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Definition: Tissue integrity depends on biological tissue stiffness. Tissue integrity can protect both
against age-related diseases and against severity of COVID-19. The disruption of tight junctions
and increase of tissue permeability with advancing age can be related with age-related diseases
as well as with age-dependent COVID-19. Release of tightly bound water from collagen fibrils
leads to the increase of extracellular matrix stiffness and to the associated with matrix stiffness
increased tissue permeability. The link between arterial stiffness and oxidative stress has been
reported and is expected to be studied in more detail in the future. Trehalose can be suggested
for retardation of tightly bound water release and subsequent extracellular matrix crosslinking by
advanced glycation end products. Increase in tissue permeability can be blocked by polyphenols that
inhibit ICAM-1 expression and mitigate cytoskeleton reorganization. NF-κB activation as a result of
increased stiffness and cytoskeleton reorganization can cause both cardiovascular pathologies and
COVID-19. Increased cholesterol content in cell membrane leads to increased virus entry into cell
and increase of cholesterol is linked with cardiovascular diseases. Statins and chitosan are known as
cholesterol-lowering substances. Nrf2 inhibits NF-κB activation and NF-κB inhibits Nrf2 pathway.

Keywords: COVID-19; extracellular matrix; release of bound water; stiffness; NF-κB; Nrf2; polyphenols;
chitosan; cholesterol

1. Introduction

The pandemic of coronavirus disease 2019 (COVID-19) resulted in an unprecedented
crisis in global economy and health-care services. There is no clinically approved antiviral
drug available at present to be used in the fight against COVID-19. Much more clear
understanding of novel coronavirus behavior is necessary in order to combat it.

Statistical data show that incidence of novel coronavirus SARS-COV-2 and severity of
COVID-19 disease were very low in children [1,2], but the chance to become infected and
the fatality rate were very high for the older population, especially in patients aged 80 and
older [2,3].

Cellular processes depend on the mechanical properties of cellular environment [4]
and changes of microenvironment with aging. Development of age-related diseases and
age-dependent COVID-19 may be associated with changes in cellular processes as a re-
sult of gradual time-dependent biochemical and biophysical changes at molecular level
in extracellular matrix, such as collagen crosslinking reactions, dehydration of collagen
fibrils with decreasing binding energy between water molecules and functional groups,
conformational changes of biological macromolecules. These changes increase stiffness
of extracellular matrix with advanced age. Disruption of tissue integrity as a result of
extracellulular matrix stiffening and release of tightly bound water molecules from collagen
is presented in Figure 1.
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from cardiology to the treatment of COVID-19 patients by repurposing already existing 
drugs. 

 
Figure 1. Release of tightly bound water from collagen fibrils increases biological tissue permea-
bility as a result of increase in extracellular matrix (ECM) stiffness. 
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with commonly known increasing of tissue stiffness, and more specifically arterial stiff-
ness, with advanced age. Cells are mechanosensitive and respond to the stiffness of their 
environment [5]. Immune cells are also mechanosensitive. The interaction and mutual 
relationship between immune cells and endothelial cells, vascular smooth muscle cells, 
platelets, and monocytes/macrophages were demonstrated [6]. So, the close link between 
decline in immune system with aging and arterial stiffening with advanced age can be 
suggested. Gradual release of tightly bound water molecules from collagen fibrils can be 
considered as a process driven by entropy. The change of water state from tightly bound 
to loosely bound and free water results in increase of entropy of a system. Water acts as a 
tissue plasticizer and loss of water leads to increase of tissue stiffness and disruption of 
tight junctions and decreased integrity, Figure 1. Extracellular matrix (ECM) stiffening in 
Figure 1 may be replaced by immune system response decline because age-associated 
changes in the immune system are closely related with tissue integrity and barrier func-
tions. There is a link between immune system function and ECM stiffness due to immune 
cells mechanosensitivity. 

Exercise in a hot environment may be considered as a combination of mechanical 
forces and loss of water. The effect of exercise on circulating immune cell responses and 
immune cell function has been reported by researchers at Exercise Physiology Laboratory 
of Texas Christian University [7]. They found that exercise affects immune system and 
that the number of leukocytes, neutrophils, lymphocytes, and natural killer cells were 
higher as a result of exercise. It has been also demonstrated that dehydration is closely 
related with oxidative stress [8]. Evidently oxidative damage leads to disruption of tissue 
integrity and to the increase of tissue permeability. 

Figure 1. Release of tightly bound water from collagen fibrils increases biological tissue permeability
as a result of increase in extracellular matrix (ECM) stiffness.

The aim of this entry is to discuss the potential of results based on mechanobiology of
biomaterials to be used in the possible translation of emerging destiffening therapies from
cardiology to the treatment of COVID-19 patients by repurposing already existing drugs.

Influence of age-related changes on incidence and severity of COVID-19 mentioned
in the introduction is evident. Strong age dependence on disease severity may be related
with commonly known increasing of tissue stiffness, and more specifically arterial stiffness,
with advanced age. Cells are mechanosensitive and respond to the stiffness of their
environment [5]. Immune cells are also mechanosensitive. The interaction and mutual
relationship between immune cells and endothelial cells, vascular smooth muscle cells,
platelets, and monocytes/macrophages were demonstrated [6]. So, the close link between
decline in immune system with aging and arterial stiffening with advanced age can be
suggested. Gradual release of tightly bound water molecules from collagen fibrils can be
considered as a process driven by entropy. The change of water state from tightly bound
to loosely bound and free water results in increase of entropy of a system. Water acts as
a tissue plasticizer and loss of water leads to increase of tissue stiffness and disruption
of tight junctions and decreased integrity, Figure 1. Extracellular matrix (ECM) stiffening
in Figure 1 may be replaced by immune system response decline because age-associated
changes in the immune system are closely related with tissue integrity and barrier functions.
There is a link between immune system function and ECM stiffness due to immune cells
mechanosensitivity.

Exercise in a hot environment may be considered as a combination of mechanical
forces and loss of water. The effect of exercise on circulating immune cell responses and
immune cell function has been reported by researchers at Exercise Physiology Laboratory
of Texas Christian University [7]. They found that exercise affects immune system and that
the number of leukocytes, neutrophils, lymphocytes, and natural killer cells were higher as
a result of exercise. It has been also demonstrated that dehydration is closely related with
oxidative stress [8]. Evidently oxidative damage leads to disruption of tissue integrity and
to the increase of tissue permeability.
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It has been reported that platelet adhesion is higher on rigid chitosan coatings contain-
ing tightly bound water molecules if compared with softer chitosan coatings containing
water molecules with lower binding energy to biological macromolecules [9].

2. Tissue Integrity Factors Involved in COVID-19 Treatment
2.1. Aging, Dehydration, Glycation, and Stiffness

Evidently, host tissue stiffness and permeability play important roles in novel coron-
avirus SARS-COV-2 entry into cells. Children have a high content of tightly bound water
in organism that gradually decreases with advanced age. Dehydration results in increase
of tissue stiffness [10–12] and can be linked with glycation processes and accumulation of
glycation end products [13]. This means that dehydration and glycation processes, as well
as bound water release and transformation into loosely bound and free water, play impor-
tant roles both in age-related pathologies, such as cardiovascular diseases, diabetes, cancer,
and obesity due to increased stiffness and, very likely, in COVID-19. Increased stiffness
has been related with increased tissue permeability as a result of tight junction disruption.
Increase of extracellular matrix stiffness leads to F-actin polymerization regulated by small
GTPase RhoA and stress fibers formation. Inhibition of RhoA/ROCK decreases stress fibers
formation. Stiff extracellular matrices increase RhoA-mediated actomyosin contractility
that occurs with aging. Increased actomyosin contractility leads to the disruption of cell-cell
junctions and increased permeability. Cell-cell junction width in aorta from old mice was
higher if compared with cell-cell junction width in aorta from young mice. Increase in
endothelial permeability leads to the increased leukocyte extravasation and thrombus
formation. Rho-dependent cell contractility is responsible for increased stiffness and it
was shown that using Y-27632, an inhibitor of Rho-associated kinase, it is possible to de-
crease permeability in vitro and in vivo [14]. It has been recently reported that Rho kinase
inhibitor decreases inflammation, immune cell migration, apoptosis, and cell adhesion in
pulmonary endothelial cells in the treatment of acute lung injury [15]. Elevated expression
of adhesion molecules vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion
molecule 1 (ICAM-1), and vascular adhesion protein-1 (VAP-1) was reported in COVID-19
patients [16]. Plasma levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and
interleukin (IL)-6 have been found to be higher in patients with mean carotid-femoral
pulse wave velocity (PWV) > 8 m/s compared with patients having PWV < 8 m/s [17].
Blakney and coauthors demonstrated that IL-6 production increases on rigid substrates.
Macrophages increased expression of associated with inflammation tumor necrosis factor-α
(TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) was observed on stiffer hydrogels [18].
Macrophage behavior depends on substrate stiffness. The anti-inflammatory property of
macrophages on soft and medium gels is ROCK-dependent. Stiff gels were associated with
proinflammatory property of macrophages and decreased migration and phagocytosis [19].
Commonly, tissue density transforms with aging from loose to dense tissue and tissue
density can be related with macrophage activation. It has been found that secretion of
cytokines in 3D collagen matrices is increased with an increase of collagen fibril density.
This means that macrophage activation state, phenotype, and functions are different in
different tissues. Macrophage phenotype can be proinflammatory or anti-inflammatory
depending on microenvironmental cues [20]. Mechanoimmunology is emerging science
still in its infancy and further studies on molecular-scale mechanical forces are needed to
discover precise mechanobiological mechanisms that govern immune responses to changes
in living biological tissue mechanical properties [21].

So, it can be expected that tissue stiffness and inflammation can play important roles
also in COVID-19. This suggests that therapeutic approaches to overcome the COVID-19
can focus on drugs similar to those used in the treatment of above-mentioned age-related
diseases.

There is an urgent need for finding safe drugs for treatment of COVID-19. Uhler
and Shivashankar [22] in the recent publication linked replication of coronaviruses with
the influenced by ageing cytoskeleton-dependent signaling and 3D genome organization.
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They considered that cytoskeleton-dependent NF-κB pathway can control viral replication.
Gene expression programs depend on the mechanical state of cells. NF-κB and mechan-
otransduction pathways are considered as possible therapeutic targets. It is important to
understand that mechanical states have essential influence on cellular processes and on
coronavirus function. So, if signaling pathways are already activated and result in any
of age-related diseases, the pathogenicity of coronavirus will be higher as it was already
observed in clinical practice.

Tissue stiffness depends on binding energy of water molecules to biological macro-
molecules and release of tightly bound water as a plasticizer leads to the increase of
tissue stiffness, tissue permeability, and to development of age-related diseases and age-
dependent COVID-19, Figure 2.
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increased risk of COVID-19.

2.2. Inflammation and Arterial Stiffness

It has been concluded that inflammation plays an important role in the develop-
ment of arterial stiffness. The interplay between arterial stiffness and inflammation is
evident [23,24]. Arterial stiffness leads to development of inflammation mainly due to cells
mechanosensing, for example neutrophils, that play an important role in immune response,
migrate more slowly on stiffer substrates because of higher adhesion but they migrate on
higher distances [25]. Inflammation increases due to increased arterial stiffness rather than
arterial stiffness increases due to inflammation, Figure 3.
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High-sensitivity C-reactive protein (hs-CRP) levels have been associated with in-
creased aortic stiffness [26–28]. High-sensitivity C-reactive protein (hs-CRP) is a marker
of chronic low-grade inflammation. A number of drugs that reduce C-reactive protein
levels have been reviewed by Prasad [29]. It has been reported that C-reactive protein was
upregulated in patients with severe COVID-19 [30,31]. So, the drugs that reduce C-reactive
protein levels can be tested in the treatment of COVID-19 patients.

2.3. Expression of Cytokines

Dehydration and increased with aging tissue stiffness initiates actomyosin contrac-
tions, which triggers NF-κB activation, Figure 2. NF-κB activation was related with various
age-related diseases and overproduction of proinflammatory cytokines (TNF-α and IL-6).
Activation of Nrf2 prevents transcriptional upregulation of proinflammatory cytokines [32]
and Nrf2-dependent gene HO-1 expression suppresses TNF-α-stimulated NF-kB and
inhibits vascular cell adhesion molecule-1 expression [33], Figure 3.

The various methods to prevent or decrease cytokine storm in COVID-19 patients
have been recently reviewed [34]. The application of interleukin-1 blockers, interleukin-
6 inhibitors, and Janus kinase inhibitors in treatment of COVID-19 has been suggested
with the aim to block hyperinflammation [35]. The therapy by the anti-IL-6 receptor
antibody tocilizumab results in the decrease of arterial stiffness determined by pulse
wave velocity [36]. So, tocilizumab may be considered also as a destiffening drug with
a potential to improve biological tissue integrity. Tocilizumab has been suggested as
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additional treatment for COVID-19 patients with the aim to decrease a risk of cytokine
storm by reducing C-reactive protein (CRP) and IL-6 content [37].

Effectiveness of canakinumab has been suggested [38]. Canakinumab is a human
anti-IL-1β monoclonal antibody developed by Novartis and at the end of 2020 it has been
announced that canakinumab failed to improve survival in COVID-19 [39]. According
to European Medical Agency report canakinumab did not change aortic stiffness [40].
However, improvement both in cardiovascular diseases and in COVID-19 can be achieved
by the decrease of extracellular matrix stiffness, Figure 2.

Clinical efficacy of anakinra in severely ill COVID-19 patients has been suggested.
Decrease of hyperinflammation as a result of treatment with anakinra was recently re-
ported [41]. Anakinra inhibits both IL-1α and IL-1β. It has been found that mice that lack
autophagy gene in macrophages, developed significantly more severe acute lung with
increased lung permeability and higher IL-1β production in the alveolar space. Autophagy
prevents the development of increased lung permeability by suppressing IL-1β [42]. It has
been also recently reported that substrate stiffness essentially impacts autophagy [43]. So,
it is possible to suggest that changes in microenvironment stiffness can prevent the increase
in lung permeability.

Advanced age and severity of COVID-19 are the risk factors for the development
of post COVID-19 pulmonary fibrosis. This means that increased extracellular matrix
stiffness and tissue permeability can be associated with lung fibrosis development during
COVID-19 and after the discharge from hospital. Cytokine storm with IL-6 and TNFα
involved in the process may initiate pulmonary fibrosis development. Antifibrotic drugs,
such as pirfenidone and nintedanib, have been recommended for the use in the treatment
of post COVID-19 pulmonary fibrosis [44].

Tissue stiffness plays an important role in fibrosis initiation and development [45,46].
It has been suggested that increase in liver stiffness plays an important role in initiation of
the early stages of fibrosis [47].

It has been reported that transcriptional effectors of the Hippo pathway yes-associated
protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are expressed
in fibrotic lung tissue and depending on matrix stiffness coordinate fibroblast activation
and matrix synthesis. Both YAP and TAZ translocate into the nuclei of fibroblasts only if
they are cultured on pathologically stiff matrices. Active YAP and TAZ are fibrogenic and
drive the development of fibrosis in the lung [48].

Increased extracellular matrix stiffness inhibits expression of COX-2 (cyclooxygenase-
2) and limits synthesis of antifibrotic prostaglandin E(2) (PGE2) [49]. Increased matrix
stiffness leads to fibroblast activation and collagen secretion [50,51] and soft matrix can
reverse fibroblast activation in idiopathic pulmonary fibrosis [52].

