in the liver; however, individual APs undergo these reactions to a greater
or lesser extent in other organs and tissues of the human body.

The process of AP biotransformation is quite changeable, and this variability depends
on many factors, for example:

- Nutritional status;
- Hormonal status;
- Genetic factors;
- Previous therapy with Aps or other classes of drugs;
- Concomitant somatic, neurological, or mental status (for example, diseases of the

cardiovascular and respiratory systems may decrease biotransformation, etc.);
- I age of the patient (for example, very old patients or children often have a greater

sensitivity to APs, due in part to the involutional or immature state of the enzyme
systems by which APs are metabolized);

- Functional state of the liver [11].

Basically, there are three phases of APs biotransformation: phase I (modification),
phase II (conjugation), phase III (excretion) (Figure 1). It is noticeable that biotransformation
phases I and II can be sequential, or can take place in reverse order or simultaneously, as a
single reaction [12].
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2. Phases of Antipsychotic Metabolism
2.1. Phase I of Antipsychotic Metabolism

As a result of phase I reactions, the initial APs usually become less active. These
reactions are non-synthetic or happen in the absence of conjugation processes. Important
to note is that when the formed metabolites after reaction I become sufficiently polar, they
may be immediately excreted from the human body. Otherwise, the following reaction
occurs, which combines the formed metabolites with new functional groups to form greatly
polar, and therefore more water-soluble, active metabolites by unmasking or inserting a
polar functional group (–OH, –SH, –NH2) that enable the following stages of biotransfor-
mation [13]. APs metabolized via phase I reactions have longer half-lives. Geriatric patients
have decreased phase I metabolism; thus, geriatric patients metabolize APs by phase II
reactions [12,14].

Reactions of phase I:

- Oxidation;
- Hydrolysis;
- Reduction.

In these reactions, for subsequent conjugation, functional groups are added to the
formed metabolites, which then become the active center in the phase II reaction [15].

Enzymes catalyzing this phase’s biotransformation are mostly from the cytochrome
P450 (CYP) system, the flavin-containing monooxygenase system, monoamine oxidase,
aldehyde and alcohol dehydrogenase, deaminases, esterases, amidases, and epoxide hy-
dratases [16,17].

Oxidation reactions, which occur with CYP enzymes (mixed-function oxidases (MFOs)
or mono-oxygenases) take place in the smooth endoplasmic reticulum (ER) of the cell.
These reactions involve cytochrome P450 reductase, nicotinamide adenine dinucleotide
phosphate (NADPH), and oxygen (O2). CYP enzymes also better metabolize APs with high
fat solubility [17].

The CYP system is involved in numerous reactions, for example:

- Other oxidations;
- Dealkylation;
- Deamination;
- Sulfoxidation;
- Oxidation [18].

NADPH–cytochrome P450 reductase catalyzes reduction reactions mostly in the ER
or the cytosol. Being a membrane-bound enzyme, it transfers electrons from NADPH to
heme proteins and CYP, including heme oxygenase from a flavin adenine dinucleotide
(FAD)- and flavin mononucleotide (FMN)-containing enzyme NADPH-cytochrome P450
reductase [19]. The electron flow cheme is:

NADPH → FAD → FMN → P450 → O2 (1)

In reduction reactions, a substance receives a free-radical electron and then quickly
loses it to oxygen, and a superoxide anion forms [20].

Hydrolytic reaction is a phase I reaction in which a water molecule joins and bond
breakage subsequently happens, this reaction doesn’t occur in the ER [21].

