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Abstract: The Tsallis q-Gaussian distribution is a powerful generalization of the standard Gaussian
distribution and is commonly used in various fields, including non-extensive statistical mechanics,
financial markets and image processing. It belongs to the q-distribution family, which is characterized
by a non-additive entropy. Due to their versatility and practicality, q-Gaussians are a natural choice for
modeling input quantities in measurement models. This paper presents the characteristic function of a
linear combination of independent q-Gaussian random variables and proposes a numerical method for
its inversion. The proposed technique makes it possible to determine the exact probability distribution
of the output quantity in linear measurement models, with the input quantities modeled as independent
q-Gaussian random variables. It provides an alternative computational procedure to the Monte Carlo
method for uncertainty analysis through the propagation of distributions.
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1. Introduction

According to Supplement 1 [1] of the Guide to the Expression of Uncertainty in Mea-
surement (GUM) [2], a method for evaluating measurement uncertainty consists of three
main stages: formulation, propagation and summarization. The first stage, formulation, is
particularly crucial, as it involves a series of important steps that must be taken in order to
accurately determine the measurement output quantity or measurand. These steps include
defining the measurand, identifying the quantities that influence it, developing a model
or measurement equation that relates the output to the inputs and assigning probability
density functions (PDFs) to the input quantities based on available knowledge. Typically,
this knowledge is derived from direct measurements and expert knowledge. In addition
to the common PDFs such as Gaussian (normal) and rectangular (uniform) distributions,
other distributions based on reasonable principles and available information may also
be used.

In some cases, it may be necessary to assign PDFs to quantities that have not been
explicitly measured or for which only partial information is available. The principle of
maximum entropy ( Entropy is a fundamental concept that finds applications in various
scientific and engineering fields such as measurement, probability, statistics and information
theory. It was introduced by William Rankine, Rudolf Clausius, Ludwig Boltzmann, Josiah
Willard Gibbs, James Clerk Maxwell and other scientists in the second half of the 19th
century. Claude Shannon later expanded on the concept of entropy in information theory.
Entropy provides a useful tool for characterizing uncertainty, randomness and information
content in different systems. The higher the entropy, the more disordered or uncertain the
system is. In measuring uncertainty, entropy quantifies the uncertainty in a measurement
by characterizing the probability distribution of the measurement result. The principle of
maximum entropy states that the probability distribution that best represents the current
state of knowledge about a system is the one with the largest entropy. This principle was
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first articulated by Edwin Thompson Jaynes in 1957) is a valuable tool for this task, as it
allows us to construct a PDF that accurately characterizes our incomplete knowledge of a
quantity. This involves maximizing the traditional entropy, as defined, e.g., by Shannon,
subject to constraints imposed by the available information. The principle of maximum
entropy is particularly useful in situations where there are no indications available and we
must rely solely on the available information to represent the PDF of a given quantity. To
learn more about the principle of maximum entropy and its application in measurement
and uncertainty evaluation, consult the Supplements to the GUM [1,3].

The Tsallis q-Gaussian distribution is a probability distribution introduced by Tsallis [4]
as a generalization of the standard normal (Gaussian) distribution based on maximizing the
Tsallis entropy under appropriate constraints. It belongs to a larger family of probability
distributions known as q-distributions, characterized by a non-additive entropy that gen-
eralizes the Boltzmann–Gibbs entropy used in statistical mechanics; for more details, see,
e.g., [5]. Non-additive entropy refers to a family of entropy measures that do not satisfy the
additivity property of the traditional additive entropy measures. Additivity means that the
entropy of a joint system can be obtained by adding the entropy of the individual systems.
However, in some cases, additivity may not hold, particularly for complex systems with
non-linear interactions between their components.

Non-additive entropy measures are used in various fields, such as physics, information
theory and economics, to quantify the degree of uncertainty or disorder in a system that
involves non-linear interactions. Examples of non-additive entropy measures include Tsallis
entropy and Renyi entropy, which are widely used in the study of complex systems and
statistical mechanics. These measures have been found to be more suitable for modeling
complex systems than the traditional additive entropy measures.

Compared to the standard Gaussian distribution the spread of the q-Gaussian dis-
tribution depends on both the scale parameter and the q-index parameter which leads to
different behavior in the tails of the distribution. Depending on the value of the q-index
parameter, the q-Gaussian distribution may have unique properties that make it useful for
modeling specific data. When the value of the q-index parameter is less than one, the distri-
bution has a finite support, meaning that it is bounded on both sides. This can be useful for
modeling data that are known to have a specific range, such as time intervals or distances.
On the other hand, when the value of the q-index parameter is greater than or equal to 5/3,
the variance of the q-Gaussian distribution does not exist, meaning that the distribution has
infinite variance. Moreover, when 2 ≤ q < 3, other moments of the distribution may also
not exist or may not be well-defined and the q-Gaussian distribution is located in a region
of extremely heavy tails. This can be useful for modeling data that has extreme values, such
as data with outliers or natural phenomena with rare but significant events.

The q-Gaussian distribution is a versatile and practical tool that finds potential ap-
plications in various fields such as physics, astronomy, geology, anatomy, economics and
finance, molecular biology and engineering. Its ability to model complex systems with
long-range interactions, memory effects or non-equilibrium dynamics makes it a useful
distribution for real industry applications and as a modeling distribution of input quantities
in measurement models.

