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Abstract: Spectral analysis is successfully adopted in several fields. However, the requirements
and the constraints of the different cases may be so varied that not only the tuning of the analysis
parameters but also the choice of the most suitable technique can be a difficult task. For this reason,
it is important that a designer of a measurement system for spectral analysis has knowledge about
the behaviour of the different techniques with respect to the operating conditions. The case that
will be considered is the realization of a numerical instrument for the real-time measurement of the
spectral characteristics of a multi-tone signal (amplitude, frequency, and phase). For this purpose,
different signal processing techniques can be used, that can be classified as parametric or non-
parametric methods. The first class includes those methods that exploit the a priori knowledge
about signal parameters, such as the spectral shape of the signal to be processed. Thus, a self-
configuring procedure based on a parametric algorithm should include a preliminary evaluation of
the number of components. The choice of the right method among several proposals in the literature
is fundamental for any designer and, in particular, for the developers of spectral analysis software,
for real-time applications and embedded devices where time and reliability constrains are arduous to
fulfil. Different aspects should be considered: the desired level of accuracy, the available elaboration
resources (memory depth and processing speed), and the signal parameters. The present paper
details a comparison of some of the most effective methods available in the literature for the spectral
analysis of signals (IFFT-2p, IFFT-3p, and IFFTc, all based on the use of an FFT algorithm, while
improving the spectral resolution of the DFT with interpolation techniques and three parametric
algorithms—MUSIC, ESPRIT, and IWPA). The methods considered for the comparison will be briefly
described, and references to literature will be given for each one of them. Then, their behaviour will
be analysed in terms of systematic contribution and uncertainty on the evaluated frequencies of the
spectral tones of signals created from superimposed sinusoids and white Gaussian noise.

Keywords: digital signal processing; spectral resolution; frequency domain analysis; frequency–
domain interpolation; frequency uncertainty

1. Introduction

The spectral analysis of signals is successfully adopted in several fields—from elec-
trical [1,2] to typical industrial fields—for speed and fault detection on motors and bear-
ings [3–5] in military applications [6], submarine applications [7], and medical applica-
tions [8]. Despite the adaptability of frequency analysis for varied applications [9], similar
cases might require different approaches, requirements, and constraints; for this reason,
they differ in the tuning of the analysis parameters, and the choice of the most suitable
technique can be a difficult task to accomplish. For this reason, the designer of a mea-
surement system for spectral analysis must have knowledge about the behaviour of the
different techniques concerning the operating conditions. The case that will be considered
is the realisation of a numerical instrument for the real-time measurement of the spectral
components of a signal: amplitude, frequency, and phase.
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For this purpose, different signal processing techniques can be used that can be
generally classified in parametric and non-parametric methods. The first class includes
those methods that exploit the a priori knowledge about the signal parameters, such as
the number of signal spectral components. Thus, a self-configuring procedure based on a
parametric algorithm should include a preliminary evaluation of the number of components.
The choice of the proper method among the several available approaches is fundamental
for designing a procedure based on signal spectral analysis. Different aspects should be
considered: the desired level of accuracy, the available elaboration resources (memory
depth and processing speed), and the signal nature.

This paper will compare the most effective methods available in the literature for the
spectral analysis of signals [10–25]. The considered methods for the comparison will be
briefly described, and references from the literature will be given for each one of them.
Their behaviour will be analysed in terms of obtainable uncertainty on the frequency
evaluation. Residual errors and repeatability of the measured frequency directly influence
the uncertainty of other tone properties, such as phase and amplitude.

The procedure and the criteria adopted for the comparison are described and, eventu-
ally, the results are reported and commented upon. Numerical simulations have been run
in conditions similar to the real-world operation of a measurement system by studying the
effects of added Gaussian noise or quantisation noise to the signal, and their results are
shown in this article.

2. Considered Methods

In this section, the algorithms considered for the comparison will be briefly described.
At first, some non-parametric algorithms will be presented (IFFT-2p, IFFT-3p, IFFTc), they
are all based on the use of a fast Fourier transform (FFT) algorithm, but they improve the
spectral resolution of the discrete Fourier transform (DFT) algorithm, with interpolation
techniques. Then three parametric algorithms will be introduced (MUSIC, ESPRIT, and
IWPA), based on approaches different from the DFT evaluation. Since almost any signal
can be represented as a multi-tone signal (1), composed of the sum of Ns sinusoids with
amplitude, Ai, and phase, φi; all the algorithms will be compared with respect to this
signal family.

x(t) =
Ns

∑
i=1

Aisin(2π fit + φi). (1)

2.1. Non-Parametric Methods

Considering the multi-tone signal in (1), sampled with a Ts sampling period, the ob-
tained signal is described by:

x(n) =
Ns

∑
i=1

Aisin(2π finTs + φi) n = 1. . .N. (2)

Non-parametric methods are based on the DFT algorithm, where the spectrum samples
are evaluated as follows:

X(k) =
1
G

N−1

∑
n=0

w(n)x(n)e−
2jπ
N kn k = 0. . .N − 1, (3)

where x(n) is the sampled signal (2) and w(n) are the window samples with gain G, and k
is the spectral bin index, also known as the bin number. If the sampled signal is coherent
with the module of the sampled sequence DFT (3), then M(k) = |X(k)| presents Ns peaks,
corresponding to the Ns tone frequencies; the i-th peak is located exactly at index ki.