2.2. Phase II of Antipsychotic Metabolism

Phase II (synthetic) reactions include conjugation reactions, adding highly polar groups
(such as glutathione (GSH), sulfate, glycine, acetyl, or glucuronic acid, amino acids, or
methyl) to the APs to increase renal elimination, which involves the enzyme-catalyzed
combination of APs (or AP metabolites) with an endogenous substance. Through these
reactions, the drug activity is decreased and polarity is increased. The functional group
of substance is an active center in phase II reactions, this active center acts as the site of
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conjugation with the endogenous substance [22]. Carboxyl (–COOH), hydroxyl (–OH),
amino (NH2), and thiol (–SH) groups that were attached in the previous reactions are now
the sites on the APs for conjugation [23]. In this phase, fewer active products are formed that
have higher molecular weight than previous substrates in comparison. In addition, through
the attachment of large anionic groups like GSH, more polar metabolites are produced
and reactive electrophiles are detoxified. Now these metabolites cannot actively move and
diffuse through cell membranes [23]. Phase II reactions can take place on their own or after
phase I. The synthesis of endogenous substances, the so-called “activated carriers” that
are needed in the conjugation reaction (e.g., uridine diphosphate–glucuronate), requires
energy [24].

Phase II reactions, in particular, glucuronidation, take place in the ER. To this end,
uridine diphosphate glucuronic acid (UDPGA) is formed with the help of glucose, and the
acid formed with the participation of glucuronyl transferase attaches the glucuronide to
APs. APs can also be conjugated with other substances through transferases; these reactions
often occur in the cytosol of the cell.

Numerous transferases in various combinations can metabolize most hydrophobic
substances that have nucleophilic or electrophilic groups in phase II reactions [23,25].

Below are some conjugation enzymes of phase II biotransformation:

- Acetylases;
- Glucuronyl transferase;
- Transacylases;
- Sulfotransferase;
- Ethylase;
- Glutathione transferase;
- Methylases [23,26].

Biotransformation enzymes are present in various organs and tissues in the human
organism, as well as in plasma. In the cell, phase I and II enzymes are found in the
mitochondria, ER, and cytosol [12,23,26].

2.3. Phase III of Antipsychotic Metabolism

Phase III is the final point of AP transformation and its excretion. Often, phase II
products are transported out of the cell via transport proteins of the ATP-binding cassette
transporter family, where they undergo further metabolism or excretion. These proteins
provide ATP-dependent transport of a wide range of hydrophobic anions. Anionic groups
from previous reactions are now affinity tags for these membrane carrier proteins [27].

3. Oxidation of Antipsychotics in the Liver

The most important role in the metabolism of most APs is played by CYP monooxyge-
nase (Figures 1 and 2) (mixed-function oxidase) [28]. In mammals, at least 18 families of
enzymes of the CYP system have been discovered so far. Individual enzymes of this system
are involved in the biotransformation of certain APs, with a unique substrate specificity.
This specificity may partially coincide in different enzymes of the CYP system (Table 1) [29].
Currently, at least 50 different P450 enzymes are known, but approximately 12 of them
provide biotransformation of most APs. As mentioned above, the CYP family catalyzes
phase I reactions. Nomenclature: the family number is indicated immediately after the
term “CYP” with an Arabic numeral, the subfamily is named by a capital letter of the Latin
alphabet, and the second Arabic numeral after the letter indicates a particular enzyme in a
subfamily. As a result, the enzyme designation has the following form: CYP2D6, CYP3A4,
CYP3A5, etc. [30].

CYP2D6, CYP3A4, CYP3A5, CYP2C9, and CYP2C19 provide most of the activity (more
than 50%) of P450; these enzymes prevail among liver enzymes (Figure 2) and are involved
in the metabolism of most APs [31].
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CYP participates in different reactions, for example catalyzes dealkylation at nitrogen,
sulfur, and oxygen atoms; catalyzes aromatic and aliphatic hydroxylations; catalyzes
reductions at nitrogen atoms; and ester and amide hydrolysis; heteroatom oxidations at
nitrogen and sulfur atoms.

