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Abstract: The numerical modeling of cardiac electrophysiology has reached a mature and advanced
state that allows for quantitative modeling of many clinically relevant processes. As a result, complex
computational tasks such as the creation of a variety of electrocardiograms (ECGs) from virtual
cohorts of models representing biological variation are within reach. This requires a correct represen-
tation of the variability of a population by suitable distributions of a number of input parameters.
Hence, the assessment of the dependence and variation of model outputs by sensitivity analysis
and uncertainty quantification become crucial. Since the standard metrological approach of using
Monte–Carlo simulations is computationally prohibitive, we use a nonintrusive polynomial chaos-
based approximation of the forward model used for obtaining the atrial contribution to a realistic
electrocardiogram. The surrogate increases the speed of computations for varying parameters by
orders of magnitude and thereby greatly enhances the versatility of uncertainty quantification. It
further allows for the quantification of parameter influences via Sobol indices for the time series of
12 lead ECGs and provides bounds for the accuracy of the obtained sensitivities derived from an
estimation of the surrogate approximation error. Thus, it is capable of supporting and improving the
creation of synthetic databases of ECGs from a virtual cohort mapping a representative sample of the
human population based on physiologically and anatomically realistic three-dimensional models.

Keywords: polynomial chaos expansion; electrocardiogram; sensitivity analysis; uncertainty
quantification; surrogate model; Sobol indices

1. Introduction

The modeling of cardiac electrophysiology has initially focused on the qualitative
understanding of normal cardiac rhythm and pathologies such as atrial and ventricular
fibrillation or T-wave alternans by combining numerical simulations and approaches
from nonlinear dynamics. Many underlying mechanisms of arrhythmias are by now well
understood, oftentimes by considering simplified cellular models in one or two spatial
dimensions or idealized geometries [1–5]. Recent years have seen in contrast a clear
evolution towards quantitative models. To achieve this, improved and more detailed
physiological models are being solved on realistic anatomical models, obtained, e.g., from
magnetic resonance imaging [6]. This enables the reproduction of clinically relevant aspects
such as cardiac activation maps or even electrocardiograms [7,8]. Based on the optimistic
vision of a digital twinning of cardiac function and dynamics [9–12], complex computational
tasks such as the development of personalized, patient-specific models from experimental
recordings or the creation of virtual cohorts of models, statistically representing a large
realistic sample of a population [13,14], are realized.

In this paper, we deal specifically with the metrological aspects of creating a database
of realistic synthetic ECGs obtained from simulation of a cohort of models. The goal is to
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reproduce the features of ECGs in recently published large clinical data bases such as PTB-
XL [15] and Chapman [16]. Such databases are important for developing and benchmarking
machine learning algorithms for automated diagnostics of ECGs, see e.g., [17–19]. This
endeavor requires a correct representation of the anatomical and physiological variability of
a population, which can be achieved by variations of model geometries and a considerable
number of functional model input parameters. For that, sensitivity analysis (SA) and
uncertainty quantification (UQ), i.e., the assessment of the variation of models outputs
in relation to the variation of model input parameters, have to be applied to the complex
computational models developed for faithful simulations of realistic ECGs mentioned
above. UQ for models of cardiac dynamics has already attracted a lot of interest that
is documented by white papers such as [20], many dedicated journal and proceedings
articles [21–33], as well as various special issues of scientific journals in recent years, see,
e.g., [34,35]. In this work, we introduce and illustrate an approach for SA and UQ of
the atrial contribution of virtual electrocardiogram data. Synthetic ECGs are generated
by solving partial differential equations (PDE) of the electrical activity of virtual hearts,
residing inside realistic torso models [10,36]. At the surface of the torso models, virtual
electrodes measure the electrical potential and thereby construct the so-called ECG leads
by calculating the potential difference between 12 different combinations of electrodes.
This resembles the physical measurement of an electrocardiogram in live patients, where
a physician places the electrodes in a fixed pattern on a patient’s body. The so-called
12-lead ECG is a standard monitoring scheme to observe a patient’s heart activity in the
short and long-term, as well as to identify specific pathologies such as arrhythmias [37–40].
These can be linked to several cardiovascular diseases (CVDs), which are among the most
common causes for mortality world wide, i.e., contributing more premature deaths by
non-communicable diseases than cancer worldwide, according to the WHO world health
statistics 2019. The in-depth simulation approach to virtually measure ECG data comes with
many challenges of numerical and medical nature but exhibits clear advantages over purely
signal-driven or data-driven approaches. Most prominently, the complete modeling from
the cellular level upwards facilitates the understanding of sensitivity aspects of the involved
parameters on all levels up to the ready electrocardiogram. That way, it becomes possible
to distinguish between different pathologies in the patient from non-pathological variances
such as normal geometrical variability or measurement uncertainties, most prominently
from the application of the electrodes on the patient’s torso.

The challenge to compute sensitivities and quantify uncertainties in the detailed atrial
models stems from the computation expense. Standard approaches for nonlinear models
frequently used in metrology are Monte–Carlo simulations as outlined, e.g., in the GUM
supplement 1 [41]. However, they are computationally prohibitive in our setting since
they require a large number of repetitions of expensive three-dimensional simulations with
varying input parameters. Following earlier good practice in metrology guidance [42], we
instead use an approach based on the creation of a surrogate model, i.e., a mathematical
model that is built from simulations of the original model and subsequently allows simula-
tions with much lower computational cost. More importantly, surrogate models are also a
central topic in the recently emerged applied mathematical field of UQ [43–45] and have
found already widespread application mostly based on the polynomial chaos expansion
(PCE) in a number of traditional metrological applications ranging from optics [46,47] to
thermophysics [48] and fluid dynamics [49]. Whereas these metrological examples above
typical dealt with UQ of a single or a few stationary measurement quantities, here, we
need to compute the uncertainty for several dynamically evolving timeseries. For that,
we use a nonintrusive polynomial chaos-based approximation of the forward model and
demonstrate that it is well suited to describe the signal variance of an explicitly simulated
cohort of P-waves, i.e., the atrial contribution to the electrocardiogram. This variance-based
method allows for a global sensitivity analysis and determination of Sobol coefficients at no
additional computational overhead [50]. In addition, the resulting surrogate model enables
UQ since the distribution of outputs can be computed for a given input distribution with
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reasonable computational effort. Hence, the use of a polynomial chaos surrogate allows for
quantifying both parameter influences and surrogate approximation uncertainties for the
atrial contribution to the time series characterizing a 12 lead ECG.

The paper is organized as follows: The detailed computational model is introduced
in Section 2.1. It starts from the ion channels in the cell membranes of the myocardium,
integrated these cellular models for tissue level descriptions and uses MRI scans of real atria
to generate anatomically accurate geometries on which the electrophysiological model runs.
The atria mesh is placed inside a realistic torso model and virtual electrodes are placed
onto the torso surface, recording the differences in the electrical potential to calculate the 12
leads of the ECG. After that, in Section 2.2, we give an introduction on variance-based SA
by means of Sobol indices. The generalized PCE scheme is outlined in Section 2.3, as well
as the specific numerical implementation of the PyThia software used for analyzing the
datasets. The generation of the specific datasets used is described in Section 2.4. The results
are divided into three sections. First, we investigate in detail how well the PCE surrogates
represent the underlying sampled data by addressing the surrogate error convergence with
respect to the used maximal polynomial order and with respect to the number of samples
used to create a surrogate, cf. Section 3.1. After that, the SA is performed first on the whole,
time-dependent signal and then also by integrating the Sobol indices of a complete lead, cf.
Section 3.2. In the last part of the result, the created surrogate model is used to enhance
the UQ and the strengths of the PCE method are demonstrated, cf. Section 3.3. We finish
with a discussion of the findings in Section 4 and conclusions drawn from the analysis in
Section 5.

2. Materials and Methods
2.1. The Atrial Model

A patient-specific tetrahedral atrial model with an average edge length of 1.64 mm was
built based on the descriptions in [51]. The algorithms described by Azzolin et al. [11] were
applied to the atrial geometry to automatically augment the model with a homogeneous
wall thickness of 3 mm, tags for anatomical structures, interatrial connections and myocar-
dial fiber orientation in a rule-based fashion. Based on the material tags, the atria were
subdivided into 4 tissue regions visualized in Figure 1 with different conduction properties
assigned to them. Transversal conduction velocity was set to 0.591 m/s and 0.461 m/s for
crista terminalis and the pectinate muscles, respectively. For the myocardial bulk tissue and
the interatrial connections, transversal conduction velocity was varied in the intervals listed
in Table 1. Anisotropy ratios describing the fraction between longitudinal and transversal
conduction velocity were set to 2.09, 3.34, 2.84 and 3.78 based on the values reported in [51]
for the myocardial bulk tissue, interatrial connections, crista terminalis and the pectinate
muscles, respectively. The spread of the depolarization wavefront was obtained by solving
the Eikonal equation by means of the Fast Iterative Method. The ionic model described by
Courtemanche et al. [52] was used to compute an action potential template on a slab ge-
ometry. This action potential template was shifted in time according to the local activation
times resulting from the Eikonal simulation to derive the spatio-temporal distribution of
the transmembrane voltages in the atria [36].

