
Citation: Krishanthi, G.; Jayetileke,

H.; Wu, J.; Liu, C.; Wang, Y.-G.

Enhancing Feature Selection

Optimization for COVID-19

Microarray Data. COVID 2023, 3,

1336–1355. https://doi.org/

10.3390/covid3090093

Academic Editor: Simone Brogi

Received: 30 June 2023

Revised: 30 August 2023

Accepted: 1 September 2023

Published: 4 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Enhancing Feature Selection Optimization for COVID-19
Microarray Data
Gayani Krishanthi 1, Harshanie Jayetileke 1,* , Jinran Wu 2 , Chanjuan Liu 3 and You-Gan Wang 2

1 Department of Mathematics, University of Ruhuna, Matara 81000, Sri Lanka;
gayani.krishanthi1997@gmail.com

2 Institute for Learning Sciences & Teacher Education, Australian Catholic University,
Brisbane, QLD 4001, Australia; ryan.wu@acu.edu.au (J.W.); you-gan.wang@acu.edu.au (Y.-G.W.)

3 School of Business Administration and Customs, Shanghai Customs College, Shanghai 201204, China;
liuchanjuan@shcc.edu.cn

* Correspondence: harshanie.jayetileke@gmail.com

Abstract: The utilization of gene selection techniques is crucial when dealing with extensive datasets
containing limited cases and numerous genes, as they enhance the learning processes and improve
overall outcomes. In this research, we introduce a hybrid method that combines the binary reptile
search algorithm (BRSA) with the LASSO regression method to effectively filter and reduce the
dimensionality of a gene expression dataset. Our primary objective was to pinpoint genes associated
with COVID-19 by examining the GSE149273 dataset, which focuses on respiratory viral (RV) infec-
tions in individuals with asthma. This dataset suggested a potential increase in ACE2 expression,
a critical receptor for the SARS-CoV-2 virus, along with the activation of cytokine pathways linked
to COVID-19. Our proposed BRSA method successfully identified six significant genes, including
ACE2, IFIT5, and TRIM14, that are closely related to COVID-19, achieving an impressive maximum
classification accuracy of 87.22%. By conducting a comparative analysis against four existing binary
feature selection algorithms, we demonstrated the effectiveness of our hybrid approach in reducing
the dimensionality of features, while maintaining a high classification accuracy. As a result, our
hybrid approach shows great promise for identifying COVID-19-related genes and could be an
invaluable tool for other studies dealing with very large gene expression datasets.

Keywords: reptile search algorithm; gene selection; supervised learning; binary reptile search
algorithm; support vector machine

1. Introduction

The utilization of DNA microarray technology provides a useful means of measuring
gene expression levels simultaneously, making it a valuable tool for various applications,
such as SNP and mutation detection, tumor classification, target gene and biomarker iden-
tification, chemo-resistance gene identification, and drug discovery [1]. Both microarrays
and RNA-seq are valuable technologies for gene expression analysis, but they have their
respective strengths and limitations. