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Definition: Fungal secondary metabolites (SMs) comprise a vast collection of compounds expendable
for these organisms under laboratory conditions. They exhibit enormous chemical diversity, and usu-
ally belong to four major families: terpenoids, polyketides, non-ribosomal peptides, or a combination
of the last two. Their functions are very diverse and are normally associated with a greater fitness
of the producing fungi in their environment, which often compete with other microorganisms or
interact with host plants. Many SMs have beneficial applications, e.g., as antibiotics or medical drugs,
but others, known as mycotoxins, are harmful to health.
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1. Introduction

The production of metabolites by fungi began to receive attention in the first half of the
last century [1], and acquired special relevance after the discovery of penicillin, a metabolite
produced by the fungus Penicillium, which started the era of antibiotics [2]. Today, one of the
most characteristic traits of fungi is their enormous metabolic versatility, which is reflected
in the richness of secondary metabolism in many species [3]. Secondary metabolites (SMs)
can be defined as chemical compounds resulting from specific biosynthetic pathways,
whose production is not necessary for normal growth and development of the fungus
in the laboratory. However, they are present in numerous species, and therefore their
persistence in evolution implies a competitive benefit in nature. This entry reviews the
major SM families, summarizes the genetic basis and regulatory mechanisms involved in
their production, and provides with selected examples a general overview of their chemical
diversity, possible roles in fungal life, and biological effects and applications in human life.

2. Chemical Families of SMs

The number of SMs identified in fungi is large [4], and it is presumed that only a
minority of all those that exist in nature are currently known. The best known SMs usually
belong to four chemical families: polyketides (PKs), terpenoids, non-ribosomal peptides
(NRPs), and hybrid non-ribosomal peptide/polyketides (NRP/PKs). SMs are synthesized
using substrates from primary metabolism, among which acetyl-CoA stands out as the
precursor of polyketides and terpenoids. Each SM biosynthetic pathway starts with a
characteristic type of enzyme, and it is completed with the activity of specific tailoring
enzymes, introducing additional modifications to the molecules.

2.1. Polyketides

PKs constitute the most abundant and diverse SM family. Their biochemical pathways
begin with the addition of acetyl-CoA units to form different structures, followed by a broad
diversity of chemical reactions [5,6]. All polyketide biosynthetic pathways are initiated
by a characteristic enzyme, known as polyketide synthetase (PKS), initially discovered
in bacteria. According to their structures and mechanisms, PKSs are classified into three
classes, known as types I, II, and III [7]. Type I PKSs are giant multifunctional enzymes
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structurally related to fatty acid synthetases [8]. They usually have in common a set of
conserved domains that always include three basic ones: acyltransferase (AT), which
recognizes the monomer that will be used in the synthesis; ketosynthase (KS), which joins
it to the elongating polyketide chain; and acyl carrier protein (ACP), which has a prosthetic
group of phosphopantetheine that serves as a covalent binding site for the intermediate
formed in the synthesis. These are accompanied by other optional domains. The keto
groups formed in the elongating process can be reduced by ketoreductase (KR), dehydratase
(DH), or enol reductase (ER) domains to produce different modifications depending on the
specific PK in question. There are other possible domains, e.g., methyl transferase (MT), or
condensation/heterocyclization (HC), that can introduce additional changes.

PKSs can be iterative or non-iterative. In iterative PKSs the macro-enzyme functions
as an extension module that elongates the product in successive reactive cycles. These PKSs
can be reducing or non-reducing depending on the presence of the reducing KR, DH, and
ER domains. Non-iterative PKSs are usually multimodular, with each module having its
own domain combination responsible for a complete elongation cycle, and with a final
module with a releasing thioesterase (TE) domain [9]. The products resulting from the
PKS activity are modified by other enzymes, giving rise to the vast chemical diversity that
characterizes this family. Some well-known examples of PKs synthesized by type I PKSs
are described in Table 1 and Figure 1. In some cases, two different PKSs participate in the
synthesis of the same compound, as occurs with zearalenone [10].

Table 1. A selection of fungal secondary metabolites. Five representative examples are indicated for
each SM family.

Chemical Family Metabolite Function/Activity Representative
Producing Genera Reference

Polyketides

Fumonisin B1 Mycotoxin Fusarium [11]

Lovastatin HMG-CoA reductase
inhibitor Aspergillus [12]

(PKs) Aflatoxin Mycotoxin Aspergillus [13]
Bikaverin Antibiotic (protozoa) Fusarium [14]

Zearalenone Mycotoxin (estrogenic) Fusarium [10]

Non ribosomal peptides

Enniatin B Mycotoxin (cytotoxic) Fusarium [15]
Cyclosporine A Immunosuppressant Tolypocladium [16]

Ergotamine Ergot alkaloid Claviceps [17]
(NRPs) Penicillin G Antibiotic (bacteria) Penicillium [18]

Apicidin Histone deacetylase
inhibitor Fusarium [19]

Hybrid NRP/PKs

Equisetin Antibiotic (bacteria) Fusarium [20,21]
Fusarin C Mycotoxin Fusarium [22]

Cytochalasin Actin inhibitor Penicillium, Chaetomium [23]
Cyclopiazonic acid Mycotoxin Aspergillus, Penicillium [24]

Ochratoxin A Mycotoxin Aspergillus, Penicillium [25,26]

Terpenoids

Gibberellic acid (GA3) Plant hormone Fusarium [27,28]
Deoxynivalenol Mycotoxin Fusarium [29]

Neurosporaxanthin Carotenoid pigment Neurospora, Fusarium [30,31]
Austinol Unknown Aspergillus [32]

Helvolic acid Antibiotic (bacteria) Aspergillus [33]
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Table 1. 
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are mainly known for their participation in chalcone biosynthesis in plants [35], where 
they play a defensive role. Type III PKSs differ from type I PKSs in that they are able to 
interact directly with acyl CoA substrates, whereas in type I this substrate is provided by 
an acyl transporter protein. Type III PKSs are found in fungal genomes, although they are 
much less abundant than type I. 

PKs are usually soluble molecules with well-defined chemical structures. However, 
there are exceptions. Melanins are polymeric pigments with indole and benzene rings, 
and their chemical nature is still under study due to their lack of solubility [36]. They can 
be produced by two alternative pathways, one of them, the most frequent in fungi, initi-
ated by a type I PKS [37]. 

2.2. Non-Ribosomal Peptides 
Non-ribosomal peptides (NRPs) are low-molecular-weight peptides with extensive 

chemical variety [38]. As their name indicates, they are synthesized by a mechanism un-
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and in the participation of atypical amino acids, such as hydroxylated or methylated var-

Figure 1. Chemical structures of the representative SMs from the four major families described in
Table 1.

Type II PKSs are large multienzymatic complexes, combining a set of catalytic activities
that act iteratively and that frequently produce aromatic compounds [34]. This class of
enzymes is typically found in prokaryotes, and genome analyses indicate that they are
absent in fungi. Type III PKSs are homodimeric enzymes of less diverse function. They are
mainly known for their participation in chalcone biosynthesis in plants [35], where they
play a defensive role. Type III PKSs differ from type I PKSs in that they are able to interact
directly with acyl CoA substrates, whereas in type I this substrate is provided by an acyl
transporter protein. Type III PKSs are found in fungal genomes, although they are much
less abundant than type I.

PKs are usually soluble molecules with well-defined chemical structures. However,
there are exceptions. Melanins are polymeric pigments with indole and benzene rings, and
their chemical nature is still under study due to their lack of solubility [36]. They can be
produced by two alternative pathways, one of them, the most frequent in fungi, initiated
by a type I PKS [37].

2.2. Non-Ribosomal Peptides

Non-ribosomal peptides (NRPs) are low-molecular-weight peptides with extensive
chemical variety [38]. As their name indicates, they are synthesized by a mechanism
unrelated to protein synthesis in the ribosome. In addition to their smaller sizes compared
to most proteins, they differ from these in their structures, which are frequently cyclical, and
in the participation of atypical amino acids, such as hydroxylated or methylated variants,
or their D forms. Unlike proteins, which undergo modifications only after their synthesis,
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NRPs undergo chemical changes in their amino acids during their formation or by other
enzymes after they have been released.