Most often, CYP enzymes are located in the liver, but they are also found in other
organs and tissues of the human body—for example, in the small and large intestines,
testicles or ovaries, duodenum, pancreas, kidneys, spleen, lymph node, and others [32].
The expression of some CYP enzymes is shown in Figure 3 [33]. In cells, the enzymes of the
CYP system are located in the ER [17].
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Phase I, involving CYP, has an oxidative and a reduction reaction. Synthesis of
NADPH is dependent on cytochrome P450 reductase. The cofactor NADPH is involved in
the reduction of oxygen to water in the general reaction where AP is oxidized.
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Below is an aromatic hydroxylation reaction [34]:

Drug +O2 + NADPH + H+ → Drug-OH + NADP+ + H2O (2)

CYP activity is variable and depends, among other things, on drug–drug interaction;
APs and other drugs may modulate the work of particular CYP enzymatic pathways. Thus,
the metabolism of concomitantly administered drugs may be changed. All drugs, including
APs, can be divided into three groups related to the CYP system: substrates, inducers, and
inhibitors of this system. Substrates are drugs metabolized under CYP enzyme catalytic
activity [35].

P450 inhibitors are drugs that inhibit the biotransformation of drugs metabolized by
a certain CYP enzyme; inhibition of drugs metabolized by the same CYP enzyme is also
suppressed. There is competitive inhibition if drugs compete for the CYP enzyme, and non-
competitive if a certain drug tightly binds to the CYP. When there is structural similarity
between the substrate and the inhibitor at the molecular level, competitive inhibition occurs:
the competitive inhibitor binds to the active site of the enzyme instead of the substrate, thus
less substrate is bound to the enzymes. When the inhibitor and substrate have a dissimilar
molecular structure, the inhibitor attaches to the enzyme and changes its structure and
active site, thereby slowing down the reaction between the enzyme and the substrate [36].
Inhibition raises therapeutic drug levels (danger of toxicity) [35]. There are a lot of inhibitors
among different drug groups—for example, Aps (haloperidol, olanzapine, clozapine, and
others), ADs (fluvoxamine, clomipramine, duloxetine, and others), antiepileptic drugs
(valproic acid, phenytoin, topiramate, and others), somatic drugs (isoniazid, cimetidine,
ketoconazole, fluconazole, and others) [37], acute alcohol abuse, and grapefruit juice [36].

P450 inducers increase the amount of P450 enzymes in vivo. This process is associated
with the activation of enzyme synthesis and lowers therapeutic drug level. A decrease in
the therapeutic level of the drug, in particular APs, may occur due to the induction of the
CYP enzymes, since the metabolism of drugs catalyzed by a certain enzyme is accelerated,
as well as the metabolism of the inducer itself if it is metabolized by the same CYPs [38]. A
significant number of drugs are inducers of various cytochrome enzymes, causing drug–
drug interactions, for example, APs (clozapine, chlorpromazine, and others), antiepileptic
drugs (phenytoin, carbamazepine, topiramate, and others), somatic drugs (griseofulvin,
troglitazone, omeprazole [37], St. John’s wort [36], and others), chronic alcohol abuse [36],
and environmental agents such as tobacco smoke [39].

When considering AP metabolism in the liver, we should also consider the extraction
ratio and first-pass effect definitions.

The weight of a liver is 1.500 g, and the liver has high blood flow (1 mL/g/min), which
provides massive excretion of drugs, in particular APs [40]. The amount of drugs remoted
by the liver divided by the amount of drugs entering the organ is the extraction ratio; the
extraction ratio is 1 when a drug is completely removed by the liver, if the bioavailability
of the drug is 100%, then the hepatic extraction ratio is 0 and vice versa [41]. Hepatic
clearance may be close to 1500 mL/min if APs are highly extracted by the liver [42]. The
first pass effect is the process, when the bioavailability of some orally administered drugs
is reduced because the fraction is removed during the first pass through the liver [43].
The pharmacokinetics of APs: absorption in the gastrointestinal tract, transport through
the portal vein to the liver, after which APs reaches the general bloodstream. Thus, APs
taken orally have the first-pass effect. Correction of the dosing regimen when patient has
liver diseases is required, since in such cases a greater amount of APs reaches the systemic
circulation, which may increase the therapeutic window. Every drug has a half-life, a fixed
time it takes for a drug to lose half of its pharmacological action [41,44].