The atrial model was placed in its associated patient-specific torso geometry obtained
through tomographic image segmentation to define a reference position and orientation of
the atria inside the torso volume conductor. Rotation angles and displacement parameters
around and along the x-, y- and z-axis were applied to the heart geometry in the intervals
defined in Table 1 to vary the heart orientation and location relative to the reference set-
tings [14,53]. Subsequently, the boundary element method [54] was employed to solve
the forward problem of electrocardiography and project the electrical dipole sources from
the heart onto the body surface. For a computationally efficient calculation of the transfer
matrix, downsampled surface meshes bounding the atria and the torso at a resolution of
2.9 mm and 15 mm, respectively, were generated. To avoid discontinuous wave propaga-
tion and artefacts in the body surface potentials due to the coarser mesh resolution, we
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applied Laplacian blurring to the source distribution on the cardiac surface as described by
Schuler et al. [55]. Extracting the potentials at the standardized electrode positions yielded
the P-waves of the 12-lead ECG resulting from each simulation run.

Figure 1. Overview of the atrial model used for the simulations, the top and bottom panels show the
anterior and posterior view, respectively. The reference position of the atria within the torso as well
as the electrode positions are visualized on the left side. On the right side, the atrial model is depicted
with the tissue structures highlighted to which different conduction velocities were assigned.

To generate the P-wave datasets characterized by a small and large variation of selected
model parameters, the parameter values were sampled in the intervals listed in Table 1. We
chose the CV in the fast conducting Bachmann’s bundle as the main conduction pathway
between both atria and CV in right and left atrial bulk tissue accounting for a large fraction
of the total myocardial tissue volume. Furthermore, location and translation of the heart
within the torso were addressed as notable inter-individual variability regarding these
quantities are observed and reported in previous clinical studies [53].

Table 1. Model parameters and intervals to sample from for generating the datasets with small and
large parameter variations.

Model Parameter Small Variation Large Variation

CV⊥ (bulk tissue) [0.531 m
s , 0.650 m

s ] [0.473 m
s , 0.709 m

s ]
CV⊥ (interatrial connections) [0.580 m

s , 0.710 m
s ] [0.516 m

s , 0.774 m
s ]

translation X [−10 mm, 10 mm] [−20 mm, 20 mm]
translation Y [−10 mm, 10 mm] [−20 mm, 20 mm]
translation Z [−10 mm, 10 mm] [−20 mm, 20 mm]

angle X [−7.5◦, 7.5◦] [−15◦, 15◦]
angle Y [−7.5◦, 7.5◦] [−15◦, 15◦]
angle Z [−7.5◦, 7.5◦] [−15◦, 15◦]

2.2. Global Sensitivity Analysis, Uncertainty Quantification and Sobol Indices

Sensitivity analysis is the study of how strong a given model output depends on the
various input parameters or conditions. Typically, one aims to establish how sensitive
the different output values or distributions vary with respect to a given variation in the
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model input, given by either single parameter variations or simultaneously varied sets
of parameters. The valuable insights obtained that way can inform the model building
process—especially in engineering models with huge parameter spaces, aimed at finely-
tuned representations of an underlying ground truth known by measurements. Further, it
helps in communicating the obtained modeling results by providing additional informa-
tion, e.g., on the model reliability and the behavior of solution distributions in terms of
propagated uncertainties. SA is a meta-analysis that treats the forward modelM : X → Y
as a “black box” acting on the stochastic input vector X and generating the associated set
of (stochastic) output values Y . The modelM may consist of a single measurement or
(arbitrary complex) numerical calculations, possibly involving an extensive pipeline of data
generation and post-processing steps. SA is closely related to the problem of uncertainty
quantification (UQ) that emphasises more the exact propagation of uncertainty through
the model in the form of parameter distributions that are reflected in the distributions
of model observables in order to address levels of confidence of results. In the present
contribution, we analyze a nonlinear and high-dimensional modeling pipeline that involves
numerically solving parametric partial differential equations describing the propagation of
a heart’s electrical excitation and a subsequent virtual measurement of 12-lead ECG data,
cf. Section 2.1. The model is characterized by complex behavior in a very high dimensional
state space, i.e., the system behavior depends on many parameters in a non-monotonous
manner, exhibits several qualitatively different regimes of solutions, it is nonlinear and
hence obtained solutions cannot be linearly superposed to generate a complete description
for arbitrary input parameters. Further, the sensitivity of the system output varies not only
along the time-dependent 12 lead signal, but also with respect to different input parameter
values, i.e., the specific position in parameter space.

For SA, there are so-called local and global approaches. The analysis of a system
with a given set of input parameters X = (x1, x2, . . .xN) is considered to be local at a
given point in state space X̂ if the change of observables is calculated only with respect to
infinitesimal input parameter variations around X̂ . In this case, it is sufficient to linearize
the problem by restricting the analysis to small single parameter variations around X̂ , i.e.,
to calculate the local gradient by performing N additional measurements X̂i of the system,
in each shifting one of the input parameters xi by a small amount dxi. By subtracting
the respective value at the reference point X̂ , one obtains the set of N different variations
for the model output, which represents the local sensitivity of the system with respect to
its input parameters locally at X̂ . However, here, we are interested in a global sensitivity
analysis, i.e., the information concerning a model’s sensitivity on a finite domain. This
approach is also necessary for UQ, because it deals with the propagation of parameter
distributions, i.e., by design an extended parameter range has to be considered. Typically,
xi is expected to possess known and mutually independent distributions [56]—although
also first generalizations to inter-dependent input parameters exist [57]. Hence, the linear
scaling of terms ∝ N for the single parameter variations is not sufficient as one has to
take into account all possible parameter combinations, leading to the so-called “curse
of dimensionality”, an exponential scaling for the number of terms to be considered
(∝ 2N). The global SA approach delivers a more complete picture of the model behavior,
better supporting the model building or calibration process. Moreover, a surrogate model
constructed on a finite parameter domain enables the convenient performance of UQ by
quickly sampling the surrogate model with different parameter distributions. The UQ is
especially valuable in the clinical context where the different measurement uncertainties,
the healthy biological variations and pathologies (i.e., the input variations) as well as typical
ECG signals (the model output) are well known and documented. Hence, a given model
can be compared to well-established medical data for validation and then creates additional
insight because of the bottom-up connection to tissue level and even cell level parameters,
underlying the numerical model.

To asses the sensitivity of a given model with respect to its input parameters X ,
we employ the calculation of Sobol indices (SI) based on the decomposition of output
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variance into the different contributions of the input parameters [58,59]. Next to the Sobol
approach, also the Morris method [60] (and recent improvements for interdependent input
parameters [61]) exists. In the so-called variance-based SA of calculating Sobol indices,
first the model output Y =M(X ) is generated for a set of input parameter combinations
in a probabilistic manner. The output variance is then decomposed into the different
proportions, in first order attributed to each input parameter individually. With increasing
order, also parameter combinations (pairwise variations, triplets, etc.) are considered until
all possible sets of input parameter combinations are adressed [62]. For that,M has to be
an integrable function and can be orthogonally decomposed as:

M(X ) =M0 + ΣiMi(xi) + Σi<jMij(xi, xj) + . . . +M1 2...N(x1, x2, . . .xN), (1)

where M0 is a constant, corresponding to the system output of the mean of the input
parameters, i.e., the expected value ofM. In increasing order, the terms ofM then depend
on all single parameters xi in first order, all pairs of parameters (xi, xj) in second order
and so on until the last termM1 2...N(x1, x2, . . .xN) which represents the proportion of the
model function that depends on all input parameters. Due to the orthogonality of the
decomposition of Equation (1), the terms in higher order describe only the additional effect
with respect to the lower-order variations, e.g., M1,2 describes the second order effect of
parameters x1 and x2 being varied simultaneously, without the effects of varying x1 and x2
independently (M1 and M2, respectively). We now requireM to be square integrable and
without loss of generality that all xi ∈ [0, 1]. We then integrateM2 over [0, 1]N to obtain:

V(M) =
∫
M2(X )dX −M2

0 = Σi

∫
M2

i (xi)dxi + Σi<j

∫
M2

ij(xi, xj)dxidxj + . . .

+
∫
M2

1 2...N(x1, x2, . . .xN)dX

= Vi(M) + Vij(M) + V1,2...N(M),

(2)

where the left hand side is the total variance V of the modelM on [0, 1]N and the right
hand side corresponds to the variances Vi due to single parameter variations, Vij due to
simultaneous variations of all parameter pairs, etc., until V1,2,..N , the contribution added by
the simultaneous variation of all input parameters simultaneously.

The Sobol indices S are then defined by the ratio of the different contributions on the
right hand side and the total variance V. Hence, the first order Sobol indices Si and the
second order indices Sij are defined as:

Si =
Vi
V

, Sij =
Vij

V
(3)

and similar up to the maximal order N. By definition, the sum of all Sobol indices is 1.