When coherent sampling conditions are not assured, a quantization error arises in
the frequency estimation [26]; the tone module is underestimated because of the spectral
leakage. Moreover, harmonic interference is present, causing an error in parameters
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estimation when the sampled signal presents two tones with a small frequency difference
compared with the frequency resolution, or when it has only one tone but the frequency is
less than two times the frequency resolution ∆ f .

To correct errors on frequency estimation, phase, and amplitude estimation, several
non parametric methods have been exploited in the literature [10]. In the following sections,
some non parametric methods will be briefly treated, in particular the interpolated FFT
(IFFT) on two points and three points, and the corrected IFFT.

2.1.1. IFFT-2p

Interpolated FFT algorithms [10,11] have been known in the literature for several years,
and those based on a two-point interpolation are the most common. The frequency, fi, of the
i-th tone can be evaluated as: fi = (ki + δi)∆ f , where ∆ f is the DFT frequency resolution
(∆ f = fs/N), k is the integer part of the bin ( f /∆ f ), and δi ∈ [−1/2,+1/2] is the fractional
bin deviation. The fractional bin deviation, δi, is evaluated from the ratio between the two
largest samples closest to the peak: αi =

|X(ki+εi)|
|X(ki)|

, where: εi = sign(|X(ki + 1)| − |X(ki − 1)|).
Considering the sampled spectrum of the window function, W(k), the following is ob-
tained [9]:

αi =
|W(εi − δi)|
|W(−δi)|

=
|W(ki − δi)|
|W(ki)|

(4)

The value of δi can be evaluated from the latter relationship, given the window function
and its analytical expression.

2.1.2. IFFT-3p

The interpolated three-point DFT algorithm [12–15] is based on an interpolation of the
DFT results of the signal, windowed by cosine windows, and using three points for each
tone peak. Considering the multi-tone signal, with Ns spectral components of (1), like the
IFFT-2p, the frequency fi of the i-th tone is evaluated as fi = (ki + δ3i)∆ f ; in this case, δ3i is
evaluated considering the three largest samples of the peak:

α3i =
|X(ki − 1)|+ |X(ki + 1)|

|X(ki − 1)|+ 2|X(ki)|+ |X(ki + 1)| , (5)

δ3i = K ∗ α3i, (6)

where K is a proportional factor that depends on the used windowing function; in the case
of an Hanning window, this is K = 2.

2.1.3. IFFTc

The corrected interpolated FFT algorithm, presented in [16–18], is based on an IFFT-
2p, but includes further processing to correct the effects of the harmonic interference
between spectral components. Concerning the multi-tone signal of (1), it has been shown
that the DFT value closest to the peak of the i-th spectral component can be written as:
X(ki) =

Vi
S W(−δi) + Fi, where Vi =

Ai
2j ejφi , S = ∑N−1

i=0 w(n), and the contribution of the
harmonic interference of other components on the i-th one can be taken into account by
the term Fi. Similar considerations can be made for the second strongest bin: X(ki + εi) =
Vi
S W(εi − δi) + Bi.

The αi becomes: α′i = |W(εi−δi)|
|W(−δi)|

= |X(ki+εi)−Bi |
|X(ki)−Fi |

. The correction factors, Fi and Bi,
depend on the frequency, amplitude, and phase of the signal tones. The proposed solution
consists of using the values of frequency, amplitude, and phase measured with a preliminary
two-point IFFT to evaluate the correction factors (IFFTc). In the presence of a low-frequency
tone, the frequency image contribution can be corrected with the same relationships [20].
This step could be iterated further, but without any significant improvement in terms of
estimation error reduction.
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2.2. Parametric Methods

Numerous parametric methods exist in the literature; however, in this article, only the
three algorithms presenting the best compromise in terms of computational requirements
and estimation performance have been considered—MUSIC, ESPRIT, and IWPA.

2.2.1. MUSIC

This parametric algorithm (multiple signal classification) [19–21] determines the fre-
quencies of the tones in a signal by performing a decomposition of the covariance matrix of
the sequence of signal samples, x(n). We modelled the input data as a Ns-tone signal and a
superimposed noise, as follows:

x(n) =
Ns

∑
i=i

Aisin(2π finTs + φi) + z(n), (7)

where z(n) is the noise signal. The covariance of the signal is Rx = E{xxH}, and can be
numerically computed using signal samples, x[n]. If the noise is considered to be white
Gaussian noise, then the signal can be decomposed in order to separate the signal from
the noise orthogonal subspaces. The frequencies of the signal tones can be estimated from
this decomposition [19]. To compute the MUSIC algorithm, the number of signal tones, Ns,
must be known in advance; the same applies to the number of signals eigenvectors to be
found with the decomposition.