Some clinically relevant CYPs, such as CYP2C and CYP2D, have genetic polymor-
phisms, which influence metabolic variability in individuals. For example, different races
and ethnic groups have different variability of certain enzymes. Since a genetically deter-
mined difference in the properties of CYP enzymes, such as Vmax or Km, affects the rate of
AP metabolism, this should be taken into account when selecting therapy [45]. For example,
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the CYP3A subfamily is responsible for up to half of the total cytochrome P-450 in the
liver [46]. CYP3A4 is the most abundant hepatic enzyme and is involved in the metabolism
of over 50% of clinically important APs. APs or other drugs that are inhibitors or inducers
of the CYP system can cause adverse drug reactions (ADRs) due to altered metabolism of
these enzymes, which affects the concentration of metabolized drugs by influencing phase
I reactions [47].

4. Function of Enzymes of Cytochrome P450 and Antipsychotic Metabolism

There may be serious drug-drug interactions between FGAs and different groups of
drugs which may affect cytochrome P450 enzymes (Table 1) [48,49].

Table 1. Substrates, inducers, and inhibitors of cytochrome P450 [36,37,39,48,49].

Antipsychotics Other Drugs

Substrates Inhibitors Inducers Substrates Inhibitors Inducers

CYP1A1

Partly:
Haloperidol
Olanzapine
Perospirone

Clozapine Acetaminophen
Amiodarone
R-Warfarin

Propofol

CYP1A2

Primary: Promazine Acetaminophen Amiodarone Carbamazepine
Asenapine Remoxipride Alosetron Cimetidine Insulin
Clozapine Caffeine Ciprofloxacin Modafinil
Loxapine Clomipramine Citalopram Nafcillin

Olanzapine Duloxetine Efavirenz Omeprazole
Pimozide Imipramine Fluvoxamine Rifampin

Thiothixene Melatonin Ribociclib Rucaparib
Trifluoperazine Mexiletine Teriflunomide

Naproxen Tobacco
Partly: Pirfenidone

Chlorpromazine Theophylline
Haloperidol Tizanidine

Lumateperone
Perphenazine

Promazine
Quetiapine

Thioridazine
Zotepine

CYP2A6

Partly: Cotinine Methoxsalen
Clozapine Nicotine Pilocarpine
Promazine Pilocarpine Tryptamine

CYP2C8

Partly: Amodiaquine Abiraterone
Clozapine Cerivastatin Clopidogrel

Lumateperone Dabrafenib Deferasirox
Perospirone Enzalutamide Glitazones

Perphenazine Olodaterol Letermovir
Paclitaxel Montelukast

CYP2C9

Partly: Amitriptyline Amiodarone Bosentan
Clozapine Azilsartan Capecitabine Carbamazepine

Haloperidol Capecitabine Ceritinib Enzalutamide
Olanzapine Celecoxib Efavirenz Nevirapine

Perphenazine Clopidogrel Fenofibrate Peginterferon alfa-2b
Promazine Diclofenac Fluconazole Phenobarbital

Doxepin Fluvastatin Rifampin
Fluoxetine Fluvoxamine St. John’s wort
Fluvastatin Isoniazid Tocilizumab
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Table 1. Cont.

