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Abstract: On 30 January 2020, WHO declared COVID-19 a public health emergency of global concern.
COVID-19 became pandemic on 11 March 2020, and spread unprecedently. No country was prepared
to face its impact. Major fears started to be expressed for Africa, where dramatic consequences were
expected, due to the weakness of health systems. In this review, we related major concerns, at that time
but still present, regarding the limited resources in terms of qualified physicians and researchers, as
well as the scarce funds to purchase essential medical equipment and improve hospital infrastructures.
The difficulties to provide proper care became an undeniable mark of inequality, highlighting the need
to empower local capacity and raise preparedness against infection outbreaks. The transmissibility of
genetic variants affecting African nations, the immunopathology underlying comorbidities, sequelae,
and pre-existing conditions, often related to changes in iron metabolism and enhancing COVID-19
severity, were described. The obstacles in adopting standardized prevention measures were highlighted,
along with testing capacity biases and inequity of healthcare access and vaccine distribution. By
providing a better understanding of the COVID-19 pandemic in Africa, we draw attention to the need
for collaborative efforts to leverage the quality of healthcare and research in this continent.
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1. COVID-19 in Africa

Africa is the second most populated continent, with around 1.3 billion people (17% of
the world population) [1]. It comprises 54 independent nations, many of which are referred to
as fragile states [2,3]. Original predictions indicated that Africa would be disproportionately
affected by COVID-19 [4], also in view of the difficulty of implementing effective measures of
social distancing [5]. The first case of COVID-19 was reported in Egypt on 14 February 2020 [6].
Then, imported cases started to be detected in other African nations, as most Europeans were
trying to escape the dramatic reality they were experiencing [7]. African governments were
highly sensitized to seeing countries with large economies being defeated by the virus and
started to close borders and isolate nations from foreign entry [7]. Although in Africa local
transmission increased slowly [7], the limited financial and qualified human resources to
overcome the deadly disease forced this continent to preventively lock down [5,8]. The
youthfulness of the African population is the most plausible explanation for reduced severity
of COVID-19 in this continent. The average age is 19.7 years, and 60% of the population
is younger than 25. As we know, severe symptoms predominantly affected the elderly
population [9], who suffered from sub-chronic impairments of the immune system. In Africa,
immunity is linked to multiple pathogen exposures [10], which shape the immune response.
This continuous activation is capable of reprogramming immune cells [11] and providing
them with the ability to respond differently to microbes [12]. This is an advantage which
allows individuals to better cope with infection, including during childhood. In the context of
COVID-19, this notion was demonstrated by comparing the immunity elicited upon infection
in Belgian, Canadian, Ecuadorian, and South African cohorts, the latter showing a reduced
functional response of immune cells. Lifestyle trends, scarce consumption of processed food,
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climate, and environmental aspects are other factors that might have contributed to mitigating
the dramatic effects caused by the pandemic [13]. This notion was supported by evidence
showing that environmental parameters were able to contradict initial predictions and reduce
virus lifespan [14,15]. While the low temperatures and humidity of the northern globe
hemisphere facilitated the virus’ survival [16], the warm African climate was shown to reduce
the risk of COVID-19 infection [17]. The effect of sunshine UV rays acted synergistically, on
one hand compromising viral stability and diminishing disease transmission, and on the other
causing a beneficial effect on the host. Individuals presenting an increased level of vitamin
D were able to elicit a more efficient activation of an immune response against the virus [18].
It is also worth mentioning that the windy weather in some countries was also considered
an advantage. It negatively affected viral spreading [19] and contributed to dispersing viral
pathogens, lowering disease transmission. Hence, the growth curve for COVID-19 in Africa
was inversely correlated to average temperature and wind speed [20].

However, a shift from this initial positive scenario occurred when multiple
SARS-CoV-2 variants started to appear. By the end of 2020, most African countries un-
derwent a second wave of infection, with a 30% growth in weekly incidence and daily
average of new cases, in relation to the peak of the first COVID-19 wave [21]. Controversial
suggestions were publicly advanced, with people proposing on international television
channels to let the continent reaching heard immunity, a possibility that was finally not
considered. Whether this was due to a global voice raised against those statements or to
the fear of a potential “boomerang effect” is still not clear. Indeed, the many efforts made to
contain the COVID-19 pandemic could have been jeopardized with a reestablished mobility
between continents. The concern that implemented measures might have been of no use is
possibly the reason for which “common sense” prevailed.

In March 2023, nearly 180,000 fatalities were reported in Africa vs. almost 8 million
deaths registered worldwide. According to the WHO, South Africa and Morocco were
the most affected [3,22]. In this regard, it should be highlighted that over 50% of African
citizens reside in rural areas, with limited interaction with travelers or urban communities
that could potentially carry the virus [23]. When compared to other continents, the rate of
foreign travel to Africa is relatively low. South Africa and Morocco have the highest rates,
ranking, respectively, 22nd and 28th worldwide. This may explain why these countries
showed the highest number of cumulative COVID-19 cases in Africa [24].