2.3. Polynomial Chaos Expansion

PCE was originally introduced in 1938 by Norbert Wiener as a means to approximate
Gaussian random variables in terms of Hermite polynomials [63]. Only in recent years,
fueled by the generalizations to non-Gaussian distributions (also called generalized poly-
nomial chaos, gPCE) [64] and subsequent rigorous proofs of its L2 convergence [65], it has
been taken up in the metrology community as a means to treat the parametric uncertainty
of models in a systematic way.

In PCE, the stochastic output vector Y = (y1, y2. . .yM) of the modelM acting on a set of
N random Gaussian variables X = (x1, x2. . .xN) is expanded in an infinite series [50,64] as:

Y(~x, t, X) =
∞

∑
i=0

γi(~x, t)Ψi({xn}N
n=0), (4)
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where γi(~x, t) are the expansion coefficients still depending on the non-stochastic variables
such as a the position ~x in space or time t. Ψi are the multivariate Hermite polynomials
of the (normalized) independent Gaussian variables xn. In the present contribution, we
consider a time-dependent output Y(t) described by the time-dependent γi(t) at 152 dis-
crete values of a voltage in the mV-range, measured in increments of 1 ms for a single
lead. In the gPCE framework, the random input variables may have different distributions
with a finite second moment and the Ψi are generalized to be appropriate orthogonal
polynomials, forming a basis of the appropriate Hilbert space. For a number of standard
distributions, the associated family of polynomials is known: for the uniform distribution
xi ∈ [−1, 1], the Legendre polynomials are used, for Gamma-distributed variables on [0, ∞],
Laguerre polynomials are associated and for Beta-distributed variables on [−1, 1], the Jacobi
polynomials [64,66] are used. In practice, the expansion (4) has to be truncated at a finite
polynomial order imax = p, yielding the PC approximation of order p−Yp

PC ≈ Y. This in-
troduces a finite truncation error for every PCE with respect to the underlying ground truth
data. The total number Nγ(N, p) of necessary coefficients γi to be determined for the N
independent input parameters scales exponentially with p as Nγ = Np. Hence, in practice
the PCE is constructed by restricting the maximum degree of the multivariate polynomials,
cf. [50] for a complete derivation. For that, consider first the appropriate univariate polyno-
mials Pn(X) for each input variable xi separately. In the gPCE, the distributions of different
input parameters can be chosen independently, hence, the chosen polynomials generally
differ between xi. Further, consider the multi-index of natural numbers α = (α1, α2. . .αN)
with ∑M

i=1 αi ≤ p. The total parameter space is spanned by a tensor product of the single
parameters, hence, the complete basis for the whole set of input parameters can be obtained
by multiplication:

Ψα(x1, x2. . .xN) =
M

∏
i=1

Pαi (xi) (5)

Thereby, the number of polynomials—and with that the number of expansion
coefficients—are reduced to:

Nγ =
(p + N)!

p!N!
(6)

For the numerical estimation of the γi, we use a non-intrusive regression method [67]
that uses model evaluations of parameter sets in stochastic sampling schemes [68,69]. Apart
from the truncation error, which decreases with a higher maximum polynomial order used
for the surrogate, the sample-based estimation of the expansion coefficients introduces a
second error. The numerical error of the regression decreases with the number of samples
used and may depend on the specific distribution of samples over the input parameter
interval. Both parts of the combined approximation error will be addressed in Section 3.1
separately. By defining an appropriate error measure that relies on comparing single model
evaluations to the corresponding output via surrogate model and a dedicated test dataset,
the accuracy of a calculated surrogate can be inferred.

For the means of SA (cf. Section 2.2), the PCE allows for a convenient calculation of
Sobol indices. By rearranging the multi-index α to depend only on the respective parame-
ters and with that the polynomials Ψα, one finds the unique Sobol decomposition of the PC
surrogate fPC [50]. The PC-based Sobol indices are then calculated with minimal compu-
tational effort by square-summing the terms of the Sobol decomposition and appropriate
normalization by the total variance DPC, cf. Equation (51) in [50] and its derivation. Due to
the fact that the Sobol indices become available analytically after a PCE surrogate is calcu-
lated from the model sampling procedure, it can be shown that the surrogate errors give an
upper bound also for the PC-based Sobol indices. Assuming that the PC approximation
Yp

PC of the model function M satisfies |(Yp
PC −M)| < ε for some finite, positive ε, one finds

the following upper bound for the Sobol indices [70]:

|Sβ − S
p
β | <

ε

V(M)
<

ε

V(Yp
PC)

, (7)
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where Sβ are the exact Sobol indices, S p
β the Sobol indices calculated from the truncated

PCE with maximum order p and β a multi-index listing the set of parameters that defines
each Sobol index, respectively. Note that ε can be estimated from the surrogate convergence
described in Section 3.1 and the total variance of the PCE Var(Yp

PC) is easily available from
the computations. By systematically calculating PCE-based surrogates with increasing
p and NS, one obtains the convergence of the surrogate model towards the underlying
sampling data (in the yet-to-be-specified sense, cf. Section 3.1) and thereby to illuminate the
respective truncation and regression errors involved. With that, one can find the optimal
surrogate model with the available computational resources, decide whether it exhibits a
sufficiently small surrogate error and gain insight about how valuable additional samples
(model evaluations) are for creating better surrogate models. After finding a PCE with
appropriate accuracy, the Sobol indices are calculated with their uncertainty estimated
by Equation (7) to perform a global SA of the model with the defined input parameter
distributions and the surrogate model may be used for generating samples to perform UQ.

By choosing different input parameter distributions for a given model M, it is possible
to address different modeling related questions and problems. For instance, it is possi-
ble to consider a surrogate built on the sampled parameter intervals of a known, small
input uncertainty—e.g., given by measurement accuracy. The surrogate might be rather
accurate and due to relatively small parameter intervals, converging with few samples.
However, it is relatively specific as it addresses a narrowly defined parameter space. If
one chooses wider parameter distributions, on the other hand, one learns more about the
model behavior, possibly with a lower the surrogate accuracy and more samples needed
for a good convergence. Then, however, it becomes possible to sample any parameter
distribution from the surrogate where the support is a subspace of the one used for creating
the surrogate, i.e., the created surrogate is more versatile. Also, it is possible to identify
parameter regions where the output depends especially sensitive on input variations and
add samples to increase the surrogate accuracy in an adaptive manner. Another possibility
in models with many parameters is an analysis of many parameters with low polyno-
mial order with the intent of creating a second surrogate afterwards only with the most
influential parameters.

For the generation of PCE surrogates, we used the Python toolbox “PyThia UQ” [71],
which implements a non-intrusive approach to determine gPCE expansion coefficients via
a multilinear least-squares regression. Originally, it was designed for UQ of nanostructures
of photolithography masks for the creation of semi-conductor structures [67]. With PyThia,
it is possible to address approximately five to twelve parameters in one dataset with a
reasonable number of basis polynomials per parameter. The main restrictions at this
time are caused by the strongly growing memory demands in terms of both working
memory and storage space as well as computation time with increasing input dimension
and maximum polynomial degree p. However, with more involved schemes to reduce
the number of regression parameters, the number of simultaneously varied parameters
for a global SA can be increased further. Options are sparse methods, employing the
tensor train format to decompose the multi-index into suitable, low-rank tensors [72]
or adaptive methods to select the most important basis polynomials iteratively Next to
the multi-linear regression computation, the package provides implementations of the
basis polynomials and samplers for the uniform, Gauss, Gamma and Beta distributions,
as well as for the calculation of the necessary weights for the regression. From this set
of univariate distributions, the multivariate distribution of the input variability of the
chosen problem is defined and the complete set of basis polynomials in the gPCE-sense is
constructed by PyThia. The generated PCE object then contains all the necessary inputs for
the algorithm (parameter definitions, weights, and calculated set of polynomials), as well as
the calculated expansion coefficients, an info matrix containing data on the well-posedness
of the regression problem (how well terms are determined by the number and distribution
of samples) and the Sobol indices calculated by rearranging the PCE expansion coefficients.
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2.4. Data Description

The data analyzed in this study were generated from explicit evaluations of the atrial
model presented in Section 2.1. Each model evaluation for a specific set of input parameters,
i.e., a single sample for the SA, yields a 12-lead electrocardiogram of a single P-wave with
a time resolution of one data point per millisecond and about 150 ms length. Following
the considerations about PCE and the specific implementation of the analysis software
Pythia (cf. Section 2.3), it becomes clear that for such a huge numerical model as the one
considered here, one first needs to divide the parameter space into sub-spaces considered
to be independent from each other. Depending on the desired level of accuracy and the
width of the chosen parameter intervals, we can address up to 12 parameters in one dataset.
Here, we chose eight parameters, cf. Table 1: First are the conduction velocity of the regular
bulk tissue (P1) and the inter-atrial connections (P2). Further, we considered variations of
the geometric relation between the atrial mesh and the torso model surrounding it, which
is determined by six parameters in relation to a reference position. More specifically, we
have the shifts along the x, y and z direction (parameters 3, 4 and 5) and three orientation
angles of the atria with respect to the torso orientation (parameters 6, 7 and 8). This results
in a total of eight input parameters varied simultaneously per dataset, which makes the
calculation of PCE with a polynomial order of up to p = 6 feasible, cf. Section 3.1. Next to
the issue of inter-patient variability of the heart position and orientation, this also lays a
foundation for the study of breathing-induced variations in ECG signals, i.e., low frequency
shifts in the positions of the organs due to the cyclical expansion of the lungs during each
inhalation phase.