Antipsychotics Other Drugs

Substrates Inhibitors Inducers Substrates Inhibitors Inducers

CYP2C18

Partly: Mephenytoin Rifampicin
Perphenazine Warfarin

CYP2C19

Partly: Clozapine Amitriptyline Armodafinil Carbamazepine
Clozapine Olanzapine Atomoxetine Cetocanazole Efavirenz

Haloperidol Brivaracetam Cimetidine Letermovir
Perphenazine Carisoprodol Citalopram Prednisone

Promazine Citalopram Esomeprazole Rifampicin
Pipotiazine Clobazam Felbamate Ritonavir
Quetiapine Clomipramine Fluoxetine St. John’s wort
Risperidone Clopidogrel Fluvoxamine
Thioridazine Diazepam Isoniazid

Doxepin Modafinil
Escitalopram

CYP2D6

Primary: Amoxapine Atomoxetine Amiodarone Dexamethasone
Aripiprazole

Brexpiprazole
Chlorpromazine

Fluphenazine
Haloperidol
Iloperidone

Loxapine
Perphenazine

Pimozide
Risperidone
Thioridazine

Partly:
Alimemazine
Amoxapine

Aripiprazole lauroxil
Azenapine
Cariprazine
Clozapine
Clozapine

Flupentixol
Levomepromazine

Mesoridazine
Methotrimeprazin

Olanzapine
Paliperidone
Perospirone
Pipotiazine

Prochlorperazine
Promazine
Quetiapine

Remoxipride
Sertindol

Trifluperazine
Zuclopenthixol

Chlorpromazine
Clozapine

Fluphenazine
Haloperidol
Melperone

Methotrimeprazine
Olanzapine

Perphenazine
Pimozide

Pipotiazine
Risperidone
Thioridazine
Thiothixene

Carvedilol
Citalopram

Clomipramine
Debrisoquine
Desipramine

Dexfenfluramine
Dextromethorphan

Donepezil
Doxepin

Duloxetine
Letermovir
Lidocaine

Metoprolol
Nebivolol

Perphenazine
Propranolol

Bupropion
Celecoxib

Cimetidine
Clobazam

Clomipramine
Doxepin

Duloxetine
Fluoxetine

Hydroxyzine
Methadone

Metoclopramide
Paroxetine
Quinidine
Ritonavir
Sertraline

Oritavancin
Rifampin

CYP2E1

Partly: Fluphenazine Acetaminopher Disulfiram Ethanol
Clozapine

Iloperidone
Methotrimeprazine

Thioridazine
Aniline

Chlorzoxazone
Enflurane
Ethanol

Quercetin
Ribociclib

Isoniazid
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Table 1. Cont.

Antipsychotics Other Drugs

Substrates Inhibitors Inducers Substrates Inhibitors Inducers

CYP3A4

Primary:
Aripiprazole
Brexpiprazole
Cariprazine
Haloperidol

Loxapine
Lumateperone

Lurasidone
Perphenazine
Pimavanserin

Pimozide
Quetiapine
Ziprasidone

Partly:
Alimemazine

Asenapine
Clozapine

Fluspirilene
Iloperidone

Paliperidone
Penfluridol
Perospirone
Pipotiazine
Promazine

Risperidone
Sertindol
Zotepine

Zuclopenthixol

Clozapine
Haloperidol
Olanzapine

Remoxipride

Chlorpromazine
Clozapine

Alprazolam
Bupivacaine
Buspirone

Disopyramide
Eszopiclone
Etonogestrel
Flunisolide

Grepafloxacin
Indinavir

Pantoprazole
Ranolazine
Terfenadine
Voriconazole

Zolpidem

Betamethasone
Fluconazole
Loratadine

Quinine
Voriconazole

Betamethasone
Quinine

Rifabutin
Rofecoxib

CYP3A5

Primary:
Aripiprazole

Aripiprazole lauroxil
Clozapine

Haloperidol
Iloperidone
Olanzapine

Paliperidone

Partly:
Pimavanserin

Pimozide
Quetiapine
Risperidone

Remoxipride
Reserpine

Clopidogrel
Cyclosporine

Indinavir
Phenytoin
Saquinavir
Verapamil

Indinavir
Saquinavir
Verapamil

Carbamazepine
Dexamethasone

Phenytoin

CYP3A7

Partly:
Aripiprazole

Aripiprazole lauroxil
Haloperidol
Iloperidone
Pimozide

Quetiapine

Remoxipride Alprazolam
Astemizole
Diazepam
Triazolam

Erythromycin
Nelfinavir
Saquinavir

Dexamethasone
Phenytoin

Triamcinolone

CYP3A43

Olanzapine Daclatasvir Cobicistat Dexamethasone
Remoxipride Testosterone Idelalisib Rifampicin