Like PKs, NRPs are produced by gigantic multi-enzyme complexes known as NRP
synthetases (NRPSs). They are usually organized as modules, each consisting of several
catalytic domains that function in a coordinated fashion [39]. A basic module includes an
adenylation (A) and a thiolation domain (T). Selection and activation of the substrate is
carried out by the A domain. The substrate is then transferred to the T domain, where it
is covalently linked by a thiodiester bond into a phosphopantetheine unit. Each module
contributes one aminoacyl or aryl residue to be used in the formation of the final NRP.
Other enzymatic domains optionally present in the modules introduce modifications in
the residues, which can lead to their epimerization (E) or methylation (M), or to other
chemical changes, while the condensation domains (C) catalyze the union by peptide bonds
of substrates linked to the adjacent phosphopantetheine. Reactions proceed until the full
NRP is generated. The NRP’s release is often accompanied by a cycling reaction carried
out by a thioesterase domain located at the carbon end of the multienzyme complex. In
many cases, the NRP undergoes new chemical modifications by other enzymes, including
oxidation, halogenation, or glycosylation reactions, among others, thereby increasing the
chemical diversity of the resulting NRPs.

A database of NRPs called Norine [40] is available to researchers, and at the time
this article was written it included 1740 peptides formed by 544 different monomers.
The number of monomers in each NRP varies from 2 to 26 [41]. Due to their numerous
applications, different strategies have been used to improve the biotechnological production
of many NRPs [38,42,43]. Some representative examples of fungal NRPs are described in
Table 1 and Figure 1.

2.3. Hybrid Non-Ribosomal Peptide/Polyketides

Some SMs are the result of the joint action of PKS and NRPS [44]. Both enzymatic
complexes can be encoded by independent genes participating in the same biosynthetic
pathway. This is the case in the ochratoxin A biosynthetic clusters in Aspergillus and
Penicillium sp. [25]. Other examples are the PKS and NRPS genes involved in the syn-
thesis of the lipopeptides fusaristatin A in Fusarium graminearum and W493 A and B in
Fusarium pseudograminearum [45].

The similarities between the modular structures of type I PKS and NRPS have fa-
cilitated the evolution of chimeric genes, which combine PKS and NRPS modules [46].
Examples are found with the two orientations in their amino-carboxyl distribution, PKS–
NRPS and NRPS–PKS [47]. In these large multifunctional complexes, usually consisting of
a single NRPS module with one or more PKS modules, the substrates are passed between
the different modules to introduce the corresponding PK or NRP extension to the molecule.
This new combinatorial possibility provides an additional source of diversity to the result-
ing compounds [48]. Examples of PKS–NRPS hybrid products are shown in Table 1 and
Figure 1.

2.4. Terpenoids

Terpenoids are a vast family of chemicals derived from a molecule of five carbon
atoms (5-C), isopentenyl diphosphate (IPP) [49]. This compound can be produced by
two different biosynthetic pathways: the deoxyxylulose 5-phosphate pathway, and the
mevalonate pathway [50]. The latter is the only one that has been identified so far in fungi.
The name of this pathway comes from the synthesis of IPP from mevalonate, a compound
produced by hydroxymethyl-glutaryl CoA reductase. The dephosphorylation of IPP gives
isoprene, a volatile molecule abundant in nature due to its emission by plants. In turn,
many low-molecular-weight terpenoids produced by fungi are volatile, giving rise to the
concept of “volatome”, as the one described in Aspergillus fumigatus [51].

The synthesis of all terpenoids begins with the fusion of IPP with dimethylallyl
diphosphate (DMAPP), an IPP isomer [52]. The result of this reaction is 10-C geranyl
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diphosphate (GPP), precursor of monoterpenoids. New additions of IPP yield 15-C farnesyl
diphosphate (FPP), the origin of sesquiterpenoids, and 20-C geranylgeranyl diphosphate,
which gives rise to diterpenoids. The union of two FPP molecules leads to triterpenoids,
and the union of two GGPP to tetraterpenoids. In general, the responsible enzymes are
known as terpenoid synthases [53]. Terpenoids may derive from any of these branches,
resulting in a large chemical diversity [54,55]. Thus, to cite some well-known terpenoid
families that are also mentioned below, gibberellins are diterpenoids, trichothecenes are
sesquiterpenoids, and carotenoids are tetraterpenoids.