We further chose to generate four different datasets (DS): DS 1 exhibits a rather
small input variability in all eight parameters—which was doubled for the three other
datasets. With the difference in the magnitude of the parameter uncertainty, we aim
to illuminate the strong influence of the size of the input parameter intervals on the
surrogate error. For the three other datasets, we compare three standard methods of
generating stochastic sampling distributions: For DS 2 we employed a sampling distribution
optimized for the weighted least square (WLS) method, which is implemented in the PyThia
package for standard univariate distributions of the gPCE framework (Gaussian, uniform,
Beta and Gamma distributions) [67]. DS 3 was obtained by the standard Monte–Carlo
sampling scheme, i.e., each of the parameter intervals is sampled randomly with a uniform
distribution. Finally in DS 4, we used a sampling distribution proposed by Saltelli et al. [68]
for approximating Sobol indices [73]. They are generated by a pseudo-random sequence
and chosen to fill the whole 8D input parameter interval in a homogeneous manner, i.e.,
all samples exhibit as similar distances to their next neighbors as possible. The names
and sampling intervals of the input parameters are listed in Table 1. For performing the
SA, a total number of samples Ns = (N + 2) · 1000 = 10,000 samples was chosen out of
a predefined parameter interval of input dimension N = 8. For comparison reasons, we
chose to have the same number of samples for all datasets following the recommendations
in [68]. Irrespective of the sampling scheme chosen, each of the stochastic input parameters
xi is characterized by a uniform probability distribution, representing its uncertainty. Hence,
for the PCE we chose Legendre polynomials as basis functions.

For the error measure of our model output, which estimates the convergence of the
constructed surrogate models (cf. Section 3.1), the statistical analysis of the ground-truth
DSs gives valuable context. Hence, we define two scalar observables that characterize the
datasets and will be used later to compare the surrogate errors with. The surrogate error in
turn informs the reliability of the following SA and UQ and enables us to establish specific
bounds for the PCE-based Sobol indices, cf. Equation (7). The first is a measure of how
much the output changes over the whole input parameter interval, i.e., the signal variance
σ2, time-averaged over the signal time ts.

σ2 =
1
ts

∫
t

1
Ns

Ns

∑
i=1

(si(t)− s̄(t))2dt =
1
ts

∫
t
Var[si(t)]dt (8)
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i.e., the variance of the signal (over all samples of the dataset in one of the 12 ECG leads)
at each point in time, integrated over and divided by the whole signal length. Hence, the
appropriate units are: [σ2] = (mV)2 = 10−6V2. Associated to σ2 and given in the same
units as the error measure of the surrogate (the L2 error, cf. Equation (11)), we also consider
the standard deviation: σ =

√
σ2. The respective values of σ2 for the datasets with low and

high input variability, for all 12 leads are given in Figure A1. The second observable is the
mean signal strength of a given lead in the dataset:

S =
1
ts

∫
t

1
Ns

Σi|si(t)|dt (9)

With the appropriate unit of [S] = 10−3V. For the later calculation of the relative
surrogate approximation error of a single curve, we have similarly define the signal strength
of a single signal as: Si =

1
ts

∫
t |si(t)|dt. The respective values of the overall signal strength

S for the datasets with low and high input variability, for all 12 leads are given in Figure 2
in panel c.
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Figure 2. Characterization of the datasets. (a) The mean P-wave signal (black) of lead I and the
range of ±one standard deviation (red) calculated over all 10,000 Monte–Carlo (MC) samples as an
example of a lead with small overall signal variance. (b) The corresponding mean and 1σ range for
lead V1 with the highest overall variance. For a depiction of the corresponding signals for all leads,
cf. appendix. (c) Left: The mean signal strength S for the 12 different leads, cf. Equation (9). Depicted
are the Monte–Carlo sampled dataset with high input variability in blue and the dataset with small
input variability in black, showing only minor differences. (d) Signal variance σ2 of the 12 leads, cf.
Equation (8). Depicted are the dataset with low input variability (DS 1 in black) and the MC-sampled
dataset with high input variability (DS 3 in blue).

We observe significant, systematic differences in the signal variance, cf. Figure 2d, be-
tween the dataset with low input variation (DS 1 in black) and the MC-sampled dataset (DS
3 in blue). Note the much larger values for lead V1 (number 7) with approx. 1.8× 10−6 V2

for the DS with high input variance and 7× 10−7 V2 for the DS with small input variance,
compared to the typical values of the other leads with 8× 10−8 V2 and 4× 10−8 V2, respec-
tively. The values for the Saltelli sampling and WLS sampling (DS 2 and DS4) are very
similar to DS 3. On the other hand, the mean signal strength—shown in the lower-left



Metrology 2023, 3 11

panel—is quite similar for the datasets with low and high parameter uncertainty, which
underlines the fact that the chosen parameter space is still quite similar, as we doubled the
interval size symmetrically around a common mid point by constructing DS 2, DS 3 and
DS 4 from DS 1 as described above. However, the signal strength varies strongly between
the different leads.

3. Results
3.1. Convergence of the Surrogate Model

The polynomial chaos expansion (PCE) of the solution of a parametric PDE, i.e., a
partial differential equation with parameter distributions, offers the possibility to efficiently
calculate a surrogate model for a chosen domain in the parameter space of the PDE. From
the PCE surrogate, the associated Sobol indices (SI), cf. Section 2.2, are calculated by
rearranging the PCE coefficients. It follows that there is a connection between the accuracy
of the PCE and the accuracy of the Sobol indices, cf. Equation (7). Hence, the investigation
of the surrogate error is fundamental for the study of sensitivity and quantification of
uncertainties later.

The surrogate corresponds to the dataset with finite accuracy, with two sources of error
that one has to minimize in order to approximate the data optimally: First, there is the trun-
cation error, coming from the truncation of the infinite series of the PCE (cf. Equation (4)) to
a finite set of basis polynomials. Hence, even with exactly determined coefficients, there is
still a difference to the underlying data because the functional dependence from the input
parameters is not exactly matched by the finite polynomial basis. Typically, this is relevant
if the functional dependence is either of a higher polynomial order than the truncated
series or not polynomial in nature, e.g., an exponential dependence or a sine. Especially for
higher input dimensions, the truncation error is relevant because the maximum possible
polynomial order p is strongly limited due to the number of terms quickly exceeding
hardware constraints. The truncation error can be investigated by constructing surrogate
models with increasing polynomial order. The second type of error is a numerical one and
stems from the number of samples available for the determination of all PCE terms of the
surrogate via weighted least squares regression. To check the significance of this type of
error, it is necessary to investigate the complete surrogate approximation error with respect
to the sample size by selecting sub-sets of the complete dataset with increasing NS. If the
residual error still significantly decreases in the limit of the maximally available sample size,
the number or distribution of the samples is insufficient to minimize the numerical error.

To construct a surrogate model, one has several parameters that need to be optimized.
In PyThia, the maximal polynomial order can be chosen for each input parameter indepen-
dently and typically a maximum value for the sum of the polynomial orders in each term is
chosen, cf. Section 2.2. For a given SA problem, the input dimension and the associated
parameter distributions (defined by, e.g., mean, width and distribution type) as well as the
number of samples and the specific sampling scheme to generate the dataset influence the
accuracy of a constructed surrogate model. Hence, in order to compare different surrogates
on some large, underlying model, additional strategies have to be employed to give the
necessary context and to enable the coverage of all relevant parameters, e.g., by dividing
the parameter space into sensible parts. One strategy is to first screen all parameters
independently around a specified point (or a set thereof) in parameter space to obtain a
rough ranking of their influence on a model output. Surrogates with the parameters that
do significantly contribute to the signal variance can be chosen from that and then used
to construct a lower-dimensional but more relevant parameter subspace. The strategy for
assessing the surrogate accuracy (cf. Section 3.2) is to compare different surrogate models
on a single DS to analyze the convergence with respect to the maximal polynomial order p
used and the number of samples Ns for the regression algorithm to estimate the expansion
coefficients. The first provides information on the truncation error—up to the hardware
restrictions one typically encounters. The latter informs about the numerical accuracy, i.e.,
how much additional sampling (model evaluations) would improve the DS approximation.



Metrology 2023, 3 12

3.1.1. Error Estimation

The surrogate error can be estimated by splitting the dataset (X ,Y) into two parts, a
“training dataset” (Xtrain,Ytrain) to construct the surrogate and a “test dataset” (Xtest,Ytest)
as ground truth data to compare the reconstructed ECG curves from the surrogate model
to. The respective parameter tuples of the test data (Xtest) are then used as an input for
the constructed surrogate, yielding the reconstructed ECG signal {sPC} (or Ytest). It is then
possible to calculate the L1 (ε1) and L2 errors (ε2) of a reconstructed signal with respect to
the corresponding ground truth signal sGT with the same tuple of input parameters.