In statistical mechanics, q-Gaussian distributions can describe the velocity distribu-
tion of particles in non-extensive systems such as turbulent fluids, plasmas and granular
gases. In geology, q-Gaussian distributions can fit the frequency-magnitude distribu-
tion of earthquakes and volcanic eruptions. In anatomy, q-Gaussian distributions can
model the distribution of human inter-beat intervals and brain activity. In astronomy,
q-Gaussian distributions can represent the distribution of velocities of stars in globular
clusters and galaxies. In economics, q-Gaussian distributions can capture the fat-tailed
behavior of financial returns and volatility. In machine learning, q-Gaussian distributions
can be used as activation functions or basis functions for neural networks and radial basis
function networks.
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Vignat and Plastino [6] explore the possible reasons why q-Gaussian distributions
are frequently observed in various natural and artificial phenomena. They argue that
the detection of q-Gaussian behavior may be influenced by the normalization process
performed by the measurement device. If the incoming data have elliptical symmetry, a
common property of many distributions, then the normalized data will always follow a
q-Gaussian distribution, with a parameter q that depends on the normalization technique.

Beck et al. [7] show that the velocity distribution of particles in a turbulent fluid can be
modeled via a q-Gaussian distribution, with a parameter q that depends on the Reynolds
number, and propose a superstatistical framework to explain the origin of q-Gaussian
behavior in complex systems. Several studies, e.g., [8], have found q-Gaussian behavior
in the returns and volatility of financial assets, with different values of q for different
markets and time scales. Carpena et al. [9] analyzed the distribution of distances between
consecutive occurrences of a given nucleotide in DNA sequences and found that it follows
a q-Gaussian distribution with q close to 2. Burlaga et al. [10] studied the distribution
of fluctuations in the magnetic field and plasma density of the solar wind and observed
that it is well-fitted by a q-Gaussian distribution with q around 1.6 and relates the value
of q to the nonextensive entropy parameter. Anteneodo in [11] investigates the nature of
random variables whose sums lead to q-Gaussian distributions and proposes a simple
statistical mechanism based on non-extensive random walks. The paper also discusses
some examples of applications of q-Gaussian distributions and non-extensive random
walks in physics, biology and finance.

In measurement, it is common to encounter the challenge of having only a small
number of measurement repetitions. When using the Type A evaluation method with
n ≤ 3 measurements that have Gaussian errors, we need to use the Student’s t distribution
with ν ≤ 2 degrees of freedom to model the distribution of the input variable. However,
in this case the variance of the distribution does not exist, which requires caution when
evaluating the associated measurement uncertainty. Nonetheless, as will be explained later,
this distribution can also be represented as a q-Gaussian distribution with q ≥ 5/3.

Combining independent q-Gaussian random variables is a powerful tool for modeling
the behavior of a measurand that involves diverse and complex input quantities. The
q-Gaussians offer a flexible family of distributions that can capture a wide range of statistical
behaviors, making it a suitable choice for such modeling tasks.

In this paper, we propose an approach to assess the probability distribution of output
quantities in linear measurement models using the Characteristic Function Approach (CFA),
as described in [12]. An alternative approach is through the propagation of distributions
using Monte Carlo methods, as outlined in the Supplements of the GUM [1,3].

The paper is arranged as follows. Section 2 presents an overview of the characteristic
function approach for assessing the measurement uncertainty. In Section 3, we derive
the characteristic function of the q-Gaussian random variables and present a numerical
method for inverting the characteristic function (CF) of a linear combination of independent
q-Gaussian random variables, say Y = ∑n

k=1 ckXk. Section 4 describes the basic function-
ality of the MATLAB toolbox CharFunTool which provides a collection of characteristic
functions of various probability distributions and algorithms for their manipulation and
inversion. Section 5 presents some illustrative numerical examples. Section 6 includes
discussion and conclusions.

2. Characteristic Function Approach for Assessing the Measurement Uncertainty

There are various methods and approaches for assessing the measurement uncer-
tainty of a quantity that depends on multiple input quantities characterized with different
probability distributions. The most commonly used methods are those advocated in [1–3].
However, in certain cases, when dealing with distributions such as the Tsallis q-Gaussian
distribution with a q-index greater than or equal to 5/3, the standard uncertainty of some
of the considered input quantities may not exist. In such cases, the approach to evaluating
the uncertainty using the law of propagation of uncertainty, as specified in [2], may not be

https://github.com/witkovsky/CharFunTool
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applicable. Nonetheless, alternative approaches can be used to assess the uncertainty by
evaluating the coverage intervals in these situations and the expanded uncertainty can be
formally stated as the half-width of the interval.

Here we adopt the approach of GUM Supplements [1,3] which consider the output
distribution as a posterior distribution for the measurand obtained by propagating the
distributions of the input quantities through the measurement model. This posterior
distribution is then utilized to calculate an interval or region that encompasses a large
fraction of the distribution of values that could reasonably be attributed to the measured
quantity based on available information. Based on using this paradigm, an ideal method
for evaluating and expressing measurement uncertainty should efficiently provide such
an interval (or region), possibly under additional constraints, with a coverage probability
or level of confidence that corresponds to the required level of certainty, typically with a
specified coverage level, such as 95%. Generally, increasing the coverage level results in a
wider coverage interval or a larger coverage region.