2.2.2. ESPRIT

This parametric algorithm (estimation of signal parameter via rotational invariance
technique), introduced in [22–24], exploits the rotational invariance property, which is valid
for the signal eigenvectors (x) of the sample sequence covariance matrix. Similar to the
MUSIC algorithm, ESPRIT needs an estimation of the signal covariance matrix. Thanks
to the knowledge of the number of components, the eigenvectors corresponding to signal
components can be separated from the noise eigenvectors. Each signal eigenvector can be
written as:

xk = [x(0), x(1), . . ., x(N − 2), x(N − 1)]

= Ak × [1, ejωk , ej2ωk , . . ., ej(N−1)ωk ]

= [s1, x(N − 1)] = [x(0), s2],

(8)

where Ak is the coefficients vector. The s2 = s1ejω1 rotational invariance property is valid,
so all the signal eigenvectors and the signal components can be collected into the matrix, U,
as well as into the signal components in the following matrices:

Γ1 = [IM−1|0M−1](M1)×M (9a)

Γ2 = [0M−1|IM−1](M1)×M (9b)

Considering the rotational invariance property for each signal eigenvector, the selec-
tion matrices, Γ1 (9a) and Γ2 (9b), can be used to obtain the following system:

[Γ1U]Φ = Γ2U, (10)

where Φ = diag{ejω1 , ejω2 , . . ., ejωNs }. It is possible to obtain the frequencies of the compo-
nents belonging to the signal solving this system with a least square technique.

2.2.3. IWPA

This method, proposed in [25], is based on the iteration of the weighted phase average
algorithm (WPA). Considering the case of a signal with only one spectral component,
x(t) = A0cos(2π f0t + φ0), a coarse estimation, f̂0, of the frequency, f0, can be obtained
in the first place, as the maximum of the amplitude of the DFT sequence, X(k). The
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signal is then divided into M non-overlapping segments of length P: xs(n) = x(n + s · P),
0 ≤ n ≤ P− 1.

In the simple but effective case of two segments and P = N/2, the spectra of the two
segments, x1 and x2, are evaluated at frequency f̂0, and it can be shown that the fractional
bin deviation, δ, can be estimated as:

δ =
N

2π · P

(
X1( f̂0)− X2( f̂0)

)
. (11)

The IWPA algorithm, at each iteration, applies the WPA to obtain the frequency
estimation of the strongest component, while amplitude and phase of this component are
obtained through a least square technique. In the next step, the estimated component is
subtracted from the samples of the previous iteration in the time domain. The number
of iterations has to be equal to the number of components, so that a new component
can be estimated at each iteration. The IWPA algorithm can be easily converted into a
non-parametric algorithm by iterating its processing steps until the level of the residual
decreases below a threshold.

3. Residual Errors

Due to approximations, the considered methods may exhibit a bias between the
estimated and actual values of the signal tones, even when noise is not superimposed to the
signal, and their expected values are not equal to their actual values. Such behaviour can
be associated with interharmonic interference; as for IFFTc and IWPA, the behaviour can be
associated with inadequate knowledge of the values required by parametric methods or
the finite word length of the data processing.

To evaluate the proposed methods and produce a clear comparison of their perfor-
mance, the multi-frequency signals described by (1) were considered; the tests are made for
different values of the number of tones (Ns), the number of samples (N), the frequency ( fi),
the amplitude (Ai), and the phase (φi). All the simulations have been made supposing an
observation window longer than two periods of the signal. The major effects analysed are
the frequency resolution, the signal dynamic range, and the harmonic interference [10].

fi = (ki + δi)∆ f (12a)

Ai = βi · A0 (12b)

dij =
f j − fi

∆ f
(12c)

Given Equations (12a)–(12c), where ki is the frequency bin index corresponding to
fi and δi is the fractional bin deviation, the simulations are made at changing values
of δi, dij, βi, φi, and N in order to analyse the dependence of the harmonic interference
effects on the signal characteristics and the measurement system settings. In order to
evaluate the interference effects on the different methods, tests with only two tones with the
same amplitude (A1 = A2), corresponding to more substantial interference on both tones,
refs. [3–5] are carried out at changing distances between tones, d12; with d1 always greater
than 20.

The logarithms of the absolute errors on the fractional bin deviations are calculated as
the difference between the measured (δ̂i) and the real value (δi), as follows:

Eδi = |δ̂i − δi| (13)

In Figure 1 the estimation error (13) for the first tone versus the distance between tones
(d12) is reported for the considered methods; similar results are obtained with the second
tone. Interpolated FFT algorithms use the Hanning window, while for MUSIC and ESPRIT,
M = N/4 was posed, and the matrix covariance was calculated using the samples with no
noise added.
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IFFT2p

IFFTc

IFFT3p

IWPA

ESPRIT

MUSIC

Figure 1. Absolute errors on δ obtained for a two-tone signal versus the distance, d12, between tones.