Once the initial terpenoid skeleton has been synthesized, different enzymes introduce
diverse chemical modifications until the mature SM is generated. Among the terpenoid
synthases that intervene on linear chains there is a characteristic type, known as terpenoid
cyclases, with recognizable biochemical and structural features [56]. These enzymes are
largely responsible for the enormous diversity of terpenoids found in nature, including
many fungal SMs. In some cases, a molecule of non-terpenoid origin is added to the
structure, giving rise to the meroterpenoids [57].

3. Genetic Organization and Regulation of SM Genes

The genes responsible for SM synthesis are usually clustered in the fungal genomes
sharing the same regulation [58]. Typical SM gene clusters contain a key pathway gene,
coding for a PKS, a NRPS, or a terpene cyclase, which is often easily identified by its
larger size. They also contain genes for other modifying enzymes frequently belonging
to easily recognizable families, e.g., P450 monooxygenases [59], and in some cases genes
for permeases involved in their excretion. SM biosynthetic pathways can be controlled by
specific regulatory genes [60] frequently belonging to the Zn cluster family and normally
included in the corresponding cluster. As a prototypical example, in F. fujikuroi the tran-
scription factor Bik5 is necessary for the synthesis of bikaverin, supported in this case by a
second regulatory protein Bik4 [61]. In other cases, regulatory genes are not found in the
cluster, as occurs with the gibberellin cluster in the same species [27] or in penicillin and
cephalosporin clusters in other fungi [62].

Due to the interest of SM production, much attention has been devoted to its regulatory
mechanisms. SM clusters are regulated by a diversity of environmental cues and are
controlled by different regulatory proteins, which are frequently involved in more general
regulatory networks [63,64]. External signals controlling SM biosynthesis include the
availability of nitrogen or carbon sources, pH, or light, mediated by global regulation
systems that act simultaneously on different SM clusters as well as on other metabolic
processes [65]. Regulation of SM production by nitrogen is very frequent [66], and different
proteins participate in it, among which AreA-like proteins play a pivotal role. Carbon
source availability affects many metabolic processes [67], including SM production [68],
that usually involve a catabolite repressor of the CreA family. SM regulation by pH is
usually controlled by proteins of the PacC family, with examples in different fungi [69].
Another general regulator of special interest is LaeA [70], which is associated with light
regulation and development control with Velvet proteins forming a complex [71,72]. It has
recently been observed that the main regulator by light in F. fujikuroi, WcoA, positively or
negatively controls different SM clusters in this fungus [73]. This double positive/negative
role on different pathways is frequent in these global regulatory systems, even when
responding to the same signal. For example, AreA mutation results in derepression of
gibberellin biosynthesis in F. fujikuroi [74], but repression of fumonisin production in F.
verticillioides [75]. Examples of mutations on genes affecting fungal SM production—in
some cases encoding enzymes, as found for glutamine synthetase in F. fujikuroi [76]—have
been abundantly described in the literature.

SM clusters may be in any chromosomal region, but in many cases they are found
in subtelomeric regions [77]. Such locations may be associated with epigenetic silencing
in the form of heterochromatin. Supporting this, some regulatory proteins modulate SM
production at the level of chromatin structure by histone modifications [78], a conclusion
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reinforced by the effects of mutations of genes involved in such modifications, such as that
for the methyltransferase Kmt6 in Fusarium sp. [79,80]. This level of regulation provides a
selective advantage to the genomic organization as clusters since it allows the simultaneous
inactivation of all the genes of a pathway through heterochromatinization. This is the way
through which LaeA acts in the Velvet complex, but other regulatory proteins, such as
AreA, also participate in this control mechanism [81]. Regulation occurs also at the level of
cell compartmentalization: e.g., there are regulatory systems for controlling the enzymes of
each metabolic pathway and their localization in the appropriate cellular compartments,
such as peroxisomes, vacuoles, endoplasmic reticulum and Golgi, or cytosol [82].