One of the alternative methods to the Monte Carlo method (MCM) proposed in [1,3] for
deriving the probability distribution of the measured quantity and assessing measurement
uncertainty is the Characteristic Function Approach [12]. This approach uses characteristic
functions to fully determine the behavior and properties of probability distributions of
random variables. Although characteristic functions have a fundamental role in several
fields of mathematics, probability theory, statistics and engineering, they can be challenging
to work with, particularly when it comes to inverting them to obtain the cumulative distri-
bution function (CDF) or the probability distribution function (PDF) of the corresponding
random variable and subsequently deriving the corresponding coverage interval with a
specified level of confidence. To address these challenges, various tools and methods have
been developed for evaluating, combining and inverting characteristic functions.

The CFA is primarily used to assess the probability distribution of a quantity that
depends linearly on multiple input quantities with different probability distributions. How-
ever, it can also be applied to nonlinear measurement models if the characteristic function
of the output quantity can be derived or by approximating the nonlinear function linearly
to derive the characteristic function of the output quantity. This linear approximation
is based on the first-order Taylor series expansion of the nonlinear function around the
expected value or the best estimate of the input quantities. The CFA is capable of handling
any type of probability distribution, including non-Gaussian and asymmetric ones, as
long as the characteristic functions of the input quantities are known. The CFA obtains
the characteristic function of the output quantity by applying a transformation rule to the
characteristic functions of the input quantities.

In fact, the characteristic function of a weighted sum of independent random variables
is simple to derive if the measurement model is linear, i.e.,

Y = f (X1, . . . , Xn) = c1X1 + · · ·+ cnXn, (1)

for some known constants c1, . . . , cn (the sensitivity coefficients) and the input quantities Xi
are mutually independent random variables with known distributions. In such situations,
the CF of the output quantity Y is given as

cfY(t) = cfX1(c1t)× · · · × cfXn(cnt), (2)

where by cfXi (t) we denote the (known) CFs of the input quantities Xi.
The probability distribution function and the cumulative distribution function of the

output quantity Y can be obtained by numerically inverting its characteristic function,
which can be efficiently calculated, for example, using a simple trapezoidal quadrature or
other advanced quadrature rules as is the adaptive Gauss–Kronod quadrature, depending
on the complexity and oscilatory properties of the integrand function; see [13,14]. From the
cumulative distribution function, the quantile function and coverage intervals with a speci-
fied coverage level can be derived by selecting appropriate quantiles of the distribution.
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The CFA compares favorably with the MCM, which estimates the probability distri-
bution of the output quantity by generating random samples from the input quantities
and applying the measurement model and the law of propagation of distributions [1,3]. It
offers several advantages, including accuracy (The proper error analysis of the approaches
used for numerical inversion has been studied in the literature for several particular cases.
In general, it is still an open problem which depends on the specific inversion algorithm
and the properties of the characteristic function. Shepard in [15] analyzed the error caused
by approximating the required inversion integral under specific assumptions. The author
suggested that using the trapezium rule to approximate the integral makes it challenging
to manage the induced integration error. Therefore, a simpler Riemann sum has been
employed instead, resulting in a much simpler numerical integration error. This formula-
tion has been successfully applied to solve the problem of finding the exact distribution
function of a quadratic form in normal variables with adequate control of the numerical
error, as demonstrated by Davies in [16].), flexibility, efficiency and repeatability, making it
a valuable method for assessing measurement uncertainty. However, it faces challenges in
finding an explicit expression for the characteristic function of the output quantity and in-
verting it to obtain the CDF, PDF or other statistics. It is worth noting that deriving the joint
characteristic function of a multivariate distribution with stochastically dependent input
quantities and numerically inverting such a characteristic function can be challenging.

3. Characteristic Function of q-Gaussian Distribution

Here we present the derivation of the characteristic function for the q-Gaussian dis-
tribution as well as the characteristic function for a linear combination of independent
q-Gaussian random variables, Y = ∑n

k=1 ckXk, where Xk are independent q-Gaussian ran-
dom variables possibly with different parameters and ck are known constant coefficients.

The probability density function of the Tsallis q-Gaussian distribution is given by:

f (x) = Cq,σ

[
1− (1− q)

1
2

(
x− µ

σ

)2
] 1

1−q

+

, (3)

where Cq,σ is a normalization constant, µ (real) and σ > 0 are the location and scale
parameters of the distribution and [z]+ = max(0, z). The shape parameter q < 3 controls
the degree of non-extensivity of the system and the distribution reduces to the Gaussian
distribution when q = 1.