Some considerations can be outlined, as follows:

• For each distance, the best performance is obtained by the ESPRIT method, that
exhibits the lowest error at any distance between the tones since the error due to the
frequency quantization is negligible.

• When the distance between tones is small (d12 < 2bins), the non-parametric ap-
proaches detect only one tone and the errors on the detected tone are significant
(comparable with δ). Even if the IWPA method is able to estimate both tones and its
errors are lower than those of the parametric approach, the error is still high.

• The tone distance slightly influences the algorithms based on the autocorrelation
(MUSIC and ESPRIT): only for d12 lower than one bin is the MUSIC algorithm affected
by a highest residual error.

• The performance of IWPA and IFFT are comparable, but for small tone distances,
the IWPA gives better estimations—vice versa occurs for larger distances d12.

• The IFFTc algorithm for tone distance greater than 8 bin gives results comparable with
MUSIC: errors of the order of 10-6 are measured for both tones.

Since parametric algorithms require the knowledge of the number of spectral compo-
nents, but the information can not be obtained in some applications, a characterization of
all the algorithms will be reported for the case in which a different and generally wrong
number of spectral components (Ns0) is specified. For instance, Figure 2 shows the errors
on δ versus the specified number of tones, Ns0 , in the case of a five-tone signal (Ns = 5)
for the considered algorithms. The results refer to a signal with all the tones at the same
amplitude (Ai = 1) and uniformly spaced with di,i−1 = 3. For the cases where Ns0 < 5,
the error on δ for a non-detected tone is evaluated with respect to the closest detected tone.

As expected, the algorithms based on IFFT, being non-parametric algorithms, are
not influenced by Ns0 , and the residual errors are quite similar for each tone. Parametric
methods MUSIC and ESPRIT manifest a different behaviour: errors are very high for each
tone as long as Ns0 is lower than the actual number of tones. In other words, if Ns0 is
lower than Ns, then the estimated frequencies are significantly different (at least ∆ f /2)
from the actual frequencies of each of the five tones. When Ns0 ≥ Ns, the ESPRIT method
gives the best performance: it does not show residual errors, and small differences (less
than 10−15) are only caused by the finite word length of the precessing unit (CPU); MU-
SIC shows greater errors (about 10−7), but these are negligible with respect to the other
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methods. IWPA is less sensitive to an underestimated number of tones (Ns0 ≥ Ns): in these
cases, the frequency estimations are better than the other parametric methods, while for a
Ns0 ≥ Ns, its estimation deteriorates, since noise components are considered erroneously
as signal tones until Ns0 components are detected. In the results of Figure 2, when Ns0 is
less than Ns = 5, the errors for the undetected components are evaluated as the absolute
difference between the actual value for that component and the estimated value for the
closest component.

IFFT2p

IFFTc

IFFT3p

IWPA

ESPRIT

MUSIC

IFFT2p

IFFTc

IFFT3p

IWPA

ESPRIT

MUSIC

IFFT2p

IFFTc

IFFT3p

IWPA

ESPRIT

MUSIC

IFFT2p

IFFTc

IFFT3p

IWPA

ESPRIT

MUSIC

IFFT2p

IFFTc

IFFT3p

IWPA

ESPRIT

MUSIC

Figure 2. Errors on δ or a 5-tone signal (Ns = 5), versus the specified number of tones, Ns0 . Each
figure refers to a single tone starting from tone 1 (on the left) to tone 5 (on the right).

Further tests were carried out to highlight the sensitivity of the different methods to
the number of processed samples; in particular, the trends (not reported here for the sake
of brevity) of the errors on δi, versus the bin distance, and versus the tone amplitudes,
do not change when the number of acquired samples changes from 128 to 2048. This is
expected for the error on δi, which is a kind of relative error and is different from the error
on the frequency. Once the sampling frequency has been set, the greater the number of
samples, the lower the spectral resolution, and, consequentially, the lower the error on
frequency will be. However, a small reduction in the residual errors is measured only for
the IWPA and IFFT methods when N increases (from about Eδ = 3× 10−3 with N = 128 to
Eδ = 2× 10−4 for N = 4096).

4. Repeatability under Noisy Conditions

Some amount of noise always corrupts real-life signals, so the considered methods
have to be evaluated when applied with noisy signals, since their performance may worsen
significantly. The tests are carried out by changing the signal characteristics to estimate
each method’s sensitivity to the tone composition; only two-tone signals are considered.
Once the signal and the measurement parameters have been fixed, a Gaussian noise is
added, noisy signal samples are generated, and the algorithms process these points in
order to estimate the signal characteristics. For each signal, configuration, and noise level,
the tests are repeated 1000 times; the mean and the standard deviation of the results of
the algorithms are calculated. For the three algorithms, based on the FFT interpolation,
a Hanning window is used.