Many FGAs have multiple clearance pathways, such as haloperidol, perphenazine,
chlorpromazine, thioridazine, and loxapine. That is why the effect of inducers and in-
hibitors of cytochrome enzymes on their metabolism is moderate [37].
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Fluphenazine: Metabolized predominantly by CYP2D6, it is recommended to avoid
co-administration of fluphenazine with drugs that strongly inhibit CYP2D6 [50].

Pimozide: Has an increased risk of QTc prolongation, so it is recommended not to
prescribe CYP2D6 inhibitors with pimozide, although the latter has a moderate sensitivity
to inhibition [51].

Chlorpromazine: has a pronounced sensitivity to CYP1A2 induction, with heavy
smoking, an increase in the dosage of chlorpromazine, as well as thiothixene, is required,
since smoking induces the CYP1A2 enzyme and reduces the concentration of CYP1A2
substrates in the blood serum [52–54].

Most SGAs are sensitive to inhibition or induction of CYP enzymes, which affects
the change in the concentration of these drugs in the blood serum and requires dosage
adjustment when administered simultaneously with drugs that affect the rate of cytochrome
P450 enzymes, these data are presented in Table 1 [48,49].

Aripiprazole: When combined with other APs, there may be a decrease in the AP effect
with an increase in the dosage of aripiprazole due to its partial agonism at D2 receptors.
Since CYP3A4 and CYP2D6 are involved in the metabolism of aripiprazole, when this
drug is combined with strong inhibitors of these enzymes, for example, with fluoxetine, a
two-fold reduction in the dosage of aripiprazole is necessary, while when combined with
strong inducers of CYP3A4 and CYP2D6 enzymes, for example, with carbamazepine, a
twofold increase in dosage is necessary [55].

Asenapine: This AP is metabolized by CYP1A2 enzymes and glucuranization enzymes,
so asenapine does not appear to be sensitive to CYP inducers or inhibitors. Undesirable
drug-drug interactions may occur when combined with drugs that have similar ADRs:
weight gain, sedation, parkinsonism [56].

Brexpiprazole: This APs is metabolized by CYP3A4 and CYP2D6. Brexpiprazole is
sensitive to changes in CYP function, for example, rifampin as an inducer of CYP3A4
reduces serum levels of CYP3A4 substrates by 75%. Inhibitors of CYP3A4 and CYP2D6
enzymes double the serum concentration of brexpiprazole [57]. When combined with
other APs, there may be a decrease in the AP effect with an increase in the dosage of
Brexpiprazole due to its partial agonism at D2 receptors [58].

Cariprazine: This AP and its metabolites are catalyzed by the CYP3A4 enzyme; when
combined with CYP3A4 inhibitors, a 50% dose reduction of brexpiprazole is necessary [59].
There are no studies evaluating interactions of cariprazine with CYP3A4 inducers.

Clozapine: This drug is metabolized primarily by CYP1A2 and CYP3A4, and partially
by CYP2D6 [60]. Combination with strong inhibitors of CYP1A2, such as fluvoxamine or
ciprofloxacin, requires a reduction in clozapine dosage to one-third of the initial dose. It is
recommended not to prescribe clozapine with drugs that have similar adverse reactions [61].
It is also necessary to increase the dosage of clozapine twice for heavy smokers or reduce
the dosage by 30–40% when quitting smokers [62].

Iloperidone: Metabolized by CYP2D6 and CYP3A4 enzymes, when combined with
strong inhibitors of these enzymes, such as fluoxetine and paroxetine, a dose reduction of
50% is necessary [63].