The parametrization used in this paper is consistent with Wolfram Mathematica,
where σ > 0 represents the scale parameter. It is important to note that this differs from the
parametrization defined by Tsallis—for details see also Wikipedia—where

f (x) = Cq,β

[
1− (1− q)β(x− µ)2

] 1
1−q

+
, (4)

which uses β > 0 as the rate parameter, such that β = 1/(2σ2) or σ =
√

1/(2β).
We use X ∼ TQG(µ, σ, q) to denote a random variable with a Tsallis q-Gaussian

distribution, where µ ∈ R is the location parameter, σ > 0 is the scale parameter and
q < 3 is the shape parameter known as the Tsallis q-index. The distribution TQG(µ, σ, q)
is parametrized such that it is a normal distribution with mean µ and variance σ2 when
q = 1, i.e., X ∼ N

(
µ, σ2), or

X = µ + σZ, (5)

where Z ∼ N(0, 1) is a random variable with the standard normal distribution.

https://reference.wolfram.com/language/ref/TsallisQGaussianDistribution.html
https://en.wikipedia.org/wiki/Q-Gaussian_distribution
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Moreover, for q < 1, X is a bounded random variable with its distribution proportional
to a scaled and shifted symmetric beta distribution. In particular, we obtain

X = µ + σ

√
2

1− q
(2B− 1), (6)

where B ∼ Beta(θ, θ) is a beta distributed random variable with both shape parameters
equal to θ = 2−q

1−q . The support of this distribution is limited to〈
µ− σ

√
2

1− q
, µ + σ

√
2

1− q

〉
. (7)

For 1 < q < 3, the distribution is formally proportional to a scaled and shifted Student
t-distribution, which is often preferred over the Gaussian distribution due to its heavy tails,
meaning that it has a higher probability of extreme events. In particular, we obtain

X = µ + σ

√
2

3− q
T, (8)

where T ∼ t(ν) is a Student t-distributed random variable with ν = 3−q
q−1 degrees of freedom.

It is worth noting that as q approaches 1 from above, ν approaches infinity (i.e., normal
distribution). For q ≥ 5

3 , the second moments are infinite or do not exist. For 2 ≤ q < 3, the
q-Gaussian distribution is located in a region of extremely heavy tails where the moments
of the distribution may not exist or may not be well-defined. If q = 2, the q-Gaussian
distribution is proportional to a scaled and shifted Cauchy distribution; otherwise, it is a
t-distribution with fractional degrees of freedom, 0 < ν < 1. Specifically, as q approaches 3,
ν→ 0 and as q approaches 2, ν→ 1.

The main result of the paper is presented in Theorem 1 and was obtained through
symbolic computation using Wolfram Mathematica and validated through comparison with
the characteristic functions of the Student t and symmetric beta distributions; see [14,17].

Theorem 1 (Characteristic function of the Tsallis q-Gaussian). The characteristic function of
the Tsallis q-Gaussian distribution with the parameters µ ∈ R, σ > 0 and q < 3 is defined as

cfTQG(µ,σ,q)(t) = exp(itµ)× cfTQG(0,1,q)(σt), (9)

where i =
√
−1 and cfTQG(0,1,q)(t) is CF of the standard Tsallis q-Gaussian distribution,

• for q < 1 defined as

cfTQG(0,1,q)(t) = 0 F1

(
θ +

1
2

,−1
4
(at)2

)
= 2θ− 1

2 Γ
(

θ +
1
2

)
(at)−(θ+

1
2 ) Jθ− 1

2
(at)

= cfBetaSymmetric(θ)(at), (10)

where a =
√

2
1−q , θ = 2−q

1−q , 0 F1(b, z) is a confluent hypergeometric function, Γ(z) is

a gamma function, Jν(z) is a Bessel function of the first kind and cfBetaSymmetric(θ)(t) de-
notes CF of the symmetric beta distribution with the parameter θ and the support on the
interval 〈−1, 1〉,

• for q = 1 defined as

cfTQG(0,1,q)(t) = exp
(
− t2

2

)
= cfNormal(0,1)(t). (11)
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• for 1 < q < 3 defined as

cfTQG(0,1,q)(t) =

(
b
√

ν|t|
) ν

2 K ν
2

(
b
√

ν|t|
)

2
ν
2−1Γ

(
ν
2
) = cfStudent(ν)(bt), (12)

where b =
√

2
3−q , ν = 3−q

q−1 , Kν(z) is a Bessel function of the second kind and cfStudent(ν)(t)
denotes CF of the Student t-distribution with ν degrees of freedom with ν > 0.

Corollary 1 (Characteristic function of a linear combination of the Tsallis q-Gaussians). Let
cfY(t) denote the characteristic function of a linear combination of independent random variables
Y = ∑n

k=1 ckXk, where ck are real coefficients and Xk are independent Tsallis q-Gaussians with
characteristic functions cfXk = cfTQG(µk ,σk ,qk)

(t) for k = 1, . . . , n. Then, the characteristic function
of Y can be expressed as follows:

cfY(t) =
n

∏
k=1

cfXk (ckt) =
n

∏
k=1

cfTQG(µk ,σk ,qk)
(ckt). (13)

This formula allows us to compute the characteristic function of Y by taking the
product of the characteristic functions of each Xk, evaluated at ckt.

4. CharFunTool: The Characteristic Functions Toolbox

While the literature presents various techniques and tools for evaluating, combining
and inverting characteristic functions, few reliable and efficient software implementations
exist. One notable implementation, still under continuous development, is the MATLAB
toolbox CharFunTool [14], which offers a range of characteristic functions for various
probability distributions and algorithms for their manipulation and inversion. The toolbox
can evaluate, combine and invert characteristic functions of different types of probability
distributions, including continuous, discrete, circular and bivariate distributions, as well
as mixture and empirical distributions. With over 60 characteristic functions available,
the toolbox also provides a wide variety of other symmetric and non-negative probability
distributions, such as Beta, Chi-Square, Exponential, Gamma, Normal, Poisson, Rayleigh,
Student, Weibull and many others.