4.1. Sensitivity to the First Tone Distance

Figure 3 reports the behaviour of the algorithms respect to a signal composed of two
tones very close in frequency (d12 = 3 bins) and with the same null phase. The measured
mean square error (MSE) versus the signal-to-noise ratio (SNR) for the different methods
are reported, where the Cramér–Rao bound (CRB) [14] is also reported, since it gives
information about the best theoretical performance (minimum variance of the quantity of
interest) achievable with an ideal estimator, versus the level of superimposed noise. It has
to be highlighted that the MSE considers both the random variability and the systematic
effects [13]. The adopted CRB values are obtained with relationships valid in the specific
case of a single-tone signal. However, the CRB estimation can be considered a kind of lower
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limit, and the goodness of the estimation of a proposed method can be evaluated through
the closeness of the resulting MSE to the CRB.

IFFT2p

IFFTc

IFFT3p

IWPA

ESPRIT

MUSIC

CRB

Figure 3. Mean square errors (MSE) versus the SNR for a two-tone signal with A1 = A2 = 1, N = 256,
f1/∆ f = 40.2 bins, d12 = 3 bins, and zero phase difference.

Analysing these results, it is possible to state that IFFT and IFFTc algorithms are less
sensitive to a high noise level than the other algorithms. In particular, IFFTc shows an
MSE on δ less than 0 dB for SNR less than zero, while the errors can reach 20 dB for the
other algorithms. For higher SNR, MUSIC, and ESPRIT show the best performance, but the
results of IFFTc and IWPA are comparable with those of the other two methods when the
phases are equal to zero. In presence of phase difference, not reported here for simplicity,
the performance of ESPRIT and MUSIC does not change while IFFT deteriorates slightly
(about 2 dB) for SNR values between 0 dB and 20 dB; the MSE on δ of the IFFTc algorithm
declines of about 3 dB for high SNR (greater than 40 dB) when residual systematic effects
on the phase estimation become predominant, and IWPA remarkably loses its estimation
capability at the point that it can hardly be adopted.

Figure 4 reports the MSE on δ versus the relative distance between the two tones of
a signal. The improvement of interpolation of the IFFTc over IFFTs is evident since IFFTc
keeps good performance from d12 equal to 3 onwards. However, the lowest values of MSEδ

are reached by ESPRIT and MUSIC.
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IFFT2p

IFFTc

IFFT3p

IWPA

ESPRIT

MUSIC

Figure 4. MSE of δ for the first tone versus the normalized tone distance d12, with A1 = A2 = 1,
N = 256, f1/∆ f = 40.2, random phases, and SNR = 40 dB.

4.2. Sensitivity to the Tone–Amplitude Ratio

In Figure 5 the trends of the MSE in the estimation of the bin deviations for a two-tone
signal with very close frequencies (d12 = 3) and with random phases are reported, versus
the amplitude of the second tone (β2 changes in the range [0.1, 2], while β1 = 1) for two
different SNRs (5 dB and 40 dB). The figures show only the performance of the parametric
method ESPRIT and the non-parametric algorithm based on IFFT, since the results of
MUSIC are very similar to those of ESPRIT, while IWPA introduces very high errors in
presence of phase variations.

IFFT2p

IFFTc

IFFT3p

IWPA

ESPRIT

MUSIC

IFFT2p

IFFTc

IFFT3p

IWPA

ESPRIT

MUSIC

Figure 5. MSE of δ versus the amplitude of the second tone with β1 = 1 fixed at two different SNR
values 5 dB (on the left) and 40 dB (on the right). N = 256, f1/∆ f = 40.2, d12 = 3, and random phases.
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ESPRIT algorithm exhibits worse performance in the estimation of the the second
tone frequency when β2 is low, due to the low values of SNR at the second tone especially
in the case of the lowest of the two SNR values (5 dB), while the MES value decreases
for increasing amplitudes of the second tone. The estimation of the highest tone is not
influenced by the amplitude of the lowest one. On the other hand, the IFFTc method is
slightly influenced by the change in amplitude. Moreover, the variability obtained with
all the methods on δi is comparable (IFFTc is characterized by a standard deviation σδi
a bit greater than the others) and the same behaviour is observed when the second tone
amplitude becomes significantly greater than the noise (β2 > 0.5).

4.3. Sensitivity to the Number of Samples

In Figure 6 the standard deviations of the errors versus N are reported, for a given
signal with two tones of the same amplitude and for two different noise levels. As expected,
the standard deviations decrease when the number of processed samples increases. For
both noise levels, the effect of the tone distance is less significant for high N. In the case
of the lowest SNR value (5 dB), the trend is quite the same for all the methods, since the
variability due to noise is comparable to the systematic effect of IFFT; meanwhile, for the
highest SNR value (40 dB), the parametric algorithms and IFFTc show better performances.

IFFT2p

IFFTc

IFFT3p

ESPRIT

IFFT2p

IFFTc

IFFT3p

ESPRIT

Figure 6. MSE of δ versus the number of processed samples for a two-tone signal with A1 = A2 = 1,
d12 = 3, N = 256, f1/∆ f = 40.2, random phases, SNR 10 dB (on the left), and 50 dB (on the right).