Concerns regarding a possible discrepancy between predicted and confirmed cases stood
out. The reduced morbidity and mortality registered in the African continent was inconsistent
with the results obtained from seroprevalence tests [25]. Antibodies were detected in 10–30%
of the African population. However, this percentage also raised numerous discussions, as
positivity relied on the testing capacity of the country where the assay was performed [8]. No
nations had the financial resources to purchase tests for all suspected cases. So, while there
were countries who received more assistance than others from state cooperation and inter-
national donations, the percentage of conducted tests was not comparable to the developed
world. While South Africa conducted a total of 54,224 tests per million people, Egypt and
Nigeria carried out 1317 and 1504 tests, respectively. In the UK, the number of conducted tests
was 266,500 per million people, and in the US it was 195,072 during the same period [26].

However, despite the overall lower number of individuals that were reported to
have developed severe symptoms [4], COVID-19 in Africa is still a threat. The precarious
situation, characterized by a variety of infectious diseases, malnutrition, and limited access
to healthcare, has worsened since the pandemic occurred [27,28]. In addition, the inequality
of vaccine distribution as well as of population adhesion to vaccination programs hindered
African response to COVID-19 [29].

2. SARS-CoV-2

It is known that thousands of viruses circulate silently in wild mammals and can
infect humans by zoonotic spillover. Among zoonotic diseases, coronaviruses have already
caused previous unexpected outbreaks in the past [30–32]. Coronaviruses are enveloped,
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non-segmented, positive-sense, and single-stranded RNA viruses [33], with the largest
genome [34,35]. Their size varies from 26,000 to 33,000 bases. Coronaviruses are divided
into four genera: Alphacoronavirus (α-CoV), Betacoronavirus (β-CoV), Gammacoronavirus
(γ-CoV), and Deltacoronavirus (δ-CoV). The subtype β-CoV has been responsible for three
outbreaks in the last two decades. These are the Severe Acute Respiratory Syndrome
(SARS), the Middle East Respiratory Syndrome (MERS), and the COVID-19 pandemic [35],
which was first reported by Chinese health facilities in December 2019 [36].

Receptor recognition is a fundamental determinant of virus infection in humans, and
ACE2 was referred to as the entry door for SARS-CoV-2 [37–39]. Upon the binding of
SARS-CoV-2 to ACE2, the S1 subunit of the spike protein undergoes a conformational
change, exposing the S2′ cleavage site in the S2 subunit [40]. This is cleaved by different pro-
teases, among which is the transmembrane protease serine 2 (TMPRSS2) [41], located at the
cell surface [42,43]. The creation of a fusion pore allows the viral genome to subsequently
reach the host cell cytoplasm [43], where it begins to translate the viral genome [44].
Virion-containing vesicles are formed, and they fuse with cell membranes to release
new viruses [45–47].

3. Genetic Variants of SARS-CoV-2 Reported in Africa

Virus variants emerged since the outbreak and mostly affected the spike protein, which
became the target of vaccine and monoclonal antibody production (Figure 1) [48,49]. The first
variant was known as D614G. It appeared in April 2020, replacing the original
SARS-CoV-2 by June 2020 [48,50]. A few months later, another variant was reported in
the UK and was named Alpha (B.1.1.7) [50]. Many additional mutations occurred since then,
showing distinct effects, in terms of infection spread and symptom severity, related to the
affected region. In the spike protein, mutations like N501Y increased virus transmissibility [48].
Similar effects were also identified in variants affecting the non-spike and nucleocapsid re-
gions, resulting in different sub-lineages [50]. South Africa was the incubator of the Beta
variant (B.1.351) [50], a highly transmissible strain, sharing D614G and N501Y mutations with
the Alpha variant. Unexpectedly, B.1.351 was less effectively neutralized by conventional
therapies [48]. While the country was severely affected, Brazil reported a new variant, the
Gamma (P.1) variant [51], causing an infection rate of approximately 75%. Mutations in the
spike protein region [48,50] and in the amino-terminal domain [50] characterized P.1. This
variant was not reported in Africa, raising concerns regarding how much sequencing the
continent could afford. Nevertheless, the Delta variant (B.1.617.2) started to spread. From
India, it reached Africa, where it significantly increased the morbidity and mortality rate of
many fragile nations [3,52]. The same occurred with the Kappa (B.1.617.1) variant, although its
transmissibility and number of sub-lineages were lower [50]. Despite all these mutations, the
variant that prevailed in Africa was Omicron (B.1.1.529) [3,52–54]. The many genetic changes
affecting Omicron [55] increased its infectivity [56], but reduced the risk of the virus causing
severe clinical outcomes. Hence, this variant became less lethal [57]. Since then, different
mutations were identified in Omicron and many sub-variants were reported [58–60]. Some
emerged as lineage combinations, and their evolution is still closely followed.
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4. The Transmissibility of SARS-CoV-2 and the Difficulty of Applying Standardized
Protection Measures in Africa