The algorithm cf_TsallisQGaussian was implemented into the repository of the char-
acteristic functions of the toolbox. The algorithm evaluates the characteristic function of
the random variable Y = ∑n

k=1 ckXk, where ck are real coefficients and Xk are independent
Tsallis q-Gaussians with arbitrary parameters for k = 1, . . . , n. In general, the toolbox offers
a unique and straightforward approach to evaluating, combining and inverting combined
characteristic functions.

The well-known method for inverting characteristic functions that satisfies conditions
specified in [18,19] is the Gil-Pelaez formula, which was proposed by Gil-Pelaez in 1951 [20].
This formula allows one to invert the characteristic function by using numerical integration
techniques. The formula states that for a univariate random variable X, if x is a continuity
point of its cumulative distribution function, then

cdfX(x) =
1
2
− 1

π

∫ ∞

0

Im
[
e−itx cfX(t)

]
t

dt. (14)

Moreover,

pdfX(x) =
1
π

∫ ∞

0
Re
[
e−itx cfX(t)

]
dt, (15)

where cdfX is the CDF of X, pdfX is the PDF of X, cfX is the characteristic function of
X and Re and Im denote the real and imaginary parts of complex numbers, respectively.
However, the use of the formulae may be affected by numerical instability and slow

https://github.com/witkovsky/CharFunTool
https://github.com/witkovsky/CharFunTool/blob/master/CF_Repository/cf_TsallisQGaussian.m
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convergence in cases where the characteristic function or the integrands exhibits oscillatory
or singular behavior.

There are many alternative methods and improvements available for computing the
numerical inversion of the characteristic function. Several of these methods have been
directly implemented or have inspired the development of inversion algorithms in the
CharFunTool, namely [13,15,18,21–32].

The toolbox offers a range of algorithms for numerically inverting characteristic
functions of univariate and bivariate probability distributions, which can be categorized
into two categories: univariate inversion algorithms and bivariate inversion algorithms.

Inversion Algorithms

Univariate inversion algorithms are used to obtain the probability distribution func-
tion, cumulative distribution function, quantile function (QF) or probability mass function
(PMF) of a univariate random variable, given its characteristic function. Various algorithms
for univariate inversion include:

• cf2DistGP: This algorithm uses the Gil-Pelaez inversion formulae (14) and (15) to
return the PDF, CDF or QF of a univariate distribution. It also provides an option
to use different integration algorithms such as Riemann sum, trapezoidal rule or
adaptive Gauss–Kronrod quadrature rule for more efficient calculations.

• cf2DistGPR: This algorithm returns the PDF, CDF or QF of a univariate distribution
using the Gil-Pelaez inversion formulae with the Riemann sum integration method.
For more details, see, e.g., [18].

• cf2DistGPT: This algorithm returns the PDF, CDF or QF of a univariate distribution
using the Gil-Pelaez inversion formulae with the trapezoidal rule integration method.
For more details, see, e.g., [13,18,25,32].

• cf2DistGPA: This algorithm returns the PMF of a discrete univariate distribution
using the Gil-Pelaez inversion formulae with the adaptive Gauss–Kronrod quadrature
rule integration method. For more details, see, e.g., [24,30].

• cf2DistBTAV: This algorithm uses the Bromwich–Talbot–Abate–Valko (BTAV) method
to return the CDF, PDF or QF of a non-negative univariate distribution specified by a
given characteristic function. For more details, see, e.g., [21,26].

• cf2DistBV: This algorithm returns the CDF, PDF or QF of a univariate distribution
using the Gil-Pelaez inversion formulae and the Bakhvalov–Vasileva method [22].

• cf2DistFFT: This algorithm returns the CDF, PDF or QF of a univariate distribution
using the Fast Fourier Transform (FFT) algorithm. For more details, see, e.g., [23,27].

The bivariate inversion algorithm takes a characteristic function of a bivariate random
vector and returns the joint PDF or CDF of the corresponding random vector:

• cf2Dist2D: This returns the CDF, PDF, quantile function or random numbers of a
bivariate distribution using the Gil-Pelaez inversion formulae with Fourier integrals
calculated using the simple Riemann sum quadrature method suggested by Shephard
in 1991 [15]. See also [29].

Note that the choice of algorithm may depend on the properties of the input character-
istic function, such as its smoothness, oscillatory behavior and integrability.

5. Numerical Examples

The examples in this section do not include specific measurement uncertainty prob-
lems. Instead, they illustrate the application and implementation of the CFA as an alter-
native tool for mathematical computation of the probability distribution of the output
quantity in linear measurement models with q-Gaussian input variables, with potential
applications for measurement uncertainty analysis.