ε1 =
1
ts

∫ ts

0
|sGT(t)− sPC(t)| dt (10)

ε2 =

√
1
ts

∫ ts

0
(sGT(t)− sPC(t))2 dt, (11)

where ts is the signal length. ε1 and ε2 are then averaged over the whole test dataset Xtest
to yield representative spot samples with regard to the chosen input parameter interval,
estimating the true value. Hence, to obtain a good estimate of the overall (mean) error of the
surrogate model on the chosen interval, some measure of coverage has to be achieved by the
size and distribution of the testing dataset, too. Here, we chose to take N = 500 test samples
from the uniformly sampled parameter interval to average the L1 and L2 surrogate errors
over, i.e., ε̄ = 1

500 Σiεi. The standard deviation from this sample can additionally inform on
the reliability of the error estimate. However, this estimate still exhibits some uncertainty
due to the specific set of test data (Xtest,Ytest), therefore, we repeat the surrogate calculation
typically ten times with different test and training data splits and the average over those 10
iterations informs Figures 3–5.
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Figure 3. Absolute L2 error estimates (cf. Equation (11)) for the PCE surrogates of the four different
datasets with polynomial order p = 6. Note that the differences between the three different sam-
pling schemes, optimized for weighted least-squares (WLS, red), a standard Monte–Carlo sampling
(MC, blue) and the Saltelli sampling scheme (black) yield very similar values of the approximation
accuracy. The surrogate with smaller input parameter variability (halved interval width in each of
the 8 input dimensions around the same mean value, shown in green) gives significantly smaller
approximation errors. When further comparing it with the inter-lead variation in Figure 2, it becomes
clear that the smaller signal variance, rather than a difference in (mean) signal strength, determines
approximation accuracy.
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For the assessment of the surrogate, we chose to consider the L2 error because this
formulation weights larger deviations between PC and ground truth signal stronger and
reflects the least-squares minimization in the regression algorithm that determines the PCE
coefficients. In Figure 3, the absolute L2 errors for the 12 leads of the four datasets are
shown on a logarithmic scale. Note that ε2 for the dataset with small parameter variations
(green) is significantly smaller and the three datasets with larger input parameter ranges
exhibit nearly the same L2 error, i.e., the difference with respect to different sampling
schemes is very small.

Note also how the error varies between the different leads in a similar manner as the
signal variance in Figure 2d. This is an indication that a large dataset output variance,
rather than a larger signal strength leads to less accurate PCE surrogates. With that, we
have two possible means to contextualize the obtained error measures: by normalizing the
values either by signal strength or by signal variance, cf. Figure 4.

3.1.2. Normalization of the Surrogate Error

The absolute L2 error as described above is already a good indicator to monitor the
increase in accuracy of the surrogate model. However, it is quite difficult to obtain a sense
of “small” or “big” approximation errors by just observing ε2 without reference. A way to
contextualize the L2 error is to normalize it by dividing it by either the signal strength S as
defined in Equation (9) or by the signal variance of the dataset σ as defined in Equation (8).
In the first case, one obtains a relative error measure analogous to a signal to noise ratio.
The relative L2 error reads:

ε2,r =
1
N ∑

i

√
1
ts

∫
t[sGT,i(t)− sPC,i(t)]2 dt

1
ts

∫
t |sGT,i(t)|dt

=
1
N ∑

i

ε2,i

si
(12)

In this sense, an approximation error of ε2 = 1% means that of the complete ECG
curve, the mean deviation between reconstructed and simulated data (ground truth) is
1% of the signal itself. Hence, the normalization with signal strength alleviates the prob-
lem of different scales of output parameters. The relative L2 error of the MC DS (DS 3),
reconstructed in sixth order is given in Figure 4 in red.

In general, we observe that with a higher output variance it becomes harder to con-
struct precise surrogate models, cf. Figure 2d. This higher spread in the output data can be
caused by broader input parameter intervals (as exemplified by the comparison with the
dataset with smaller input variance), or a stronger dependence of the output on input pa-
rameters (due to the position in parameter space or the choice of input parameters). In our
case, lead V1 (number 7) exhibits significantly larger output variance, which also results in
a larger surrogate error. Hence, one meaningful information of the surrogate convergence
is to compare the approximation error ε̂ with an appropriately chosen variation measure
of the dataset. By dividing the L2 error by the standard deviation σ, the square root of the
signal variance (cf. Equation (8)), one compares how much better the reconstructed curve is
with respect to a randomly chosen one out of the dataset (X ,Y). For an illustration of the
DS output variability, cf. Figure 2a,b. There, the mean signal of the Monte–Carlo sampled
dataset is given in black together with the 1σ interval in red, for the lead number 1 (I) with
a relatively small signal variance and for the lead number 7 (V1) with the largest signal
variance of all 12 leads.

For clarification of the units used in Figure 4, the absolute L2 error is a measure of
the squared signal differences (given in [(mV)2]), integrated over and divided by signal
length [ms][ms−1]. By taking the square root, the units hence become [mV]. Analogously,
the standard deviation σ of the output and the mean signal strength S have the same units.
Hence, the two derived, relative error measures are unitless in Figure 4.
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Figure 4. Error measures for the PCE surrogate model. Depicted are the absolute L2 error (ε2, black,
in mV), the relative L2 error ε2,r (red, cf. Equation (12)) and the L2 error divided by the standard
deviation of the output of the whole dataset (blue, cf. Equation (8)). The PCE surrogates were created
in sixth order on the Monte–Carlo sampled dataset (9500 samples for construction and 500 for error
estimation). The inter-lead variation is similar to the variance of the sampled dataset, cf. Figure 2,
with significantly higher approximation errors for the leads V1 and V2 (numbers 7 and 8).

3.1.3. Surrogate Error Convergence

We are interested in two types of surrogate error convergence: The first is the increase
in accuracy with respect to an increasing polynomial order p used to construct the surrogate.
It is straight-forward that with a higher degree of polynomial order, the number of expan-
sion terms of the surrogate increases and the truncation error introduced in Equation (4)
becomes smaller. However, this stands against two types of restrictions—the computational
constraints such as calculation times, RAM usage and data storage size limit the attainable
maximal order for the surrogate. Additionally, the number of terms to be determined by
the regression has to be significantly smaller than the number of samples used in order
to minimize the numerical error. In the first case, i.e., if the computational resources are
the limiting factor, one observes a monotonic decrease in the surrogate error up to the
maximal polynomial order feasible. In the second case, the number of samples is not large
enough to allow for a good regression of all expansion coefficients of the surrogate (in
the maximal polynomial order available). Hence, the total surrogate error (the sum of
truncation and numerical error) increases again for the higher polynomial orders and the
optimal surrogate has to be chosen with a p < pmax. Depending on the cost of a single
model evaluation, one can add further samples to decrease the numerical error of the higher
order surrogate models.

The second convergence of interest is the behavior of the surrogate error with respect
to sample size, i.e., how the L2 error for a given surrogate model decreases with sample
size. Possible points of interest are the rate of the error decrease (with number of samples)
and the typical error levels for few and for many samples. If the number of samples is high
enough so that the error does not further decrease when more are added, the numerical
error is minimized and only a surrogate with higher polynomial order could achieve
better precision (only the truncation error remains). One also expects differences between
sampling schemes, i.e., the manner in which the samples for the generation of the surrogate
models are distributed over the input parameter interval.
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3.1.4. Convergence with Polynomial Order

For the first systematic study of surrogate models on the sampled data we vary the
polynomial order p of the PCE method up to the maximum order given by computation
time and hardware requirements. For the 8D datasets under consideration, this is the case
for p = 6, assuming the same degree for each input parameter. As usual (cf. Section 2.2)
this also means restricting the maximum of the sum of the exponents p̂ of each term to the
same value, p̂ = p. Hence, by systematically increasing the polynomial order, we examine
the total surrogate error with a constant sample size of Ns = 9500. From the total number
of samples Ntot = 10,000, we leave 500 samples aside for estimating the surrogate error
and construct different surrogate models for each of the leads independently. In Figure 5
on the left, we present the absolute L2 errors of the Monte–Carlo-sampled dataset (DS 3),
for p = 2 up to p = 6 for the 12 leads.
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Figure 5. Error convergence for PCE surrogate models. (Left): Convergence of the absolute L2 error
with polynomial order p for the Monte–Carlo sampled dataset, shown for all 12 leads. (Right): The
model error convergence with sample size for all DSs with high input variability. Shown are four
different cases: Lead V1 with generally higher approximation errors, compared to lead I for two
different orders of approximation, p = 3 and p = 5. The saturation of the errors with sample size
indicate that enough samples were used for the chosen polynomial order. Note that the higher
polynomial order leads to smaller approximation errors but more samples are needed for the error
to saturate at its minimum value. We observe only minor differences with respect to the sampling
scheme used with very slight systematic advantages of the Saltelli samples and slightly higher errors
for the WLS-optimized sampling, when compared to the Monte–Carlo sampling scheme.

Generally, the L2 error decreases with the polynomial order as expected, i.e., leading
to better surrogate models for more expansion terms. Similarly to Figure 4, the leads show
different L2 errors, with lead 7 (V1) and 8 (V2) exhibiting significantly higher values. Even
for the highest polynomial order, the surrogate errors differ by approximately two orders
of magnitude.