Lumateperone: CYP3A4, CYP2C8 and CYP1A2 are involved in its metabolism. It is
recommended not to prescribe a combination with strong or moderate inhibitors and induc-
ers of CYP3A4. Also, the combination with valproic acid may increase the concentration of
lumateperone due to the inhibition of uridine diphosphoglucuronate glucuronosyltrans-
ferase [64].

Lurasidone: Predominantly metabolized by CYP3A4. The co-administration of strong
inhibitors or inducers of CYP3A4 such as rifampin or ketoconazole with lurasidone is
contraindicated [65].

Olanzapine: This medication is dependent on CYP1A2 metabolism [66]. Co-administration
with strong inhibitors or inducers of CYP1A2 can affect olanzapine serum levels; for
example, cigarette smoking decreases its serum concentration.
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Paliperidone: Metabolized in part with the participation of CYP3A4, efflux occurs
with the participation of P-glycoprotein 1. Therefore, when combined with strong inducers
such as carbamazepine and rifampicin, an increase in the dose of paliperidone is required,
but if a strong inducer was canceled and paliperidone continued, a dose reduction of this
AP is necessary [67].

Pimavanserin: Metabolized predominantly by CYP3A4 and partially by CYP3A5,
dosage adjustment is necessary when combined with strong inhibitors of CYP3A4. Since
pimavanserine can prolong the QT interval, the combination with drugs that have a similar
effect is undesirable [68].

Quetiapine: Metabolized predominantly by CYP3A4, a five-fold increase in dose is
recommended when combined with carbamazepine, and a dosage reduction to one-sixth
when combined with strong inhibitors, such as ritonavir [69,70]. A list of strong inhibitors
and inducers of CYP3A4 is presented in Table 1 [36,37,39,48,49].

Risperidone: AP is metabolized by CYP2D6, and serum concentrations of risperidone
are increased when combined with fluoxetine, paroxetine, and bupropion as inhibitors of
CYP2D6 [71].

Ziprasidone: Glutathione and aldehyde oxidase are predominantly involved in the
metabolism of this AP, CYP3A4 - partially, so the change in the work of CYP3A4 is not
clinically pronounced [72].

Most drugs, including APs, that are substrates, inducers, and inhibitors related to the
CYP system are shown in Table 1 [36,37,39,48,49].

5. Discussion of Prospects for Translation of Basic Research into Real Clinical Practice

As mentioned above, it is extremely important for a practicing psychiatrist to know
the oxidation pathway of APs, since most of them are metabolized in the liver. This is
important both to prevent ADRs and to avoid unwanted drug–drug interactions, which
will undoubtedly increase the effectiveness and safety of AP therapy [73]. At the same
time, it is possible to study the activity of one or another cytochrome and changes in
the oxidation of the enzyme due to changes in its activity only experimentally. In the
organism of a patient suffering from mental disorders, we can only indirectly judge the
change, taking into account modifiable and non-modifiable factors, including genetically
determined changes.

Currently, the rapid development of molecular genetics and fundamental and clinical
pharmacogenetics indicate that the study of non-functional and low-functional single
nucleotide variants (SNVs)/polymorphism of the genes encoding CYP enzymes can help
in translating fundamental knowledge about the oxidation of APs into real clinical practice.
Currently, depending on the genetically determined change in the degree of enzyme activity,
four phenotypes are distinguished (Figure 4) [74].

In connection with this, introducing various pharmacogenetic panels is very
promising—for example, the AmpliChip CYP450 pharmacogenetic test, which allows infor-
mation to be obtained about the pharmacogenetic profile of a patients with mental disorders,
depending on the carriage of allelic genotypes of two non-functional SNVs/polymorphisms
of cytochrome P450 genes (CYP2D6 and CYP2C19). According to the test results, patients
are divided into two phenotypes for the CYP2C19 gene: an extensive metabolizer and a
poor metabolizer by testing for three SNVs, and into four phenotypes for the CYP2D6 gene
by testing for 27 SNVs/polymorphisms, including seven duplications [75].