The fear of unprecedented mortality in Africa due to the COVID-19 pandemic grew
exponentially when it was realized that the best healthcare provided in the developed
world was not sufficient to stop the lethality of SARS-CoV-2. The virus was shown to
replicate from 5 to 11 days [61,62]. Then, common symptoms, like fever, fatigue, and dry
cough, began to appear [63]. Malaise and myalgias were also reported [64], as well as
headache, abdominal pain, diarrhea, nausea, and vomiting [65]. While anosmia and ageusia
were considered early markers of COVID-19 [64], shortness of breath was suggestive of a
worsening disease stage [65]. Hence, protection measures to mitigate the infection started
to be standardized. However, soon after their implementation, it became clear that they
were designed for different realities than that in Africa. The virus was transmitted through
close contact with infected individuals and the inhalation of viral-containing particles in
the form of microscopic aerosols [66–73]. Thus, how could distance be maintained among
people that mostly live of the informal sector or running small restoration businesses?
How could home confinement be followed by people belonging to economically devasted
communities, in which street selling remains the only source of sustenance? The difficulty
of adopting standardized norms also referred to preventive measures of hygiene. Besides
alcohol shortages, inequalities were highlighted even upon recommendations of simple
actions, such as hand washing. In Africa, only one third of the population has regular
access to clean water [74]. So, not stressing measures that required financial support to
be implemented, many took for granted the privileges of living in developed countries.
When scientific evidence found active viruses in biological samples, like urine [75,76] and
feces [75,77–79], even after patient recovery [77,80], many concerns were raised in the
continent, as most African citizens do not have access to private and clean sanitary facilities.
Hence, viral infectivity was also expected to significantly grow because of open drains and
squat toilets, lacking flushing water systems [81]. Accordingly, an enhanced number of
cases started to be reported in countries where open defecation was a common practice.
The lack of proper infrastructures for human waste management was seen as an additional
risk for viral spreading [82]. This emphasized that despite the effort made to educate
society on how to avoid infection, the applicability of many measures caused a double-edge
feeling. The rules globally adopted contradicted many socioeconomic and cultural aspects
associated with an increased risk of viral transmission, such as breastfeeding, which was
referred as one of the routes for SARS-CoV-2 transmission [83]. In Africa, approximately
40% of infants are exclusively breastfed [84,85], a percentage below the WHO’s Global
Nutrition Target of a 50% prevalence to be reached in 2025 [86]. The hypothesis that
those women could have turned into disease incubators stood out. Concerns were also
expressed in the case of intrauterine spreading [87], as the impact of COVID-19 became
more evident in reproductive healthcare. In over 115 evaluated countries, including almost
50 African nations, maternal and child mortality rates increased monthly by 38.4% and
44%, respectively [88]. Nowadays, since COVID-19 does not pose a deadly threat to the
world anymore, efforts should be made to evaluate Africa’s response to viral infectivity,
teaching lessons for future outbreaks and promoting policies to leverage healthcare.

5. The Sequelae Caused by SARS-CoV-2

Systemic and neurological symptoms have been detected in COVID-19 patients, even
12 months after hospital discharge. The reason is that ACE2 is expressed in different organs,
like lung alveolar epithelia, small intestine, renal proximal tubules, gallbladder epithelium,
cardiomyocytes, testicular Sertoli cells, Leydig cells, and the brain [46]. The binding of
SARS-CoV-2 to ACE2 might affect all those organs [46,89]. This topic was addressed in a
comprehensive systematic review and meta-analysis, evaluating pulmonary complications
long after the infection. Almost 50% of survivors showed multiple sequelae [90,91], among
which were dyspnea, oxygen dependence, and fibrotic lung disease [92]. Radiographic
abnormalities persisted in 81% of patients that suffered from severe pneumonia [93]. Fa-
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tigue was reported by approximately 30% of recovered individuals and often turned into
cardiovascular impairments. In 14.8% of COVID-19 survivors, abnormal palpitation and
thrombosis [90], as well as myocarditis and myocardial infarction [92], were reported.
About 12% of patients revealed psychiatric and neurological symptoms [90], which in-
cluded cognitive and behavioral deficits, along with depression, anxiety, insomnia, and
taste dysfunction [92].

While this characterization was performed in developed countries, we still do not
know if it also applies to African nations. Further studies should be conducted to provide a
picture of the long-term sequelae caused by COVID-19 in this continent [94]. Investigations
carried out in South Africa and sub-Saharan Africa showed that 47% of hospitalized
patients and 19% of non-hospitalized patients experienced persistent symptoms after
six months [91]. Long-term sequelae were poorly detected in patients infected with the
Omicron variant [95]. When occurring, long-lasting effects were mostly complained of by
the elderly and female population [92]. However, it is worth mentioning the difficulties
in detecting COVID-19 sequelae in Africa, due to underlying health conditions, like other
infection, malnutrition, and poor access to quality care.

6. The Comorbidities Underlying COVID-19 Severity in Africa

Among the comorbidities enhancing the severity of COVID-19, non-communicable dis-
eases were recognized worldwide as a prevalent risk factor for poor clinical outcomes. Their
incidence in Africa is a major concern [52,96]. Non-communicable diseases are expected to
be the primary cause of mortality in African nations by 2030 [97]. The Democratic Republic
of the Congo, Nigeria, Ethiopia, and South Africa present the highest rates, considered as a
potential explanation for the increased number of reported severe COVID-19 cases. Accord-
ing to the Global Burden of Disease studies, the incidence of non-communicable diseases
in Africa has also been linked to the growing adoption of the Western lifestyle [98–100].