From the convergence with polynomial degree up to order p = 6, we estimate that
a further increase in polynomial order would not bring significantly better surrogate
accuracy, but a hugely increased computational load that would require computations on
a dedicated server. Another possibility is to select different orders of expansion for the
different parameters after a first construction with an equal number of basis polynomials.
There, by selecting higher orders for the more influential parameters one would in principle
expect an increase in the surrogate accuracy. However, we obtained no significant benefits
that way on this dataset. We conclude that the desired level of surrogate accuracy for p = 6
is already sufficient for most of the leads and no significant benefit is to be expected in the
cases of leads V1 and V2. The PCE surrogates for the leads except V1 and V2 are already
very good for a surrogate model with the aim of substituting the computationally expensive
original model. However, the main aim of the surrogate here is laying a foundation for SA
and UQ, which has much less strict demands on surrogate accuracy. It is sufficient that
the surrogate model rather closely resembles the underlying data as this determines, e.g.,
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the reliability of the PCE-based Sobol indices (cf. Equation (7)) and the obtained surrogate
models clearly allow for that.

3.1.5. Convergence with Sample Size

The convergence with sample size informs about the numerical error in determining
the coefficients via linear regression, cf. Section 2.3. The overall approximation error of
a surrogate model decreases with increasing sample size Ns. Hence, if the statistically
estimated error saturates with more samples used, one can be reasonably sure that it is
only possible to further decrease the error by increasing the chosen polynomial order, cf.
Figure 5 (right side). There, we varied the Ns from 500 for 3rd order and 1500 for the 5th
order up to the total number of 9500 (reserving 500 for estimating the L2 error). Shown are
two representative leads: lead number 1 (I) with very low approximation error and lead
number 7 (V1) with the maximal error of the 12 leads. Further, we present surrogate models
with two different maximal polynomial orders, up to 3rd and up to 5th order, to highlight
the differences in the convergence behavior of the absolute L2 error estimates. Qualitatively,
the four chosen cases behave very similar as for low sample size the error is larger and
steadily decreases until a plateau is reached. This shows that the overall approximation
error is influenced by the numerical error for small Ns, which quickly vanishes and the
truncation error from the finite polynomial order of the considered PCE remains.

It becomes clear from the comparison of all four cases that the surrogate models with
higher polynomial order exhibit significantly lower errors, but need more samples. The
minimal number of samples to yield a sensible estimate is given by the well-posedness of
the info matrix of the regression algorithm, essentially stating that as much samples are
needed as there are independent expansion coefficients to be determined. The ensuing
convergence is rather flat, i.e., the numerical error typically plays only a minor role in
the construction of surrogate models in the presented case. For up to approximately
2000 samples for the 3rd order PCE and 4000 samples for the 5th order, the numerical error
of determining the expansion coefficients still decreases. Similarly, one can estimate that
in 6th order (the highest polynomial order used due to computational restrictions), the
numerical error is also sufficiently small with 9500 samples. This is confirmed by the still
smaller error estimates when compared to the 5th order, cf. Figure 5 (left side). Another
systematic observation is that the three different sampling schemes yield nearly identical
values, i.e., there are no important differences in convergence behavior, e.g., the minimal
error for the convergence to arrive at a high number of samples or the convergence rate
with sample size up to that point. For the tested schemes of WLS-optimized sampling,
Monte–Carlo sampling and Saltelli sampling, only a very slight advantage for more evenly
distributed samples (Saltelli > MC > WLS) was observed.

After evaluating the convergence of the surrogate accuracy with the maximal polyno-
mial order and with sample size, we find that in the used datasets the surrogate errors of
the best PCE models are dominated by the truncation error and the associated numerical
error of determining the PCE expansion terms can be neglected for the 10,000 samples used.
This finding is difficult to generalize because the model complexity, the dependence on
different parameters and the chosen interval widths can result in markedly different DSs
even for the same model to be analyzed. However, the described systematic analysis of
the surrogate accuracy creates a valuable basis of the nature of the underlying DS, which
will be used in SA and UQ later on as well as serves as a blueprint for the analysis of
future datasets.

3.2. Sensitivity Analysis

One of the major advantages of constructing a surrogate model via PCE is the easy
availability of the Sobol indices for SA, calculated simply by rearranging the expansion
coefficients. Further, the error estimate of a surrogate gives an upper bound for the error
of the obtained SIs (cf. Equation (7)) allowing for the monitoring of the SA accuracy.
Qualitatively, the convergence is similar to the one of the overall L2 errors, cf. Figure 5.
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However, the upper bound of the SI uncertainty varies greatly along the signal and can be
evaluated with this level of detail by considering the mean L1 error of the PCE surrogates
over the signal.

In the following section we will present the main SA results, additional tabulated data
can be found in the appendix. The obtained results and the impact on the modeling process
of the underlying atria model (cf. Section 2.1) will be discussed after that.

3.2.1. Sobol Indices along the Signal

One underlying simulation of the atria model results in a time-resolved signal, recorded
in twelve different leads simultaneously with a time resolution of 1 ms and ≈150 ms length,
leading to approximately 150× 12 = 1800 data points. We then calculate the PCE for each
lead separately and all output points of one lead are treated as independent output values
for which the combined least squares are minimized by the regression algorithm of PyThia.
Hence, from one surrogate model we obtain all individual SIs for each of the 150 signal
points of one lead simultaneously. The SIs can vary between signal timepoints, yielding a
time-resolved SA of the complete ECG signal.

Sobol indices are by definition adding up to one in each time point of the signal.
However, in the context of assessing the importance of the input parameters on the ECG
signal, it is more sensible to multiply them by the time-dependent signal variance σ2, cf.
Figure 6 (upper and middle panel). Hence, the variance caused by the different input
parameters (and parameter combinations for higher order SIs) can be traced over the whole
signal and very detailed information, e.g., for fitting the model to a specific measured ECG
is gained. This result for all 12 leads gives a first intuition for solving the inverse problem,
i.e., determining the most likely set of parameters for a given ECG signal. The straight-
forward intuition holds that the more influential input parameters are easier (i.e., more
accurately) to reconstruct from signals in this inverse problem. However, this very detailed
account of SA is in practice rather cumbersome and does not summarize the parameter
importance very well, hence, we present a more concise measure in the following section.

Figure 6. Cont.
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Figure 6. The first order Sobol indices S(t)i, weighted by signal variance σ2 for lead I (Top) and lead
V1 (Middle) for the Monte–Carlo sampled dataset. Note how parameter importance of P3–P8 varies
with time and also between leads. All Sobol indices are multiplied by the signal variance to show
the relevant influence on the EGC signal. The upper bound for uncertainty in determining Sobol
indices (colored band around the mean values) is significantly larger in lead V1 when compared to
lead I due to the higher approximation error, cf. Equation (7). (Bottom): The box plot of all first order,
integrated Sobol indices (cf. Equation (13)) calculated for all leads. S1 and S2 are close to zero. For
the other input parameters, we calculate comparable sensitivity measures overall (between 10 and
20%), although the inter-lead variations differ.

3.2.2. Time-Integrated Sobol Indices and Dataset Interpretation

By integrating the Sobol indices weighted by the time-dependent signal variance σ(t)
over the signal length, one obtains a measure for the aggregate importance of that input
parameter, or combinations of input parameters, on the ECG signal. For a convenient
notation, we divide then by the integrated signal variance, again leading to SIs that add up
to one:

Sint =

∫
S(t) · σ2(t) dt∫

σ2(t) dt
(13)

Additionally, we calculate the sum of all first order SIs as one measure of complexity of
the dataset. Underlying this is the notion that the more of the data variance can be expressed
in terms of single parameter variations, the simpler (or less complex) the uncertainty
propagation from input parameters to output observables. Generally, this is the case for
DSs with lower input and output variance—in analogy to a Taylor expansion it becomes
clear that for an expansion of small variations around a given point in state space, a linear
description by small, independent parameter variations is sufficient while for larger dataset
variations, higher order terms become necessary for a precise description of the functional
dependence. In our case, the results of the different leads of the presented DS confirms
this trend empirically as lead V1 has the smallest score for the sum of first order SIs, cf.
Table 2. Note also that, due to the cut-off of higher order terms in the definition of the
PCE (cf. Section 2.3), higher order SIs are less precisely approximated. Hence, one can
generally expect the three aspects to coincide: bigger contributions of high-order SIs, higher
surrogate errors and more output variance in the dataset.

We can now summarize the SA of the presented synthetic ECG data by eight integrated
SIs Si and the sum ΣSi for all twelve leads, i.e., 108 scalar values. As before, we constrain
the presentation on the DS 3 because DS 2, 3 and 4 yielded very similar results and with DS
3 (10,000 Monte–Carlo samples) we do not have to assume any specific sampling strategy.
Further, DS 1 was merely intended as a comparison for the increased surrogate quality with
significantly lower input variability.
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Table 2. First order, PCE-based Sobol indices. The time-dependent indices were integrated over the
complete signal length and are depicted here for all 12 leads and input parameter addressed (P1 and
P2 (conduction velocities), P3–P5 (rotation angles) and P6–P8 (shifts of the atria within the torso)).