A good example of a system for evaluating the genetic contribution to AP metabolism
in foreign practice is the GeneSight Psychotropic algorithm developed by a group of
scientists based at the Mason Clinic (USA) [76]. The test is non-invasive and easy to use.
GeneSight is based on a multi-gene multivariate genetic test that takes into account the
characteristics of the genotype, phenotype, and information about the metabolism of the
drug. The analysis is performed on allelic variants of 14 genes (CYP1A2, CYP2C9, CYP2C19,
CYP3A4, CES1A1, CYP2B6, UGT1A4, UGT2B15, CYP2D6, HTR2A, HLA-A*3101, ADRA2A,
HLA-B*1502, SLC6A4) [76]. The psychiatrist is provided with information already analyzed
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by the program based on the results of pharmacogenetic test (PGx). GeneSight contains a
list of APs and Ads divided into three categories: “Use as directed,” “Use with caution,”
and “Use with increased caution and with more frequent monitoring.” It also provides
additional information that helps the psychiatrist decide whether to prescribe or cancel the
drug in a particular patient [77].
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Another PGx test, Genecept Assay, developed in the USA, makes it easier for the
clinical pharmacologist to make decisions about prescribing APs and ADs. Genecept
Assay makes it possible to predict the efficacy and safety of pharmacotherapy with these
drugs in a wide range of mental disorders, including depression, obsessive-compulsive
disorder, schizophrenia, attention-deficit/hyperactivity disorder, bipolar disorder, and
others. SNVs are being studied in 20 genes encoding targets of AP and AD action, including
5HT2C, MC4R, DRD2, and COMT, and genes encoding isoenzymes of the cytochrome P450
system [78].

However, the data obtained for a cumulative assessment of the safety and efficacy of
APs are not enough; it should be noted that 13 cytochrome P450 enzymes are involved in
the oxidation of APs, and only a few of them are used in most real-life pharmacogenetic
testing tools.

6. Limitation

The limitation of this entry paper is that it only took into account the oxidation
pathway, although, undoubtedly, in order to predict and manage ADRs, it is necessary to
take into account the role of other pathways, including oxidation not only in the liver, but
also in brain neurons, in particular CYP1A1 and CYP1B1, which are expressed in the ER
not only in the liver, but also in the brain [33].

In addition, the studies of P450 enzyme expression have shown that some of them are
expressed not only in the liver, but also in other organs and systems. For example, CYP1A1
is expressed in the cerebellum, cerebral cortex, hippocampus, thyroid gland, parathyroid
glands, adrenal glands, bronchi, lungs, tissues of the nasopharynx, oral mucosa, stomach,
duodenum, rectum, liver, gallbladder, pancreas, kidneys, bladder, ovaries, testicles, epi-
didymis, endometrium, placenta, tonsils, salivary glands, esophagus, prostate, fallopian
tubes, cervix, heart muscle, skin, spleen, and lymph nodes [79]. This can probably cause
the development of specific ADRs from certain organs and systems, and the translation of
these pathways can help a practicing psychiatrist to suggest which organs and systems,
when prescribing APs, need to be paid special attention when managing psychiatric pa-
tients. However, this approach has only just begun to be studied, and we have not found
large studies.
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7. Conclusions

Knowledge of the pathways of AP oxidation in the liver is very important from
theoretical and practical points of view, since it can help to achieve an optimal balance
between the efficacy and safety of APs in the practice of psychiatrists and other specialists.

In addition, it is important to remember that translating fundamental knowledge about
oxidation into real practice is possible by expanding knowledge in the field of psychophar-
macogenetics and by developing and introducing into clinical practice pharmacogenetic
panels that would be useful to prescribe not at the stage of development of ADRs, but
before the start of AP prescription.

However, it should be recognized that the solution of the tasks set is far from being
discovered.
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