For illustration, here we present the application of the CharFunTool algorithms for
evaluating PDF, CDF and specified quantiles of the distribution of an output quantity. For
each of those four examples, we consider a linear combination of independent q-Gaussian

https://github.com/witkovsky/CharFunTool
https://github.com/witkovsky/CharFunTool/blob/master/CF_InvAlgorithms/cf2DistGP.m
https://github.com/witkovsky/CharFunTool/blob/master/CF_InvAlgorithms/cf2DistGPR.m
https://github.com/witkovsky/CharFunTool/blob/master/CF_InvAlgorithms/cf2DistGPT.m
https://github.com/witkovsky/CharFunTool/blob/master/CF_InvAlgorithms/cf2DistGPA.m
https://github.com/witkovsky/CharFunTool/blob/master/CF_InvAlgorithms/cf2DistBTAV.m
https://github.com/witkovsky/CharFunTool/blob/master/CF_InvAlgorithms/cf2DistBV.m
https://github.com/witkovsky/CharFunTool/blob/master/CF_InvAlgorithms/cf2DistFFT.m
https://github.com/witkovsky/CharFunTool/blob/master/CF_InvAlgorithms/cf2Dist2D.m
https://github.com/witkovsky/CharFunTool
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random variables with different parameters specified as Y = c1X1 + c · · ·+ cnXn, where
the coefficients ci and the characteristic functions cfXi are given and this demonstrates how
the CFA can be used to obtain the PDF, CDF and QF of the output quantity. The examples
cover a range of scenarios, including situations where all q-index parameters are less than
1, where the q-index parameters are a mixture of positive and negative values, where the
Tsallis parametrization is used and where extreme values of q are considered.

5.1. Example 1: PDF/CDF/QF of a Linear Combination of q-Gaussian RVs with Small q-Indices,
q ≤ 0

Here we consider a linear combination of three independent q-Gaussian random
variables,

Y = 0.8X1 + 0.15X2 + 0.05X3, (16)

where X1 ∼ TQG(0, 3,−100), X2 ∼ TQG(0, 2,−10) and X3 ∼ TQG(0, 1, 0) are independent
random variables. We used the CharFunTool and the characteristic function of Y to com-
pute its PDF, CDF and QF. Figure 1 shows the graphs of the PDF and CDF along with the
MATLAB code used to evaluate the result. The CFA was used to derive a 95% coverage
interval, which is given by CICFA = [−0.3751, 0.3751].
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%% EXAMPLE 1: PDF/CDF/QF of a linear combination of independent q−Gaussians
% RVs with all q < 1

% Characteristic Function Approach (CFA):
mu = [0 0 0];
sigma = [3 2 1];
q = [−100 −10 0];
coef = [0.8 0.15 0.05];
cf = @(t) cf_TsallisQGaussian(t,mu,sigma,q,coef);
clear options
options.N = 2^10;
options.xMin = sum(mu − sigma.*sqrt(2./(1−q)) .* coef);
options.xMax = sum(mu + sigma.*sqrt(2./(1−q)) .* coef);
x = linspace(options.xMin,options.xMax)';
prob = [0.025 0.975];
result = cf2DistGP(cf,x,prob,options);
disp(result)

Figure 1. Characteristic function approach using the MATLAB algorithms from Char-
FunTool. PDF, CDF and QF computed from the characteristic function of a linear com-
bination of q-Gaussian RVs, Y = 0.8X1 + 0.15X2 + 0.05X3, where X1 ∼ TQG(0, 3,−100),
X2 ∼ TQG(0, 2,−10) and X3 ∼ TQG(0, 1, 0) are independent random variables. The 95%
coverage interval derived by CFA is CICFA = [−0.3751, 0.3751].

Alternatively, we can use MCM with (6) to derive the result by generating N = 100,000
realizations of the Xi to obtain N realizations of Y. By sorting them, we can then derive
the required coverage interval as CIMCM = [Ysort(bN × 0.025c), Ysort(dN × (1− 0.025)e)].

https://github.com/witkovsky/CharFunTool
https://github.com/witkovsky/CharFunTool
https://github.com/witkovsky/CharFunTool


Metrology 2023, 3 231

Using this method, we obtain CIMCM = [−0.3762, 0.3753] for comparison. Here, we can
see that the coverage intervals derived using CFA and MCM are very close, with only a
small difference between them.

5.2. Example 2: PDF/CDF/QF of a Linear Combination of q-Gaussian RVs with Different Types of
q-Indices, q ≤ 1.5

Consider a linear combination

Y =
1
3

X1 +
1
3

X2 +
1
3

X3, (17)

where X1 ∼ TQG(0, 1,−1), X2 ∼ TQG(1, 1, 0.5) and X3 ∼ TQG(2, 1, 1.5) are independent
random variables with different types of q-indices. Figure 2 shows the PDF and CDF graphs
along with the MATLAB code used to evaluate the result. The CFA was used to derive a
95% coverage interval, which is given by CICFA = [−0.3409, 2.3409].
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%% EXAMPLE 2: PDF/CDF/QF of a linear combination of independent q−Gaussians
% RVs with different types of q−indices: q < 1 and q > 1

% Characteristic Function Approach (CFA):
mu = [0 1 2];
sigma = [1 1 1];
q = [−1 0.5 1.5];
coef = [1 1 1]/3;
cf = @(t) cf_TsallisQGaussian(t,mu,sigma,q,coef);
clear options
options.N = 2^10;
x = linspace(−3,5)';
prob = [0.025 0.975];
result = cf2DistGP(cf,x,prob,options);
disp(result)

Figure 2. Characteristic function approach using the MATLAB algorithms from CharFun-
Tool. PDF, CDF and QF computed from the characteristic function of a linear combination
of q-Gaussian RVs, Y = 1

3 X1 +
1
3 X2 +

1
3 X3, where X1 ∼ TQG(0, 1,−1), X2 ∼ TQG(1, 1, 0.5)

and X3 ∼ TQG(2, 1, 1.5) are independent random variables. The 95% coverage interval
derived via CFA is CICFA = [−0.3409, 2.3409].