4. Biological Functions

As already stated, a distinctive feature of SMs is that they are dispensable for the
fungus under controlled growth conditions, so that mutants unable to produce them
are not affected in their viability in the laboratory. However, the persistence of these
biosynthetic processes in fungi imply adaptive advantages in their natural environment. In
some cases the functions are obvious and in other cases they are less clear. Some illustrative
examples of known SM functions are mentioned below. Melanin protects against UV
radiation, facilitating the survival of the fungus under strong sun exposure. However, it
also exerts protective effects against other sources of stress, such as oxidative or thermal
stress, as well as mechanical damage [83]. SMs can fulfill more specific physiological
functions. Siderophores are NRPs that act as high-affinity iron chelators, which are used
by some fungi to scavenge environmental iron or to sequestrate internal reactive iron [84].
Fusarubin and 5-deoxybostrycoidin-based melanin provide dark pigmentation to perithecia
in F. fujikuroi [85] and F. graminearum [86], respectively. Other SMs are used for more than
one purpose. β-carotene is useful as a protective agent against oxidative stress [87], but it is
also used as a source of derivatives with more specific functions. In mucormycotina fungi,
such as B. trispora or P. blakesleeanus, β-carotene is cleaved to produce sexual hormones
called trisporic acids, which are needed to carry out the sexual cycle [88,89]. However, in F.
fujikuroi [30] and Ustilago maydis [90] the same carotene is cleaved to produce retinal, the
prosthetic group of rhodopsins.

Many secondary metabolites play roles in the interactions of fungi with other organ-
isms, both in terms of competition and pathogenesis [91]. There are many examples where
fungi produce antibiotics to avoid competition. For example, Beauveria bassiana produces
the polyketide oosporein to limit bacterial growth in the parasitized insect [92]. It is well
known that the interaction between fungi and plants, either mutualistic or pathogenic, in-
volves the simultaneous production of molecular signals from the interacting species [93,94].
Moreover, some SM gene clusters are expressed in the host plant but not in others. The F.
fujikuroi FUB1 gene, coding for a PKS for the synthesis of the toxin fusaric acid, is expressed
when infecting its host but not when infecting other plants [95]. The participation of SMs
in pathogenesis is not easily predictable. In Pyricularia oryzae, the causative agent of rice
blast disease, melanins are required for pathogenesis, but no role is apparently played by
tenuazonic acid, a hybrid NRP/PKS mycotoxin, by nectriapyrones, polyketide compounds
with antibacterial activity, or by pyriculols, phytotoxic polyketide compounds [96]. The
dependence on specific needs in their ecological niches explains why many fungal SM
clusters are not expressed under laboratory conditions. However, their functions may be
investigated by activating them in a targeted way [97,98].

The relation of SMs with pathogenesis has been investigated by analyzing the virulence
of mutants with alterations in their syntheses. As an example, mutants of fusaric acid
production in F. oxysporum revealed that this SM contributes importantly to virulence
in tomato plants and in immunocompromised mice [99]. Another interesting example
was provided by a study of the role of gibberellins in F. fujikuroi, which are assumed
to participate in the infection of rice because of the characteristic over-elongation of the
seedlings for the “bakanae” disease caused by this fungus. Infection of rice with a non-
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producing F. fujikuroi mutant showed a lack of over-elongation in the infected seedlings
and a reduced cell invasion capacity of the hyphae in the plant [100].

5. Biological Properties and Applications

Many SMs possess useful biological properties or have biotechnological applica-
tions [101], while others are detrimental or have disadvantageous effects [102,103]. SMs
useful for humans include a large diversity of antibiotics. In addition to the historical
example of penicillin, there are numerous SMs with a very varied spectrum of antibio-
sis. Among them are other antibacterials, such as cephalosporin obtained from Acremo-
nium chrysogenum [104], antifungals, such as griseofulvin produced by Penicillium or other
fungi [105], or antiprotozoals, such as bikaverin synthesized by Fusarium species [14]. Other
compounds have medical or pharmaceutical applications, such as immunosuppressant
cyclosporin A, produced by Tolypocladium inflatum [16]; cholesterol-lowering statins, with
lovastatin from Aspergillus terreus as the best known example [12]; vitamin-A precursor
β-carotene, industrially obtained from Blakeslea trispora [106]; and anticancer drugs, such
as the indole alkaloid camptothecin and taxol, produced by the endophytic fungus En-
trophospora infrequens [107] and Taxomyces andreanae [108], respectively. An outstanding
case in biotechnological applications is the aforementioned gibberellins, growth-regulating
plant hormones with agricultural applications, which are mostly represented by gibberellic
acid obtained from F. fujikuroi [27].