Among those pathologies, diabetes mellitus stood out [101]. In Africa, the number of
diabetic individuals is 24 million and is projected to increase by 129% in 2045, reaching
55 million people [102]. Diabetic patients were more likely to manifest severe COVID-19
symptoms. Their compromised immune system, hypercoagulable pro-thrombotic state,
endothelial dysfunction, and vascular inflammation [103] led to diabetes mellitus being a
major contributor to COVID-19-induced complications and mortality [104–107]. According
to WHO, during pandemic times, the fatality rate of diabetic patients was 10.2%, as assessed
in 13 sub-Saharan countries. Conversely, in non-pandemic times, it was 2.5% [108].

Another risk factor for the appearance of severe COVID-19 symptoms was cardiovas-
cular diseases [109]. Their prevalence varies from 0.1% in Sudan, where coronary events
prevail, to 20% in Mozambique, where individuals mainly develop endomyocardial fibro-
sis [97]. Childhood rheumatic heart disease is also widespread in sub-Saharan Africa [110],
ranging from 0.2% to 3% [111–115]. In terms of long-term sequelae, the occurrence of
thrombosis and cardiorenal syndrome, upon COVID-19 infection, prevailed [94]. However,
cardiovascular pathologies are also triggered by other highly prevalent infections, among
which are HIV and tuberculosis [116], alerting of the difficulty in discriminating cardiovas-
cular impairments caused by SARS-CoV-2 or other pathogens. In Africa, almost 50% of the
individuals that suffer from tuberculosis show symptoms of pericarditis [97]. Its severity
was significantly worsened by COVID-19 when individuals also carried HIV [117]. Similar
results were even obtained in relation to the number of casualties [118]. Inflammation,
elicited by SARS-CoV-2, exacerbated heart and blood vessel damage, as evidenced by the
tropism of the virus for these cells [119,120]. Also, fibrosis-altered lung function and chronic
obstructive pulmonary disease were reported as long-term COVID-19-induced sequelae in
patients with tuberculosis [94,121,122]. Coinfections are prevalent in Africa. In the presence
of different pathogens, the response to COVID-19 was impaired [52], as revealed in a study
including 17,871 participants infected with SARS-CoV-2 [123].

Another concern drawing attention to severe COVID-19 symptomatology was obesity.
According to WHO, 20% of adults and 10% of children and teenagers in South Africa, Nige-
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ria, Mozambique, Uganda, Tanzania, Zambia, Zimbabwe, Kenya, Malawi, and Ethiopia,
were expected to be classified as obese by December 2023 [124]. Although a causal relation-
ship between obesity and COVID-19 was not fully established, evidence suggested they
are strictly related. Hospitalized COVID-19 patients manifesting adult respiratory distress
syndrome were often obese [125–128] and presented associated comorbidities [129]. How-
ever, differences in obesity epidemiology might have impacted the severity of COVID-19,
especially when referring to urban regions. Most African people living in rural areas suffer
from malnutrition, which is known to impair immune response and increase symptom
severity [130]. In Angola, Liberia, Tanzania, Burkina Faso, Chad, Mali, Niger, Sudan, as
well as in the Northern African region and Yemen, malnutrition and iron deficiency prevail,
presumably justifying the high mortality caused by COVID-19 [131].

The prevalence of diseases related to disruption of iron metabolism also highlighted
the possibility that deficiency of this metal might have played an important role in the
fight against COVID-19 in Africa. Iron is a vital element, ensuring the development and
survival of many organisms [132]. Viruses also need iron to proliferate, as it is required
for the synthesis of their genetic material and energy production. Despite the lack of
studies evaluating the correlation between iron levels and COVID-19 severity in Africa,
numerous investigations were conducted in developed countries. In human volunteers,
the exposure to norovirus was associated with the induction of hypoferremia, caused by an
increased hepcidin, the hormone regulating iron absorption and circulating levels [133].
Dysregulation of iron homeostasis in COVID-19 patients was observed since the beginning
of the outbreak [134]. The analyses of 99 patients, hospitalized in Wuhan Jinyintan Hospital
with COVID-19-induced pneumonia, showed tissue iron overload and increased serum
ferritin, the neutralizing protein storing iron within its subunits [135]. A higher production
of pro-inflammatory cytokines directly linked to iron levels, like IL-1, IL-6, INF-γ, and TNF,
was associated with a poor prognosis [136,137]. The cross-talk between inflammation and
iron metabolism led researchers to investigate if hepcidin levels could predict the fatal
outcome of COVID-19 infection [138]. Patients with hepcidin levels below 394 ng/mL
were found to be more likely to survive. Higher levels of hepcidin were shown to increase
inflammatory markers, like CRP and ferritin, as assessed in a descriptive study conducted
with 5700 COVID-19 patients [127]. Hypoferremia was manifested in almost all ICU-
admitted COVID-19 patients [139] and was associated with expression of organ damage
markers, like aspartate aminotransferase-AST and lactic acid dehydrogenase-LDH [140,141].
Severe COVID-19 was also linked to low levels of hemoglobin, possibly as a consequence
of the lower iron levels available for its synthesis. This negatively impacted erythrocyte
production, as confirmed by the decrease in erythropoietin [142]. Its release also depends
on the ability to sense hypoxia [141,143], and patients suffering from severe hypoxemia
were found with lower levels of serum iron [144]. The decrease in hemoglobin functioning
might also be explained by the ability of SARS-CoV-2 to use CD147 and CD26 receptors on
erythroid cells as an alternative entry into cells [145,146]. CD147 is also known as basigin
or EMMPRIN and was shown to directly bind to the spike protein [145]. However, no
evidence of basigin variants was found in a genomic study evaluating 131 COVID-19
patients [147], and no role was detected for this receptor in viral infection assays in lung
cells [148]. It has been postulated that SARS-CoV-2 can also interact with hemoglobin
through CD26 [134], binding the S1 domain of the spike protein [149]. Its role in regulating
hematopoiesis, influencing the production of colony-stimulating factors [150], raised the
hypothesis that erythropoietic-based adjuvants could be used as potential therapeutic
options. Given that the activation of immune cells relies on iron [143], low levels of this
metal justified the impaired T cell response reported in COVID-19 patients [144,151].