We used MCM with (6) and (8) to derive the result by generating N = 100,000 real-
izations of Xi to obtain N realizations of Y. By sorting the realizations of Y, we obtained
CIMCM = [−0.3248, 2.3375] for comparison. As before, we can see that the coverage
intervals derived using CFA and MCM are very close, with only a small difference be-
tween them.

https://github.com/witkovsky/CharFunTool
https://github.com/witkovsky/CharFunTool
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5.3. Example 3: PDF/CDF/QF of a Linear Combination of q-Gaussian RVs with Different Types of
q-Indices, q ≤ 2 and Using the Tsallis Parametrization

Consider a linear combination

Y =
1
5

X1 +
1
5

X2 +
1
5

X3 +
1
5

X4 +
1
5

X5, (18)

where X1 ∼ TQG(0,
√

1/10,−5), X2 ∼ TQG(0,
√

1/8,−1), X3 ∼ TQG(0,
√

1/6, 0),
X4 ∼ TQG(0,

√
1/4, 1) and X5 ∼ TQG(0,

√
1/2, 2) are independent random variables

defined using the Tsallis parametrization. Figure 3 shows the PDF and CDF graphs along
with the MATLAB code used to evaluate the result. The CFA was used to derive a 95%
coverage interval, which is given by CICFA = [−2.5469, 2.5469].
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%% EXAMPLE 3: PDF/CDF/QF of a linear combination of independent q−Gaussians
% RVs with different types of q−indices: q < 1 and q > 1
% with using the Tsallis parametrization

% Characteristic Function Approach (CFA):
mu = [0 0 0 0 0];
beta = [5 4 3 2 1];
sigma = sqrt(1./(2*beta));
q = [−5 −1 0 1 2];
coef = [1 1 1 1 1]/5;
cf = @(t) cf_TsallisQGaussian(t,mu,sigma,q,coef);
clear options
options.N = 2^14;
x = linspace(−10,10,301);
prob = [0.025 0.975];
result = cf2DistGP(cf,x,prob,options);
disp(result)

Figure 3. Characteristic function approach using the MATLAB algorithms from CharFun-
Tool. PDF, CDF and QF computed from the characteristic function of a linear combination
of q-Gaussian RVs, Y = 1

5 X1 +
1
5 X2 +

1
5 X3 +

1
5 X4 +

1
5 X5, where X1 ∼ TQG(0,

√
1/10,−5),

X2 ∼ TQG(0,
√

1/8,−1), X3 ∼ TQG(0,
√

1/6, 0), X4 ∼ TQG(0,
√

1/4, 1) and
X5 ∼ TQG(0,

√
1/2, 2) are independent random variables specified from the given Tsallis

parametrization. The 95% coverage interval derived by CFA is CICFA = [−2.5469, 2.5469].

We used MCM with (6), (5) and (8) to derive the result by generating N = 100,000
realizations of the Xi to obtain N realizations of Y. By sorting the realizations of Y, we
obtained CIMCM = [−2.5482, 2.5018] for comparison. As before, we can see that the
coverage intervals derived using CFA and MCM are very close, with only a small difference
between them.

https://github.com/witkovsky/CharFunTool
https://github.com/witkovsky/CharFunTool
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5.4. Example 4: CDF of a Linear Combination of q-Gaussian RVs Including Large q-Indices with
max q = 2.9

We now consider an extreme case, where we have a linear combination of independent
random variables X1, X2 and X3 given by:

Y =
1
3

X1 +
1
3

X2 +
1
3

X3, (19)

where X1 ∼ TQG(0, 1, 0), X2 ∼ TQG(0, 0.5, 1) and X3 ∼ TQG(0, 1, 2.9) are independent
random variables.

We used MATLAB code to evaluate the specified CDF values and the 95% coverage
interval for Y, as shown in Figure 4. The exact 95% coverage interval derived by CFA is
CICFA = [−9.1540× 1022, 9.1540× 1022].