Researchers at Lund University, Sweden, linked pulmonary fibrosis development with
COVID-19 severity [53]. Pulmonary fibrosis was associated with the increased expression
of angiotensin converting enzyme 2 (ACE2) in risk groups with increased tissue stiffness in
patients with advanced age [54], obesity [55], and cardiovascular diseases [56]. So increased
ACE2 expression can be linked with increased matrix stiffness. ACE2 are functional
receptors for SARS-CoV-2. SARS-CoV-2 activates fibrosis-related genes and increased
production of ACE2 that drives lung fibrosis [57,58].

In COVID-19 patients requiring mechanical ventilation, ACE2 expression in lung
increases with age and did not change with age for nonventilated patients [59].

However, age-dependent decrease of ACE2 also has been reported and negative corre-
lation between ACE2 expression and COVID-19 fatality has been suggested [60]. Biological
tissue permeability also increases with aging. Researchers at Shanghai Jiaotong Univer-
sity, China, reported that acute lung injury (ALI) increased lung vessel permeability, but
ACE2 alleviated the ALI-induced increases in lung vessel permeability and suppresses the
severity of ALI [61]. ACE2 levels can be associated with pulmonary vascular permeability.
Low levels of ACE2 may result in increased levels of angiotensin II (AngII) which leads
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to inflammation, fibrosis, and oxidative stress during infection with SARS-CoV-2 [62].
Angiotensin receptor antagonists decrease arterial stiffness [63].

2.4. Polyphenols

It has been shown [64] that green tea polyphenols, such as (-)-epigallocatechin gallate
(EGCG), regulate tight junctions reducing blood–brain barrier (BBB) permeability dur-
ing experimental focal cerebral ischemia in animal experiments with male Wistar rats.
Flavonoids genistein, quercetin, myricetin, and EGCG improve intestinal tight junction bar-
rier function [65]. Impairment of the intercellular tight junction is associated with various
age-related diseases. Intestinal permeability is elevated in the older population [66]. The
effect of polyphenols on intestinal permeability has been recently reviewed [2,67]. Polyphe-
nols suppress ICAM-1 expression [16], Figure 2, and increase tissue integrity. Cytoskeleton
reorganization leads to the NF-κB activation [67] and to the increase of tissue stiffness,
Figure 2. It has been also suggested that the ability of vitamin D to maintain tight junctions
can decrease the incidence, severity, and risk of death from influenza, pneumonia, and the
COVID-19 pandemic [68]. It has been suggested that flavonoid supplements combined
with vitamin D3 can activate transcription factor Nrf2, and decrease SARS-CoV-2 infection
severity, reducing oxidative stress and downregulating ACE2 receptors [69]. Downregula-
tion of ACE2 receptors by phytochemical composition PB125 has been also suggested [70].
Vitamin D decreases aortic stiffness. At the same time, it has been demonstrated that
vitamin D supplementation could reduce risk of influenza and COVID-19 infections and
deaths [2,68].

2.5. Nrf2-Keap1 Pathway

Nrf2-Keap1 pathway regulates tight junction proteins in intestinal barrier by sup-
pressing the NF-κB pathway and decreasing reactive oxygen species generation. Nrf2
translocation into the nucleus activates antioxidant and cytoprotective gene expression [71].
Nrf2 can be activated by anthocyanins [72], sulforaphane [73], PB125 synergistic combi-
nation of phytochemical extracts of Rosmarinus officinalis, Withania somnifera, and Sophora
japonica [70,74] and by curcumin [75,76]. Expression of Nrf2 and its downstream genes
was upregulated in chondrocytes treated with hyaluronic acid [77]. Nrf2-dependent anti-
inflammatory drugs from plant extracts have been reviewed [78].