7. The Immune Response to SARS-CoV-2 in Africa

In Africa, the immune system is confronted with unique challenges, including a
lack of specific micronutrients or essential elements promoting adequate responses. The
impaired development of T and B cells [152] influences the ability to cope with SARS-CoV-2
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infection [153], and patients developing severe symptoms presented malnutrition as a
common denominator. A study conducted in Nigeria with 4311 COVID-19 patients showed
that 12.9% were malnourished. The risk of death in this group increased by 76% and the
risk for long hospitalization by 105% [154]. Immune function is also affected by mineral
deficiencies [155], among which iron deficiency stood out. With malnutrition, it was likely
to be one of the main factors responsible for the increased mortality rate in sub-Saharan
Africa. The countries mainly affected by malnutrition and iron deficiency were those
reporting an enhanced lethality, such as Angola, Liberia, and Tanzania; Burkina Faso, Chad,
Mali, Niger, and Sudan in the Sahel strip; and the Middle East and the Northern African
region [131]. Knowing that iron is essential for the expansion and differentiation of effector
and memory immune cells, many concerns were raised regarding the potential efficiency
of vaccination programs [138,156]. Studies on hypoferremia indicated this condition as
capable of inhibiting the response to vaccines [157]. This notion was also confirmed
in Southern coastal Kenya in an investigation of mandatory vaccination programs in a
birth cohort [158].

Pre-existing cross-reactive immunological responses to common cold coronaviruses and
other infections are believed to have reduced COVID-19 severity in Africa. Hospitalized
patients, with high levels of IgG antibodies against common cold coronaviruses, were shown
to develop mild COVID-19 [159]. Blood samples collected in pre-pandemic African cohorts
found those individuals to be ten times more serologically reactive to SARS-CoV-2 [160].
Cross-reactive immunity against SARS-CoV-2 nucleocapsid protein was detected prior to
the COVID-19 pandemic in a study conducted in Uganda [161,162]. Exposure to multiple
infections is thought to have protected patients from severe COVID-19, as in countries with
a higher prevalence of malaria reporting a lower number of COVID-19 cases. This negative
correlation was found in 53 African countries [163] and linked to the higher expression of
an epigenetic modification to histone H3, H3K4me3. The result is the induction of a trained
immunity [164], which persisted after recovery and was shown to be capable of generating a
strong response against secondary stimuli, like SARS-CoV-2 infection [165].

Sickle cell disease (SCD) is another prevalent pathology in Africa. It increased the risk
of respiratory infections and pulmonary complications in response to COVID-19 [166].

HIV is also a comorbidity capable of influencing the outcome of SARS-CoV-2 infection.
Natural and vaccine-induced immune responses against SARS-CoV-2 were less effective in
HIV carriers, particularly when not under antiretroviral therapy. No significant differences
were found in a study conducted in Western Kenya, including 582 participants [167],
regarding the prevalence of SARS-CoV-2 antibodies in patients with and without HIV
(3.1% vs. 4%, respectively). However, only 3.3% of this cohort developed SARS-CoV-2
antibodies [168]. Investigations carried out in other studies, including 104 individuals,
revealed that COVID-19 in HIV patients did not increase the risk of death [169].

Co-infections with tuberculosis were another major concern. In a South African
cohort of more than 3 million tuberculosis patients, co-infections with COVID-19 were
shown to increase the risk of death and to prolong the recovery time by 2.17 folds [169–172].
Individuals with latent tuberculosis presented a higher lymphocyte count, when developing
COVID-19 [165,173], which lead to an early activation of adaptive immunity and antibody
production [173]. Co-infections were characterized by elevated IL-6, which was linked to
poor outcomes [174]. Higher levels of neutralizing antibodies against SARS-CoV-2 (IgM,
IgG, and IgA) were found in asymptomatic COVID-19 patients with latent tuberculosis,
presumably due to previous exposure to M. tuberculosis antigens that activated memory T
cells [175]. Co-infection with active tuberculosis decreased lymphocyte count and cytokines
production [176,177]. Triple infections, i.e., patients diagnosed with HIV, tuberculosis, and
SARS-CoV-2, show a significantly reduced lymphocyte count and antibody response against
COVID-19, associated with higher levels of inflammatory markers, including D-dimer and
ferritin [65,178–181]. Although, so far, no differences in post-COVID-19 manifestations
were found in vaccinated and non-vaccinated individuals, no distinctions were made
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between individuals exposed to partial or complete vaccination programs, as revealed in a
South African study [182–186].