%% EXAMPLE 4: CDF and 95% coverage interval
% of a linear combination of independent q−Gaussians
% RVs with different types of q−indices
% including extreme values of q (here max q = 2.9)
% computed with using cf2CDF_GPA and cf2QF_GPA

mu = [0 0 0];
sigma = [1 0.5 0.1];
q = [ 0 1 2.9];
coef = [1 1 1]/3;
cf = @(t) cf_TsallisQGaussian(t,mu,sigma,q,coef);
clear options
options.isAccelerated = true;

% 95% Coverage interval CI
CI_Low = cf2QF_GPA(cf,0.025,options);
CI_Upp = cf2QF_GPA(cf,0.975,options);
CI = [CI_Low, CI_Upp];
disp (CI)

% CDF values at specified arguments of y
y = [1e+10 1e+20 1e+30 1e+40 1e+50 1e+60 1e+70 1e+80 1e+90]';
cdf = cf2CDF_GPA(cf,y,options);
Table = table(y,cdf)

y cdf
−−−−−−−− −−−−−−−−−

1e+10 0.87974
1e+20 0.96421
1e+30 0.98935
1e+40 0.99683
1e+50 0.99906
1e+60 0.99972
1e+70 0.99992
1e+80 0.99998
1e+90 0.99999

Figure 4. Characteristic Function Approach based on using the MATLAB algorithms
from CharFunTool. CDF values and the 95% coverage interval computed from the char-
acteristic function of a linear combination of q-Gaussian RVs, Y = 1

3 X1 +
1
3 X2 +

1
3 X3,

where X1 ∼ TQG(0, 1, 0), X2 ∼ TQG(0, 0.5, 1) and X3 ∼ TQG(0, 1, 2.9) are inde-
pendent random variables. The exact 95% coverage interval derived via CFA is
CICFA = [−9.1540× 1022, 9.1540× 1022].

This example highlights the importance of having an exact method such as CFA for
extreme cases, where MCM may require an impractically large number of realizations to
achieve reasonable accuracy. Additionally, the computational cost of using Monte Carlo
simulations can be significantly higher compared to the CFA. The accuracy of the Monte
Carlo method is highly dependent on the number of realizations, making it computationally

https://github.com/witkovsky/CharFunTool
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infeasible in cases with extremely heavy tailed distributions of the input quantities to
obtain a comparably accurate result in a reasonable amount of time. In contrast, the
CFA in combination with appropriate numerical algorithms can provide exact results in a
numerical sense with relatively low computational cost, making it a preferred choice for
many practical applications.

To compare the results, we used MCM with (6), (5) and (8) to derive the result by
generating N = 105 realizations of the Xi to obtain N realizations of Y. By sorting the
realizations of Y, we obtained CIMCM = [−1.6820× 1023, 1.1835× 1023]. These results
indicate that N = 105 realizations of the random variable Y are insufficient to ensure
accuracy. To obtain a result comparably accurate to CFA, a larger number of realizations
is required.

For illustration, we increased the number of Monte Carlo simulations one thousand
times to N = 108 realizations and we obtained CIMCM = [−9.1671× 1022, 9.2231× 1022].
Now, this result is comparable to the CFA, but still different and the computation took 67.5 s,
whereas it took 0.006 s to obtain the CFA result using the same standard laptop computer.

Using the CFA in combination with the cf2CDF_GPA and cf2QF_GPA algorithms
provides exact results in a numerical sense. This means that the values obtained are
numerically correct and the numerical error can be controlled by appropriately setting the
control parameters in the options settings. By using these algorithms, the CDF values and
quantiles required to construct a 95% coverage interval can be accurately calculated.

6. Conclusions

The Tsallis q-Gaussian distribution is a flexible and versatile generalization of the
standard Gaussian distribution that can effectively model input quantities in a wide range
of applications and measurement models. Its unique properties, such as a finite support for
q < 1 and an infinite variance for q ≥ 5/3, make it particularly useful for modeling specific
quantities with a known range or extreme values.

It is important to note that in such situations (with q ≥ 5/3), the standard uncertainty
analysis as specified in GUM may not be applicable, as it implicitly assumes the existence
of at least two first moments (mean and variance) of the distributions associated with the
input quantities. Therefore, alternative methods are needed to adequately characterize the
uncertainty of the output quantities.

This paper presents a new and original contribution by providing the explicit form of
the characteristic function of q-Gaussian random variables and their linear combinations,
which can be used in combination with the Characteristic Function Approach for efficient
and exact uncertainty analysis.

The CFA is a powerful tool for deriving the CDF, PDF and QF of the measured quantity,
which are essential for specifying measurement uncertainty, in a sense as specified in the
Supplements of the GUM and constructing coverage intervals. The CFA offers several
advantages, including accuracy, flexibility, efficiency and repeatability.

To perform these calculations, the MATLAB toolbox CharFunTool is suggested, which
includes implemented inversion algorithms such as cf2DistGP or cf2DistGPA. These al-
gorithms employ the Gil-Pelaez inversion formulae and the adaptive Gauss–Kronrod
quadrature rule for numerical integration of the oscillatory integrand function. Addi-
tionally, convergence acceleration techniques are employed to compute the limit of the
alternating series.

We note that finding an explicit expression for the characteristic function of the output
quantity and numerically inverting it can be challenging, especially when deriving the joint
characteristic function of a multivariate distribution with stochastically dependent input
quantities. In such situations, we suggest considering alternative approaches, such as those
based on applying the proper Bayesian approach.

https://github.com/witkovsky/CharFunTool/blob/master/CF_InvAlgorithms/cf2CDF_GPA.m
https://github.com/witkovsky/CharFunTool/blob/master/CF_InvAlgorithms/cf2QF_GPA.m
https://github.com/witkovsky/CharFunTool
https://github.com/witkovsky/CharFunTool/blob/master/CF_InvAlgorithms/cf2DistGP.m
https://github.com/witkovsky/CharFunTool/blob/master/CF_InvAlgorithms/cf2DistGPA.m
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