2.6. NF-κB Activation

COVID-19 can be considered as an age-dependent disease. So, the role of NF-κB
activation in development of COVID-19 disease must be investigated and the potential
effectiveness of NF-κB pathway inhibitors in the treatment of COVID-19 disease must be
estimated. Downregulation of NF-κB, as a pathway involved in the inflammation process,
by polyphenols was suggested [67,79]. Increased survival of coronavirus infected mice
as a result of inhibition of NF-κB mediated inflammation was reported [80]. It has been
recently reported [81] that N-acetyl-cysteine, alpha-lipoic acid, and glutathione inhibit
TNF-α-induced NF-κB activation. Blocking NF-κB decreases cytokine storm syndrome in
patients suffering with COVID 19 pneumonia. Zinc and vitamin C may also lower cytokine
production.

In a number of publications, a link between elevated serum levels of TNF-α and
NF-κB activation and increased vascular stiffness has been demonstrated [82–89]. Intestinal
permeability also increases with aging under elevated serum levels of TNF-α. Anti-TNF-α
therapy can reverse negative changes [90]. It has been recently reported that disrupted
gut barrier integrity is responsible for COVID-19 severity [91]. NF-κB and Nrf2 play func-
tionally opposing roles in the pathological processes. It has been reported that in the cells
where NF-κB and Nrf2 were simultaneously activated NF-κB p65 subunit suppressed the
transcriptional activity of Nrf2 decreasing the expression of anti-inflammatory or antitumor
genes [92]. Activation of Nrf2 can also suppress NF-κB-mediated inflammatory processes
in COVID-19 [92], Figure 4. Application of sulforaphane, as inducer of Nrf2, has been
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suggested for treatment of COVID-19 [93]. Nrf2 activation in peritoneal macrophages
decreases the production of COX-2 (cyclooxygenase 2), TNFα, iNOS (inducible nitric oxide
synthase), and IL-1β in response to lipopolysaccharides [94,95]. Human adipose-derived
mesenchymal stem cells on mechanically tunable fibronectin-conjugated polyacrylamide
(FN-PAAm) hydrogel substrates have been studied and it has been found that the intranu-
clear Nrf2 level of the cells grown on the soft 0.15 kPa FN-PAAm hydrogel was about
three times higher compared with intranuclear Nrf2 level in the cells cultured on the hard
glass surfaces. Upregulation of downstream target of Nrf2 heme oxygenase-1 was also
reported [96]. So, the decrease in substrate stiffness activated Nrf2.
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2.7. Obesity

Intestinal permeability is elevated in obese subjects. Zonulin level, a potential marker
of interstitial permeability, positively correlated with age, body mass, fat mass, and fat
percentage [97]. Obesity increases extracellular matrix stiffness and enhances breast cancer
risk. Adipose stromal cells isolated from obese mice deposited denser and stiffer extracellu-
lar matrix if compared with adipose stromal cells from lean control mice [98]. Obesity was
associated with arterial stiffness [55]. Severity of COVID-19 is also higher in obese subjects.

Similarly, to the link between obesity and malignancy, the link between obesity and
COVID 19 may be expected.

2.8. Trehalose

Trehalose, a nonreducing disaccharide, has been generally recognized as safe (GRAS)
status. Trehalose has been proposed by researchers at Cedars-Sinai Medical Center, Los
Angeles, USA for COVID-19 containment [99]. It was discovered in 2007 by researchers
at Addenbrooke’s Hospital, University of Cambridge, United Kingdom that trehalose
is an autophagy activator [100]. It has been reported in 2009 that trehalose inhibits in-
flammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) produc-
tion [101].Trehalose has been suggested to be used in diabetes management [102]. Trehalose
demonstrated anti-inflammatory and antioxidant effects [103]. Trehalose can inhibit release
of tightly bound water in extracellular matrix (ECM) preventing increase of ECM stiffness
and related increase in production of inflammatory cytokines, Figure 2.