Hence, understanding co-infection behavior in Africa might provide new insights
about the efficacy of vaccination programs against SARS-CoV-2 [169].

8. Vaccine Development

According to the WHO, as of December 2020, there were over 200 vaccine candi-
dates, and at least 52 were already approved [187]. Most targeted the spike protein of
SARS-CoV-2 [188,189]. Among the platforms used for vaccine development, the mRNA-
based technology was the most effective and a deserved Nobel Prize was attributed to
Prof. Dr. Katalin Karikó and Prof. Dr. Drew Weissman for their discoveries enabling
their production [190].

Table 1 illustrates the characteristics of the vaccines that were commonly used: mRNA-
1273 and BNT161b2, from Moderna/NIAID and Pfizer/BioNTech, respectively. Presenting
similar mechanisms and efficacies over 90% [191,192], the development of mRNA vaccines
was based on the injection of a lipid-nanoparticle-encapsulated synthetic nucleotide se-
quence that codes for the viral spike protein [192–195]. This induces a coordinated immune
response, in which the mRNA is presented to antigen-presenting cells and is subsequently
recognized by T lymphocytes [193,195].

Table 1. Summary of COVID-19 mRNA vaccines that were used globally.

Vaccine Type Name Characterization Company Vaccine Efficacy Storage Systemic
Reactogenicity References

mRNA vaccines

BNT162b2

Nucleoside modified
mRNA encoding full

length S protein
(stabilized in prefusion

conformation)

Pfizer,
BioNTech,

Fosun
Pharma

95% effective in
preventing

symptomatic
COVID-19;

100% effective in
preventing severe

COVID-19

Six months at
−70 ◦C or

stored at RT for
less than 2 h

when undiluted.

Fatigue, headache,
fever, and chills.

Swelling, pain, and
redness at the site

of injection.

[191,196]

mRNA-1273
Synthetic mRNA

encoding the pre-fusion
stabilized S protein

Moderna

94.1% effective in
preventing

symptomatic
COVID-19

100% effective in
preventing severe

COVID-19

Stored for less
than 12 h at RT;

for 30 days at 2 to
8 ◦C; more than 1
month stored at

−25 ◦C to
−15 ◦C.

Swelling, pain, and
redness at the site of

injection.
Fatigue, headache,

fever, vomiting, chills,
myalgia, urticarial,

and arthralgia.

[192,196]

However, viral vector vaccines, using replication-deficient viruses, also showed
promising results. These genetically engineered non-replicating adenovirus vectors, con-
taining a DNA sequence expressing the full length of the spike protein of SARS-CoV-2,
present characteristics shown in Table 2. Once endocytosed by host cells, the virus is
translocated to the cell nucleus, where it releases the DNA necessary for the transcription
of the spike protein [197].

Table 2. Summary of COVID-19 viral vector vaccines that were used globally.

Vaccine
Type Name Characterization Company Vaccine Efficacy Storage Systemic

Reactogenicity References

Viral Vector
Vaccines

ChAdOx1
nCoV-19

(AZD1222)

Replication-deficient
chimpanzee viral vector

with SARS-CoV-2 S protein

University of
Oxford,

AstraZeneca

64.1% after 1st dose and
70.4% after the 2nd dose
preventing symptomatic

COVID-19;
100% effective in
preventing severe

COVID-19.

2–8 ◦C for
6 months

Fatigue, myalgia,
headache,

feverishness or
chills, and fever

higher than 38 ◦C

[198,199]
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Table 2. Cont.

Vaccine
Type Name Characterization Company Vaccine Efficacy Storage Systemic

Reactogenicity References

Viral Vector
Vaccines

Ad26.COV2.S

Recombinant
replication-incompetent

human viral vector
encoding a full-length,

stabilized SARS-CoV-2 S
protein

Janssen
Pharmaceutical

Companies
(Johnson &
Johnson)

64% efficacy against
moderate-to-severe
COVID-19; 81.7%

efficacy against severe
COVID-19

Stored at 2 to 8
◦C for less than
6 months; more
than 6 months

−20 ◦C

Injection site
pain, headache,
fatigue, myalgia,
nausea, venous

thromboembolic
events, seizures,

and tinnitus

[188,200]

Ad5-nCoV

Replication-defective
adenovirus type-5

vectored vaccine that
encodes the SARS-CoV-2

spike protein

CanSinoBIO

65 to 69% efficacy
against symptomatic

COVID-19;
90 to 95% efficacy

against severe
COVID-19

Stored at 2–8 ◦C Fever, fatigue,
and headache [201]

Sputnik V
Full-length SARS-CoV-2
glycoprotein S carried by

adenoviral vector

The Gamaleya
National
Center

91.6% efficacy against
symptomatic COVID-19;

100% effective in
preventing severe

COVID-19.

Stored at 2 to 8
◦C for less than

6 months;
−18 ◦C in liquid

form.

Mild pain at the
injection site,

fever, headache,
fatigue, and

muscle aches

[199]

The development of chemically inactivated viruses increased the stability of this
vaccination strategy to deliver native antigenic epitopes. This approach was already used
against influenza virus and poliovirus [202].