Frequently, secondary metabolites absorb visible light and have striking colors, ranging
across all ranges of the spectrum: e.g., bikaverin and fusarubin have a reddish pigmen-
tation [28]. In some cases, although it is not related to their biological function, different
SMs are used commercially as pigments. Among them some carotenoids stand out, such as
astaxanthin. This pigment, produced by the yeast Xhantophyllomyces dendrorhous [109] and
some algae, is used in aquaculture as feed additive to provide an orange color to certain
fish and crustaceans. Other well-known fungal pigments are polyketides produced by
Monascus purpurea [110], a fungus used in rice fermentation since ancient times in Chinese
and Japanese cuisine. These polyketides include monascorubramine as well as rubropunc-
tatin and its derivatives, which are of various yellowish, orange, or reddish colors, and
to which numerous healthy properties are attributed, such as anticancer, antidiabetic, or
antiobesity properties.

Regardless of their real roles in nature, many SMs are toxic to humans, and their
presence in plant foods, due to contamination by producing fungi before or after the har-
vest, constitutes an important public health problem [102,103,111]. These harmful SMs are
known generically as mycotoxins. One specially studied for its high toxicity is aflatoxin
B1, produced by various species of Aspergillus [112]. Its consumption is associated with
a syndrome known as acute aflatoxicosis, as well as with liver cancer or other damaging
effects [103]. Many well-known mycotoxins are produced by the Fusarium species [113],
among them fumonisins, zearalenones, trichothecenes, and fusarins. Fumonisins inhibit
sphingolipid metabolism and also have carcinogenic properties. A correlation between
their consumption and esophageal cancer is well documented [102]. Trichothecenes inhibit
protein synthesis and produce toxic syndromes in humans and animals. A well-known
trichothecene is deoxynivalenol, which produces alimentary toxic aleukia, acute gastroen-
teritis, and growth impairment, among other effects [103]. Fusarins, especially fusarin
C, are mutagenic in the Ames test, presumably due to their transformation into more
toxic derivatives in the body [114]. Another mutagenic mycotoxin is ochratoxin A, which
provokes renal cancer [102]. Zearalenones have lower toxicity, but produce an estrogenic
syndrome in pigs, presumably due to their resemblance to this family of hormones [103].

An interesting consequence of the large metabolic diversity of fungi is that different
species produce specific patterns of SMs, which allow for their use in taxonomic stud-
ies. The identification of fungal species based on the metabolites produced is known as
chemotaxonomy [115]. This tool is especially relevant in the case of lichens, which are
symbiotic associations between a fungus and a photoautotrophic partner, usually an alga.
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Lichens show an enormous capacity to produce SMs, which is mainly due to the fungal
partner [116]. In many cases, these metabolites provide protection against the harmful
effects of UV in their natural habitats [117]. The availability of powerful analytical tech-
niques for metabolite identification allows for the creation of databases, which facilitate the
assignment of lichens based on the metabolites detected [118].

6. Conclusions and Prospects

The production of secondary metabolites by fungi represents a vast field of research
whose interest continues to grow, as evidenced by the large number of publications on the
subject that appear every year. The chemical variety of secondary metabolites is impressive
(see, e.g., [119,120]), of which this entry mentions only a few representative examples. The
large number of investigated SM clusters, many of them with biochemical knowledge of
the encoded enzymes, and the increasing number of fungal genomes whose sequences
are available in the databases, have allowed an explosion of genetic mining work in many
fungi [4,121]. This is facilitated by computer prediction programs, such as SMURF [122],
antiSMASH [123], or MIDDAS-M [124], that allow for the identification of new clusters
whose biosynthetic functions can only be tentatively assumed, pending experimental
demonstration. A current research challenge in this field is the assignment of metabolites
to new clusters that are being discovered, for which a combination of genetic, chemical,
and biochemical methods is used [125–127]. Due to their dispensability, there are consid-
erable differences in the presence of SM clusters not only between different genera, but
also between different species of the same genus, with Aspergillus [128], Penicillium [129],
and Fusarium [130] as outstanding examples of SM versatility. The identification of new
metabolites is an exciting field due to its enormous biotechnological potential, since it
is inferred that most of them remain to be discovered. In this regard, manipulation of
SM pathways taking advantage of the combinatorics that allow the modular organization
of PKS and NRPS enzymes is especially promising, and considerable progress has been
made [131–133]. In conclusion, fungal secondary metabolism constitutes a field in con-
tinuous growth and development, and future discoveries should provide unprecedented
possibilities in medicine or biotechnology.
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