I II III aVL aVR aVF V1 V2 V3 V4 V5 V6

S1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
S2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
S3 0.106 0.136 0.003 0.177 0.032 0.038 0.162 0.176 0.165 0.119 0.157 0.146
S4 0.092 0.119 0.001 0.155 0.027 0.032 0.250 0.283 0.321 0.340 0.252 0.049
S5 0.346 0.039 0.167 0.236 0.294 0.037 0.103 0.139 0.075 0.024 0.015 0.034
S6 0.032 0.154 0.090 0.082 0.045 0.144 0.110 0.124 0.185 0.189 0.172 0.154
S7 0.202 0.378 0.710 0.062 0.497 0.713 0.006 0.016 0.020 0.031 0.064 0.318
S8 0.176 0.138 0.016 0.231 0.079 0.024 0.127 0.102 0.171 0.249 0.286 0.236

ΣSi 0.954 0.963 0.988 0.943 0.974 0.986 0.758 0.840 0.937 0.952 0.946 0.938

We see here that the Sobol indices of the first two parameters, the two conduction
velocities, are very close to zero (in the order of 1× 10−6). This means the two parameters
have no discernible influence on the dataset, i.e., are not necessary to reconstruct data
with a surrogate model and do not contribute appreciably to the signal variance. Second,
all the other input parameters contribute to the signal variance in a heterogeneous way,
i.e., for each lead the first order SIs differ significantly, although similarities between related
leads can be found. Noteworthy are also the two highest single parameter contributions of
over 70% by the y-axis shift (parameter 7) in leads III and aVF. The sum of the first order
SIs indicates that for most leads more than 90% of the signal variance is covered by the
single parameter variations. The exception form leads V1 and V2 with significantly lower
proportions of the first order SI with 76% and 84%, respectively. This is in accordance with
the higher surrogate error and signal variance we observe for those leads as the sum of the
first order SI can be considered as a measure of dataset complexity. Hence, we hypothesize
that with more output variance, generally also the higher-order parameter variations
become important and with that the truncation error becomes more significant because the
higher-order terms are cut by restricting the sum of all exponents to the maximum order of
a single-parameter variation.

By averaging the values of the integrated SIs over all 12 leads, we can present a
comprehensive picture of the dataset analysis, cf. Figure 6 (lower panel). Depicted there
are the integrated SIs of all 12 leads as a box plot. The orange line indicates the median
value, the box represents the upper and lower quartile and the whiskers indicate the data
range. Again, we see that the conduction velocities (parameters 1 and 2) play no role in
the description of the output variance of the DS. The three rotation angles (parameters 3,
4 and 5) as well as the three shifts (parameters 6, 7 and 8) contribute each about 10–15%
to the output variance. The y-shift is appreciably more broadly distributed, indicating an
especially variable importance of this parameter on the MC dataset.

3.3. Uncertainty Quantification

With a calculated surrogate model it becomes also possible to address questions
more concerned with the propagation and quantification of uncertainties. For a given
distribution of the input parameters, each point in the ECG signal exhibits a specific
distribution of values, too. The monitoring and description of the uncertainty propagation
through a given model is referred to as uncertainty quantification (UQ). The depiction of
mean signal and 1σ band in Figure 2 can be considered as a basic example of UQ. With a
surrogate model, however, we can re-sample easily and very quickly with different input
parameter distributions and thereby study the propagation of uncertainty in a given model
in great detail.

First, we have to validate the signal distributions we obtain via the surrogate model
with the corresponding distributions of ground truth output values. For that, in Figure 7 in
the top panel, the distributions of the Monte–Carlo sampled dataset are plotted in black
for t = 55 ms (middle of the P-wave) in the signal of lead V1. For validation, we then
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sample the surrogate model in sixth polynomial order on the whole parameter interval it
was constructed on (shown in red). We thereby use most of the possible 10,000 samples,
merely reserving 100 random samples as a means to estimate the surrogate error. Note
that instead of several days of computation time for 10,000 samples of the original model,
we now only need a few seconds with a calculated PCE surrogate. To be able to ascertain
the numerical stability of the sample distribution from different surrogates, we calculate
100 histograms from 10,000 samples each and over the 100 instances calculate the mean and
standard deviation of the counts (the 2σ band is depicted in light red). In order to compare
the replication accuracy of statistical features, in contrast to single, complete signals, we
also generated a very crude PCE surrogate of second polynomial order. In this case, only
45 and not ≈3000 terms have to be determined by the regression algorithm which means
it is possible to use very few samples. Hence, we constructed 100 surrogate models with
100 samples, each chosen randomly from the complete set of 10,000 samples. Like for the
sixth order surrogate, we depict the mean histogram with the 2σ band in green and note
that although the deviations between different histograms are significantly higher, the
distribution of values is reproduced very well qualitatively.

To demonstrate UQ performed with a PCE surrogate, we sub-sample the sixth order
surrogate model by employing an 8D beta-distribution by multiplying 8 univariate distri-
butions: p(x, α, β) = xα−1(1− x)β−1. The beta distribution is a sensible choice here because
the support is finite, i.e., the same as the underlying (normalized) uniform distribution
[0, 1]N of the surrogate. Furthermore, for high values of the two defining parameters α = β,
the beta distribution resembles the Gaussian distribution to a certain degree, a typical case
for input parameter uncertainties in the frame of uncertainty quantification. Here, we con-
sider three cases: α = β = 11, resulting in a symmetric distribution, and also α = 11, β = 2
and vise-versa for the asymmetric cases, respectively. Sampling from the defined input
distribution results in a different distribution for the model output, i.e., the ECG signals,
which are plotted in Figure 7 in blue. In principle, it thus becomes possible to address the
propagation of any input uncertainty through the model to its output values as long as the
support of the chosen input distribution is a subset of the support the surrogate model was
constructed on.

To quantify the errors in reconstructing the signal distributions, we then considered the
deviations with respect to the histogram of the Monte–Carlo sampled dataset, cf. Figure 7
in the bottom panel. More explicitly, we plotted the mean of the respective histograms over
100 instances, subtracted the ground-truth histogram and plotted the 2σ band. Considered
were three cases: first p = 6 constructed with NS = 9900 samples (as in Figure 7, lower
panel, in red), second p = 2 with 100 samples (in light green) and third p = 2 with
9900 samples (in a darker shade of green), significantly reducing the deviations from the
ground-truth data.

Figure 7. Cont.
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Figure 7. Comparison of distributions of ECG values at a fixed time point (t = 55 ms) in the signal of
lead V1 (cf. Figure 2 in the upper right panel). (Top): The statistical properties of the Monte–Carlo
sampled ground truth dataset (black, 10,000 samples) agree very well with the spectrum of values of
the PCE approximations. A good PCE model (p = 6 and NS = 9900, depicted in red) and contrasting,
a very basic one (p = 2 and NS = 100, in green) agree very well in the depicted 2σ bands, respectively.
(Middle): The surrogate model allows for a quick re-sampling for a more versatile UQ. As an example,
all input parameters were sampled from either of the three Beta distributions pβ shown in the inlay
(the color coding matches the obtained output distributions), cf. text for more details. (Bottom): The
deviations from the histogram of the ground truth data (GTD, cf. black line in the top panel) for three
different PCE surrogate models. The mean and 2σ band are depicted for p = 2 and NS = 100 in
light green, p = 2 and NS = 9900 in dark green and p = 6 and NS = 9900 in red. With an increase
in polynomial order and the number of samples underlying the determination of PCE coefficients,
we generally see a better approximation of GTD, but the statistical properties can be reconstructed
remarkably good even for very basic PCE surrogates.

4. Discussion

We presented a method enabling sensitivity analysis (SA) and uncertainty quantifi-
cation (UQ) of virtual 12-lead ECG data with the aid of a polynomial chaos expansion
(PCE) surrogate model at the example of four P-wave datasets sampled in 8D parameter
space. For that, we applied the established PCE method to time-dependent output data
and used a non-intrusive implementation that determines the PCE coefficients based on
linear regression on stochastic model evaluations from a defined input parameter distribu-
tion. The general scheme of the proposed SA/UQ methodology can be divided into three
parts: We start with defining the specific DS we want to address by choosing the stochastic
model parameters and their respective distributions, defining the input variability. In more
elaborate models, where not all parameters can be addressed simultaneously, the choice
of parameters itself is a process where groupings of parameter sets can be assembled, e.g.,
depending on meaning in the modeling context or by selecting only the most important
ones (to be determined by a local analysis or a very crude, low-rank surrogate model). With
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that, a specific sampling scheme is chosen, i.e., the distribution and number of samples to
be used on the input parameter space. The second step is to create the PCE surrogate on the
sampled dataset. It is sensible to study its accuracy with respect to the chosen error measure
and ascertain the optimal set of hyperparameters of the PCE, e.g., the maximal polynomial
order for each parameter and whether more sampling is sensible, by a systematic analysis
of the numerical and the truncation error. The obtained reliability of the surrogate then
serves to inform the reliability of the last step, the performed SA and/or UQ. Directly
from the expansion coefficients of the surrogate, we obtain the approximated Sobol indices
for SA and based on the surrogate error also an upper bound on the precision of each SI,
cf. Equation (7). With a surrogate model, it is much faster to sample additional model
outputs, hence, the definition of arbitrary input parameter distributions (as long as their
support is a subset of the initial parameter interval of the surrogate) and the subsequent
evaluation of the resultant output distributions greatly enhances the capabilities to perform
uncertainty quantification.