Table 3 summarizes the characteristics of these viruses, some of which were approved only
because of emergency, given the scarce information available on their efficacy [188,203–205].

Table 3. Summary of COVID-19 inactivated vaccines that were used globally.

Vaccine Type Name Characterization Company Vaccine Efficacy Storage Systemic
Reactogenicity References

Inactivated
Vaccines

BBIBP-CorV

Inactivated HB02
strain with

aluminum hydroxide
adjuvant

Sinopharm, Beijing
Institute of

Biological Products

78.1% efficacy against
symptomatic
COVID-19;

90 to 95% efficacy
against severe

COVID-19

2–8 ◦C
(unknown
lifespan)

Pain, fatigue,
headache, lethargy,

and tenderness.
[188,206,207]

CoronaVac

Inactivated CN02
strain with

aluminum hydroxide
adjuvant

Sinovac Biotech

Variable efficacy
when comparing

different countries
(50.7–83.5%); 100%

efficacy against severe
COVID-19

2–8 ◦C
(unknown
lifespan)

Injection site pain
and fatigue are the

most common
events; adverse

events include an
allergic reaction

[188,208–211]

The existence of specific pathologic conditions might have affected the eligibility of
certain individuals for specific COVID-19 vaccines, due to their efficacy in combating
symptom severity. Individuals with a history of vaccine-induced thrombotic thrombocy-
topenia (VITT) or capillary leak syndrome were advised not to be administered adenoviral
vectors, as they could possibly potentiate the outcomes of those conditions [212,213]. Rare
contraindications have also been described for mRNA-based vaccines, such as an increased
risk of acute myocarditis. When this possibility was detected, those individuals were
recommended to defer further doses [214]. The use of polysorbate 80 in adenoviral vector
vaccines and of polyethylene glycol (PEG) or tromethamine in mRNA vaccines raised initial
concerns regarding the possibility of developing severe allergic reactions. However, these
types of secondary effects were uncommon [215]. A certain degree of variability in vaccine
effectiveness was observed in high-risk patients, such as immunocompromised individ-
uals. This group included cancer patients, organ transplant recipients, and individuals
prescribed with immunosuppressive therapies, to whom additional doses or boosters were
recommended. Guidelines containing specific considerations, like delaying vaccination in
patients undergoing hematopoietic stem cell transplantation, or prioritizing individuals
suffering from kidney or liver disease, who were, respectively, on dialysis or receiving
immunosuppressive treatment, were elaborated [214].
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9. Vaccine Inequity Distribution in Africa

Contrarily to the multiple vaccination rounds that developed countries benefited from,
most African nations did not reach complete vaccination coverage (Figure 2) [216]. Several
aspects contributed to the vaccine distribution inequity, including the poor social services
taking care of vaccine storage, the conflicts and wars occurring in different countries, the
internal migration issues and environmental degradation that hindered vaccine transporta-
tion, and a weak governance, violating human rights [3]. Many African countries also
lacked the logistics necessary to receive and administer vaccines against SARS-CoV-2, some
of which required low-temperature storage and efficient energy and power to maintain
freezer functioning. The level of medical preparedness was a challenge. Contrarily to devel-
oped countries, the number of health care professionals able to plan, supervise, and follow
vaccination procedures was low [3]. This hindered training new nurses and physicians, as
the scarce qualified personnel were occupied with saving lives. Insufficient investment,
even related to basic equipment and hospital beds, increased the vulnerability of Africa
to COVID-19. However, the assumption that most SARS-CoV-2 infections in Africa were
asymptomatic or associated with mild clinical symptoms contributed to the decision to
regard the continent as a non-priority [216]. The disparity in vaccine distribution, as shown
in the figure below, reflected the economic power of many countries and should have raised
ethical concerns.
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Figure 2. Share of people who received at least one dose of COVID-19 vaccine, up to 15 February
2023. The vaccine coverage was calculated according to the total number of people who received at
least one vaccine dose, divided by the total population of the country [217].