2.9. Cholesterol

Decrease in extracellular matrix stiffness and related Nrf2 activation results in upregu-
lation of heme oxygenase-1(HO-1) expression, Figure 3. The potential of HO-1 in the fight
against COVID-19 has been described by Hooper [104]. He suggested that heme oxygenase
level can be increased by HO-1 inducers such as cholesterol-lowering medications statins,
curcumin, resveratrol, melatonin, hemin, and estrogen.

Low HO-1 content or higher tissue permeability due to higher extracellular matrix
stiffness in the older population can be related with higher incidence and severity of
COVID-19 disease [2,104]. It has been demonstrated that cholesterol increases binding
of SARS-CoV-2 to the cell surface. High cholesterol level in lipid rafts on the plasma
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membrane containing angiotensin-converting enzyme 2 (ACE2) receptors for the spike pro-
tein of coronaviruses plays an important role in the coronavirus entry processes [105,106].
Cholesterol level in tissue increases with aging. High content of cholesterol can be linked
with high arterial stiffness. Obesity was associated with increased arterial stiffness and
elevated cholesterol and C-peptide levels [107]. Statins can decrease content of choles-
terol in the membranes of cells, and reduced content of cholesterol can prevent viruses
from entering cells [108,109]. Researchers at University of California San Diego, USA
suggested that depletion of cell membrane cholesterol blocks SARS-CoV-2 entry and de-
creased severity of COVID 19 [109]. It has been also suggested that simvastatin can reduce
matrix stiffness [110]. Antiviral activities of statins against influenza have been already
discussed and decrease of proinflammatory cytokines TNF-α and IL-6 by simvastatin and
atorvastatin was reported [111,112]. Evidently now is the time for experimental and clinical
confirmation of statins applicability in COVID-19 treatment [111]. It is well known that
chitosan also can decrease the content of cholesterol [113]. Chitosan prevents cholesterol
deposition into erythrocyte membranes [114]. So, chitosan derivatives can be investigated
with the aim to find the best structural parameters and prepare chitosan to be used in
prevention of SARS-COV-2 virus entry into host cells. However, it must be always taken
into account that glycation reactions can take place in the presence of chitosan [115].

3. Conclusions and Prospects

Changes in immune system response with aging can be closely related with increased
tissue stiffening and disruption of tight junctions.

Incidence and severity of COVID-19 depends on patient’s biological tissue quality.
High resistance in children and high incidence and severity in elderly was observed.

Biological tissue function, structure, and quality change with advanced age as a result
of extracellular matrix stiffening. Tissue stiffening can be explained by transformation of
tightly bound water into loosely bound and free water and by density changes in collagen
fibrils due to local release of water. Disruption of tight junctions in extracellular matrix
leads to reduction of tissue integrity and increased cell membrane permeability. Such
age-related processes change vulnerability to COVID-19, its incidence, and severity with
aging. Decrease in tissue integrity can be observed both in the aging processes and in
COVID-19. So, a more specific treatment of COVID-19 must be developed and provided
for the older population in the future.

Mechanosensing plays an important role in the development of age-related diseases,
such as hypertension, diabetes, cardiovascular diseases, obesity, neurologic diseases, and
cancer as well as in the development of age-dependent COVID-19.

TNF-α antagonists possess a beneficial effect on aortic stiffness and extracellular
matrix integrity and have potential to protect the elderly population both from age-related
diseases and from COVID-19.

The potential application of destiffening therapies for treatment of COVID-19 and
age-related diseases must be estimated.

Oxidative stress is related with tissue dehydration. Release of tightly bound water
molecules from collagen fibrils causes disruption in tissue integrity. Dehydration can result
in accumulation of reactive oxygen species and increase of oxidative stress.

Trehalose has potential to be used in COVID-19 prophylaxis and treatment due to its
autophagy-dependent antiviral activities and inhibition of tightly bound water release in
ECM.

Inhibition of TNF-α-induced NF-κB activation decreases cytokine storm in patients
suffering with COVID 19. NF-κB inhibitors and Nrf2 activators have been suggested for
COVID 19 treatment.
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