In the presented case, the choice of a sampling scheme yielded only tiny differences in
the obtained surrogate accuracy and no qualitative differences in its convergence behavior,
cf. Figure 5. However, the increase of the input parameter interval width (and subsequently
the output variance) reduces the obtainable surrogate accuracy considerably, cf. Figure 3.
Similarly, the differences in reconstruction accuracy between the separate leads are very
large, which is related to the different output variances over the same input parameter
interval. For the input dimension Nin = 8, the maximal polynomial order to be calculated
was p = 6, which gives a surrogate with 3003 terms with a relative error (cf. Equation (12))
typically below 1× 10−4, which is a very good basis for SA and UQ. For the leads V1 and
V2, however, the error estimates are significantly larger with 3% and 0.5%, respectively.
The different accuracies obtained relate to the much larger output variance of those two
leads with respect to the position and orientation changes of the atria relative to the surface
torso model where the virtual electrodes are located. This larger signal variance in turn
comes from the close proximity of cardiac sources to the electrodes that define the leads
V1 and V2, i.e., V1 and V2 represent a very local measurement of potential differences
directly above the heart that are much more sensitive to its geometric shifts and rotations.
Other leads are obtained by measuring potential differences over a longer distance and
further away from the physical position of the heart. As the main aim of the surrogate here
is laying a foundation for SA and UQ—not the substitution of the numerical model—we
judge the surrogate accuracy as sufficient for the purpose.

The calculated Sobol indices are very reliable for most leads, the significantly larger
upper bound for the SI uncertainty in lead V1 is depicted in Figure 6 in the middle panel.
However, the bounds represent the maximal possible error on the SIs and the trends clearly
contained in the time-dependent sensitivity analysis are already quite informative for
modeling purposes (like calibration and parameter optimization). The time-integrated SIs
(cf. Figure 6, lower panel) show that of the 8 parameters addressed, the two conduction
velocities (P1 and P2) do not contribute significantly to the signal variance. The three
rotation angles and the three spatial shifts of the heart model inside the torso all exhibit
similar importance, though their influence varies strongly between the different leads.
The different parameter influences with respect to the whole set of 12 leads fulfills one
prerequisite for potentially solving the inverse problem of electrocardiography, i.e., the
determination of unknown model parameters from a given ECG signal. Regarding the
use case of simulating ECG signals, these properties could be of great value in terms of
generating large-scale synthetic datasets [13,74] with low computational effort, applicable,
e.g., as input to machine learning models for arrhythmia classification [15] or as an emulator
for simulation parameter inference.

With a PCE surrogate, the UQ of the underlying model is significantly enhanced,
because of the very quick sampling by surrogate evaluations (5× 105 samples in a about
90s on a conventional desktop machine). We exemplified this by first validating the
statistical properties of the 6th order surrogate model with the MC dataset, cf. Figure 7
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(upper panel). We then compared it with an extreme example for a cheap surrogate model
and found that it reproduced the data distribution quite well. Hence, we note that for the
investigation of statistical properties of a complex ground truth model, PCE provides a
reliable and feasible systematic approach that works reasonably well even with low order
and very sparse sampling. In order to demonstrate the strengths of a surrogate model
further, we assumed different univariate input distributions for the parameters in form
of different high-order Beta distributions, cf. Figure 7 in the middle panel. By sampling
the surrogate from these distributions (which have to have a smaller or equal support
than the created surrogate), one can quickly assess the different output distributions. By
constructing and sampling from different scenarios of input variability, the propagation
of parameter errors in computationally expensive model for cardiac dynamics becomes
feasible. Supplementary points on the usage, limitations and further directions for PCE
models in the field of cardiac engineering are elaborated on in Appendix B.

5. Conclusions

We have developed and implemented a framework for sensitivity analysis and un-
certainty quantification in a biophysically and anatomically realistic three-dimensional
numerical model for the electrical activity of the atria. Our emphasis was on assessing
the influence of model parameters on the simulated P-wave which is the atrial contribu-
tion to the electrocardiogram (ECG). Since the standard metrological approach of using
Monte–Carlo simulations are computationally prohibitive, we have used a nonintrusive
polynomial chaos-based approximation of the forward model. The surrogate model in-
creases the speed of computations for varying parameters by more than five orders of
magnitude, from about 90s per simulation run of the full computational model to about
5× 105 samples of the surrogate in the same time (both on an average desktop machine).
It further allows for the quantification of parameter influences via Sobol indices and is in
principle amenable to analytical examination. By estimating the surrogate approximation
error it also provides bounds for the accuracy of the obtained sensitivities. Thus, it is
capable of supporting and improving the creation of synthetic databases of ECGs from a
virtual cohort mapping a representative sample of the human population based on phys-
iologically and anatomically realistic three-dimensional models. With the study of the
presented datasets of simulated P-wave signals, we applied the polynomial chaos expan-
sion (PCE) to time-dependent data and exemplified the capabilities of surrogate-based
sensitivity analysis and uncertainty quantification. The obtained sensitivities and their
interpretation in the context of the underlying electrophysiology further helped to illumi-
nate aspects of the numerical model and represent a basis for parameter optimization in
high dimensions. We showed the convergence of the PCE for the specific example of atrial
electrical activity as part of standard ECGs and calculated the PCE-based Sobol indices
for sensitivity analysis of the datasets. The exceptional strength of the gPCE framework
to capture parametric uncertainty was displayed by comparing UQ based on different
surrogate models, revealing that the assessment of statistical properties is feasible with
basic PCE surrogates build from few model evaluations. By specifically addressing the
model variability with respect to the orientation and position of the virtual atria inside the
torso, we took a step towards understanding how natural and healthy ECG variability is
caused and by extension, how to discern it from pathological signal changes, evaluated for
diagnostics. We aim to extend the work in the future to the signal of the ventricles which
requires to investigate more model parameters, thus aiding a more complete understanding
of realistic models of cardiac electrophysiology and in particular of ECG variability overall.
Methods of sensitivity analysis and uncertainty quantification will be helpful in assessing
virtual cohorts of models aimed at representing biological variability in a population, e.g.,
for simulating a representative set of human ECGs.
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Appendix A. Mean Signals
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Figure A1. The mean P-wave signal (black) of all leads in DS 3 and its range of ±one standard
deviation (red).

Appendix B. Usage, Limitations and Further Directions

The present study looked at the time dependent, 12-lead ECG curves of virtual atria.
However, it is possible—and common in the community of computational cardiology—to
look at certain features in the ECG, i.e., to derive a different output by introducing addi-
tional post-processing steps. It is equally feasible to create surrogate models for single
features, typically intervals between or the amplitude of different peaks. For fitting a
model to a specific patient, the closeness to some target output (e.g., via a fitness function)
is also a valuable model output. Doing a sensitivity analysis on the feature space then
enables modelers to address and communicate more specific questions about the model
performance, e.g., it is easier to statistically match important ECG feature distributions,
rather than matching a virtual cohorts of ECGs with measured ones [75] in a curve-by-curve
matching scheme.

The numerical model for the generation of the P-wave datasets examined here exhibits
>100 parameters that can be changed continuously, as well as meshes with ≈1 × 106

nodes where the system of PDEs is solved on (which can be parameterized via principle
component analysis based on sample meshes) . For the PCE surrogate, however, we can
address only up to 12 parameters at a given time—depending on the necessary surrogate
accuracy. Therefore, all datasets that can be evaluated represent a small, low-dimensional
subspace of the complete parameter space. A possible expansion of the PCE scheme is
the use of a low-rank representation (e.g., by employing the tensor train format) of the
full coefficient tensor of the PCE model. Together with adaptive methods to chose only
the most significant terms, the curse of dimensionality could be alleviated to some degree,
enabling the treatment of more model parameters simultaneously.

However, a surrogate model itself can be useful for further analysis—especially if
there are significant numerical or material costs of evaluating the original model. Single
evaluations of a PCE surrogate are very fast, typically in the order of ms, and arbitrary
input parameter distributions can be quickly assessed. One further option is to perform
more involved data analysis such as machine learning on the numerically cheap surrogate
and testing the reliability of the results with a smaller sample of the biophysically detailed
model or experiment. A PCE surrogate is a linear combination of chosen basis polynomials,
hence, it is typically easier to store, duplicate and transfer than the dataset itself and it is
amenable to analytic treatment. Together with the much faster sampling capabilities, it
becomes possible explore the high dimensional parameter space of involved numerical
models much more directly. Conveniently for SA, the PCE-based Sobol coefficients and
upper bonds on their error are easily accessible from the constructed PCE. Hence, one has
to weigh the initial costs of the generation of a surrogate model with the benefits for SA
and UQ, the flexibility and convenience of a surrogate, and the savings due to possible
future model evaluations.
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