5. Uncertainty Evaluation

As evidenced in Section 3, all the analysed methods present a residual error, that can
be negligible or not function depending on the signal characteristics and the processing
parameters. The residual contribution cannot be corrected since it strictly depends on the
signal characteristics and the uncertainty evaluation has to be taken into account. To this
aim, it is possible to write the following:

δ = δm + Cδ, (14)

where δ is the corrected bin value, δm is the evaluated bin value, and Cδ is the correction that
can be modelled as random variable with mean value equal to zero and standard deviation,
σC, different from zero. Applying the ISO GUM [27] the measurement uncertainty is
equal to:

uδ =
√

σ2
δ + σ2

C. (15)
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As for the standard deviation of the correction value, the measurement uncertainty
can be estimated considering group of signals with similar characteristics. In Table 1 the
measurement uncertainty uδ on the tone frequencies evaluated for a two-tone signal with
tones at varying distance (used as the index of the table) and for different values of β12 is
reported. The uncertainty is evaluated considering for each configuration 1000 simulations
with random phase and varying d12 between the 2 tones, and the FFT is made on 256 sam-
ples. The measurement uncertainty is reported for the six considered methods. By looking
at these data, it is possible to have an idea of the order of magnitude of the uncertainty,
given the signal characteristics d1, d2, β12 for a given algorithm; the uncertainty of the
second tone for d12 between 3 and 4 when β12 is equal to 0.01 are not reported because it is
not ever correctly detected with the algorithms based on FFT.

Table 1. Measurement uncertainty, uδ, evaluated for two-tone signals with tones at varying distance
for different values of β12, changing d12 from d1 to d2. The simulations were repeated 1000 times,
randomizing the tone phases with a 256-sample signal.

β12 = 0.01

Tone 1 Tone 2
d1 d2 IFFT2p IFFTc IFFT3p IWPA ESPRIT MUSIC IFFT2p IFFTc IFFT3p IWPA ESPRIT MUSIC

3 4 6.7 × 10−5 1.5 × 10−4 2.4 × 10−5 1.1 × 10−3 1.1 × 10−14 1.6 × 10−7 - - - 1.1 × 10−1 9.6 × 10−13 1.6 × 10−7

4 5 3.0 × 10−5 6.0 × 10−5 9.1 × 10−6 1.1 × 10−3 1.1 × 10−14 1.8 × 10−7 6.6 × 10−1 5.8 × 10−1 6.7 × 10 −1 1.0 × 10−1 9.3 × 10−13 1.8 × 10−7

5 6 1.6 × 10−5 1.0 × 10−5 4.3 × 10−6 1.1 × 10−3 1.1 × 10−14 1.9 × 10−7 1.2 × 10−1 3.6 × 10−5 5.5 × 10 −2 1.0 × 10−1 9.9 × 10−13 1.9 × 10−7

6 7 9.5 × 10−6 3.4 × 10−6 2.3 × 10−6 1.1 × 10−3 1.0 × 10−14 1.6 × 10−7 7.7 × 10−2 3.2 × 10−5 2.6 × 10 −2 1.0 × 10−1 9.9 × 10−13 1.7 × 10−7

7 12 3.5 × 10−6 5.6 × 10−7 6.7 × 10−7 1.1 × 10−3 1.0 × 10−14 1.7 × 10−7 2.9 × 10−2 2.8 × 10−5 7.4 × 10 −3 1.0 × 10−1 9.4 × 10−13 1.7 × 10−7

12 20 7.8 × 10−7 1.8 × 10−7 9.4 × 10−8 1.1 × 10−3 1.0 × 10−14 1.7 × 10−7 6.5 × 10−3 2.2 × 10−5 9.8 × 10 −4 9.7 × 10−2 9.3 × 10−13 1.7 × 10−7

β12 = 0.1

Tone 1 Tone 2
d1 d2 IFFT2p IFFTc IFFT3p IWPA ESPRIT MUSIC IFFT2p IFFTc IFFT3p IWPA ESPRIT MUSIC

3 4 6.8 × 10−4 2.3 × 10−4 2.4 × 10−4 1.3 × 10−3 1.1 × 10−14 1.6 × 10−7 5.3 × 10−2 2.3 × 10−4 3.5 × 10−2 1.0 × 10−1 1.2 × 10−14 1.6 × 10−7

4 5 3.0 × 10−4 3.8 × 10−5 9.1 × 10−5 1.2 × 10−3 1.1 × 10−14 1.8 × 10−7 2.4 × 10−2 4.1 × 10−5 1.2 × 10−2 1.0 × 10−1 1.2 × 10−14 1.8 × 10−7