In Africa, vaccination programs began on 1 March 2021. The COVAX Facility, co-
led by the Coalition for Epidemic Preparedness Innovations (CEPI), Gavi, the Vaccine
Alliance, and WHO, secured around 2 billion doses. Vaccines were distributed by the end
of the year [218,219], through the cooperation of the Africa Centers for Disease Control
and Prevention, the African Union, and the WHO Regional Office for Africa. One of
the biggest successes of this partnership was the acquisition of 400 million doses of the
Johnson & Johnson single-dose vaccine before the end of 2022 [216]. The AstraZeneca vac-
cine was approved on 15 February 2021 [220] and had great repercussions in the continent
due to its cost-effectiveness, ease of storage, and transportation [3]. It is therefore fair to
highlight that it contributed to increasing the vaccination rate in Africa. The International
Rescue Committee (IRC) estimated that the extra doses in the US, UK, and EU could have
vaccinated individuals over 16 years old in the 20 countries most at risk of humanitarian
disaster [221]. However, the multiple waves of COVID-19 reduced donations and caused
vaccine shortage. On 19 March 2023, the African continent registered over 55 COVID-19
vaccine doses administered per 100 people, which was significantly lower when compared
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to the global average of over 167 doses per 100 people [222]. According to WHO, more
than 1 billion doses have been administered in Africa, with 61% of them coming from
COVAX, 27% from bilateral agreements, and 11% from the African Union’s African Vaccine
Acquisition Trust (AVAT). The COVID-19 vaccines used in Africa include Janssen (35%),
Pfizer/BioNTech (19%), AstraZeneca (15%), Sinopharm (13%), Sinovac (7%), Moderna
(5%), and others (7%) [223]. So far, the African continent has achieved 36.7% coverage of
COVID-19 vaccination among its population, which is significantly lower than the global
coverage of 69.7% [222,223]. Sierra Leone and Botswana showed the highest level of im-
munization, reaching 96%, followed by Tunisia (94%) and Eswatini (93%). Conversely,
Burundi, Namibia, and the Republic of Congo presented the lowest vaccination cover-
age, with 4%, 25%, and 26%, respectively. Eritrea is yet to start its COVID-19 vaccination
campaign [223], as vaccine hesitancy in sub-Saharan Africa slowed the inoculation rate
of COVID-19 vaccines. Some countries refused to participate in the COVAX free vaccine
program or delayed vaccination programs due to anti-vaccine sentiments and religious
beliefs [224]. Some donated vaccines with a short shelf life rapidly expired [225,226]. Yet,
Africa is still vulnerable to new and more transmissible variants of SARS-CoV-2 that may re-
quire country-specific solutions [13,221]. The need for African countries to invest in medical
science, so as to reduce scientific dependence and assistance from developed nations [3], led
several agreements to share vaccine technology, as proposed by Moderna, WHO, BioNTech,
and Afrigen Biologics and Vaccines in South Africa [227,228]. The manufacturing capacity
was already assessed in Tunisia, Senegal, Egypt, Ethiopia, and South Africa. However,
commercial capabilities require further development, given the need to reinforce business
planning and market potential, since products produced in many African countries are
not accepted in developed regions, as experienced by Rwanda. Whether lucrative markets
and parallel importation may be the cause of competing conflicts, to overcome healthcare
inequality, multilateral collaborations are required. Sustainable and innovative solutions
are needed to overcome disease outbreaks [216], which include empowering the continent
to accelerate vaccine manufacturing. Speeding up and encouraging local production, vac-
cines can be supplied in a timely manner, contributing to removing some of the inequities
in the provision of essential health products [229]. In view of the creation of new expertise,
this action will foster global collaborative research, which might also aid the discovery
of therapeutic treatments better adjusted to the genetics of African individuals, while
investigating the consequences of COVID-19 on diseases that are prevalent in the continent.
Many pathologies were neglected during the pandemic and now are reemerging, such as
measles in the Democratic Republic of Congo [230]. The decreased number of awareness
campaigns [231] led to the false perception that the morbidity and mortality of certain
pathologies were reduced, as was the case for HIV, cardiovascular diseases, and cervical
cancers in Northern Ethiopia [232]. Blood bank services and malaria testing also decreased
in Rwanda by almost 200%. Conversely, neonatal death dramatically increased in South
Africa, as most personnel were occupied in saving the population from COVID-19 [233].

Finally, it is also worth mentioning that the impact of COVID-19 in Africa extended
beyond public health, affecting social and economic aspects. Increased anxiety, social
isolation, and stress characterized the pandemic period [3], potentially contributing to
enhance domestic violence. Tunisia (43%), Somalia (50%), and South Africa (69%) registered
the highest increases [234,235]. A higher risk of child labor and exploitation was also
detected [236], possibly considered as a way for families to overcome the economic pressure
imposed by the lockdown. These aspects contributed to a rise in the incidence of mental
and psychosocial disorders [3], enhancing the vulnerability of this continent.

10. Conclusions

Few studies have assessed the impact of COVID-19 in Africa, despite the contribution
of the continent in supporting genomic sequencing and surveillance programs [237] against
the new variants of concern [238]. Contrary to expectations, Africa represented a success
story. A lower incidence, prevalence, and mortality characterized the pandemic. Official
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reports revealed those rates to be lower than one tenth the global COVID-19 cumulative
counts [22,217]. Among the possible explanations, youthfulness stood out. The memory
phenotype, acquired with exposure to helmites, malaria, tuberculosis, polio, and measles,
among others, could also be highlighted as being protective against SARS-CoV-2. Actually,
trained immunity was the underlying cause of BCG vaccine testing against COVID-19, the
results of which were ultimately inconclusive [239]. Important contributors to reducing the
severity of COVID-19 symptoms in Africa also included environmental parameters, despite
the need for more studies to understand the dynamics of SARS-CoV-2 infection and its
seasonal transmissibility. Further investigations are required to shed light on the peculiar
dynamics of COVID-19 in Africa. The consequences of this pandemic on the socioeconomic
development of the continent need also to be evaluated, as it affected the accomplishment
of specific country goals. It is important to highlight that a collaborative effort is essential to
empower health science research in Africa. The sharing and transfer of knowledge is a major
step towards the definition of prepared healthcare plans, based on a more holistic vision of a
multidisciplinary scientific strategy, turning developmental willingness into action.
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