5 6 1.6 × 10−4 9.9 × 10−6 4.3 × 10−5 1.2 × 10−3 1.1 × 10−14 1.9 × 10−7 1.3 × 10−2 1.2 × 10−5 5.2 × 10−3 1.0 × 10−1 1.2 × 10−14 1.9 × 10−7

6 7 9.5 × 10−5 3.4 × 10−6 2.3 × 10−5 1.2 × 10−3 1.1 × 10−14 1.6 × 10−7 7.8 × 10−3 5.3 × 10−6 2.6 × 10−3 1.0 × 10−1 1.3 × 10−14 1.7 × 10−7

7 12 3.6 × 10−5 6.0 × 10−7 7.0 × 10−6 1.1 × 10−3 1.1 × 10−14 1.7 × 10−7 3.1 × 10−3 3.0 × 10−6 7.9 × 10−4 9.3 × 10−2 1.2 × 10−14 1.7 × 10−7

12 20 1.9 × 10−6 1.9 × 10−7 1.5 × 10−7 1.1 × 10−3 1.1 × 10−14 1.6 × 10−7 1.6 × 10−4 1.4 × 10−6 1.5 × 10−5 9.7 × 10−2 1.3 × 10−14 1.6 × 10−7

β12 = 1.0

Tone 1 Tone 2
d1 d2 IFFT2p IFFTc IFFT3p IWPA ESPRIT MUSIC IFFT2p IFFTc IFFT3p IWPA ESPRIT MUSIC

3 4 6.8 × 10−3 2.3 × 10−4 2.4 × 10−3 4.0 × 10−3 1.1 × 10−14 1.6 × 10−7 5.4 × 10−3 2.3 × 10−4 3.5 × 10−3 1.0 × 10−1 1.1 × 10−14 1.6 × 10−7

4 5 3.0 × 10−3 3.8 × 10−5 9.1 × 10−4 4.2 × 10−3 1.0 × 10−14 1.8 × 10−7 2.4 × 10−3 4.1 × 10−5 1.2 × 10−3 1.0 × 10−1 1.1 × 10−14 1.8 × 10−7

5 6 1.6 × 10−3 9.9 × 10−6 4.3 × 10−4 2.9 × 10−3 1.1 × 10−14 1.9 × 10−7 1.3 × 10−3 1.1 × 10−5 5.2 × 10−4 1.0 × 10−1 1.1 × 10−14 1.9 × 10−7

6 7 9.5 × 10−4 3.4 × 10−6 2.3 × 10−4 3.0 × 10−3 1.1 × 10−14 1.7 × 10−7 7.8 × 10−4 4.0 × 10−6 2.6 × 10−4 1.0 × 10−1 1.1 × 10−14 1.7 × 10−7

7 12 3.6 × 10−4 7.3 × 10−7 7.0 × 10−5 2.2 × 10−3 1.1 × 10−14 1.7 × 10−7 3.1 × 10−4 8.5 × 10−7 7.9 × 10−5 9.3 × 10−2 1.0 × 10−14 1.7 × 10−7

12 20 7.4 × 10−5 3.0 × 10−7 9.4 × 10−6 1.6 × 10−3 1.1 × 10−14 1.7 × 10−7 6.5 × 10−5 2.4 × 10−7 9.7 × 10−6 9.6 × 10−2 1.0 × 10−14 1.7 × 10−7

In order to verify the proposed approach, Table 1 is used to evaluate the expected
uncertainty for three different signals that is compared with the measured one, evaluated
with a type B approach. The analysed signals refer to different conditions: close-frequency
tones (d12), one of these with significantly lower amplitude (β12); low-noise (Case 1 and
Case 2); tones of the same amplitude with high noise (Case 3); tones with a high enough
SNR (Case 4). In the first case, a two-tone signal with β12 = 0.1, d12 = 3.6, and SNR = 40 dB
has been used; Case 2 reports the same kind of signal with β12 = 0.1, d12 = 4.5, and
SNR = 80 dB; for Case 3, β12 = 1, d12 = 5.2, and SNR = 10 dB; meanwhile, in the last case,
the signal uses the parameters β12 = 1, d12 = 7.9, and SNR = 60 dB.

In Table 2 the uncertainty of both tones is synthesized for the three algorithms—IFFTc,
IFFT3p, and ESPRIT. Generally, one or two digits are enough to express the uncertainty
value; however, in Table 2, more digits are used to clearly highlight the differences between
the reported methods. It can be seen that there is, for all the signals, high similarity
between the measured and the expected uncertainties. Even under different conditions,
where the uncertainty components—due to the residual error and the noise—have different
contributions, in all cases, the estimation of the uncertainty is accurate and can be an a
priori alternative to the measured value. A little overestimation for the IFFT3p algorithm is
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observed for Case 2, when the contribution—due to the residual error—is prevalent; this is
due to the high dependence of the residual error on the tone frequency value, but in our
estimation, a medium value is considered.

Table 2. Comparison of the expected uncertainty and the measured uncertainty for three different
cases of a two-tone signal with changing parameters: β12, d12, and SNR.

Case 1 Case 2 Case 3 Case 4

β12 = 0.1, d12 = 3.6, β12 = 0.1, d12 = 4.5, β12 = 1.0, d12 = 5.2, β12 = 1.0, d12 = 7.9,

SNR = 40 dB SNR = 80 dB SNR = 10 dB SNR = 60 dB

IFFT3p ESPRIT IFFTc IFFT3p ESPRIT IFFTc IFFT3p ESPRIT IFFTc IFFT3p ESPRIT

uδ1

meas. 1.03 × 10−2 1.72 × 10−2 6.29 × 10−3 6.99 × 10−3 8.88 × 10−3 4.25 × 10−3 8.98 × 10−3 1.03 × 10−2 5.43 × 10−3 2.84 × 10−2 3.16 × 10−2 1.70 × 10−2

exp. 1.03 × 10−2 1.72 × 10−2 6.28 × 10−3 6.99 × 10−3 7.52 × 10−3 4.24 × 10−3 8.97 × 10−3 1.03 × 10−2 5.43 × 10−3 2.84 × 10−2 3.16 × 10−2 1.70 × 10−2

uδ2

meas. 2.96 × 10−3 3.52 × 10−2 1.74 × 10−3 1.58 × 10−3 2.05 × 10−3 1.01 × 10−3 1.28 × 10−3 1.44 × 10−3 6.92 × 10−4 5.26 × 10−3 6.52 × 10−3 3.37 × 10−3

exp. 2.98 × 10−3 3.27 × 10−3 1.74 × 10−3 1.58 × 10−3 1.22 × 10−2 1.01 × 10−3 1.28 × 10−3 1.20 × 10−3 6.93 × 10−4 5.26 × 10−3 6.50 × 10−3 3.37 × 10−3

It is almost possible to observe an invariability of the uncertainty on both the first
and second tone frequencies at the various conditions for the IWPA, ESPRIT, and MUSIC
algorithms, with the same order of magnitude for both the tones for a given algorithm. The
ESPRIT algorithm shows again the lowest uncertainty compared with the other parametric
algorithms; the IWPA shows the worst performance in all cases. The IWPA shows better
performance compared with non-parametric algorithms in almost no cases. For higher
ratio of d12 the performance in terms of measurement uncertainty on the second tone of
the non-parametric algorithms starts to be two orders of magnitude better than the IWPA
algorithm. Only in the case of a low ration β12 and low d12 IWPA could be considered a
good choice with respect to a non-parametric algorithm. Comparing the algorithms based
on FFT, the IFFTc is able to correct the effect of the interfering tone almost in all cases (see
tone 2 uncertainty with β12 less than 1).

6. Concluding Remarks

By comparing the obtained results, some useful conclusions can be drawn in order to
guide a designer in choosing a method for the spectral analysis. Methods belonging to the
class of parametric algorithms require a priori knowledge and allow the accurate estimation
of the frequency only, but on the other hand, their performance is remarkable, with respect
to the non-parametric algorithms. Specifically, ESPRIT shows very high performance even
with a relatively small number of samples, so if there is any constraint on the number of
samples, then the ESPRIT algorithm can be suggested as an optimal choice. If the number
of tones (Ns) is precisely known, ESPRIT is not affected by systematic errors and is slightly
affected by harmonic interference. It has excellent performance in the cases of high SNR
values. On the other hand, the execution times are acceptable only when the autocorrelation
matrix has a reduced size.

With the use of the proposal in Table 1, it is possible to estimate uncertainty a priori for
numerous real-world conditions, without the need of extensive simulation, field acquisition,
or data elaboration that needs expensive equipment or requires long time to be executed.
Compared with the use of parametric approaches—where the need of a priori knowledge
is indispensable in obtaining the optimal performance—this approach gives an indication
of how good the result will be under certain circumstances.

As far as the other parametric approaches are considered, the performance of the MU-
SIC algorithm can be compared with that of the ESPRIT method, but its systematic effects
are worse than those of ESPRIT when the noise level is low. Due to its zero searching strat-
egy, the IWPA method achieves the worst performance in the estimation of frequencies in
the presence of phases difference between the tones. Among the considered non-parametric
algorithms, IFFTc shows the best behaviour because it achieves a decent trade-off between
metrological performance and elaboration times; the IFFT algorithm is the fastest one, but
in the presence of harmonic interference, the residual error is significant.
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In conclusion, IFFTc is the best choice for real-time applications whenever the elabo-
ration time is a strong requirement, but if there are constraints on the number of samples,
then ESPRIT should be chosen. Furthermore, hybrid solutions—based on a pre-processing
algorithm for a preliminary estimation of the signal tones and the superimposed noise,
followed by a decision algorithm to select the signal processing algorithm—could be taken
into account to allow the minimum uncertainty on the frequency evaluation, and to ob-
tain the best trade-off for different configurations of tone number, SNR ratio, required
spectral resolution, and real-time needs; the latter are strictly associated with the analysed
bandwidth.
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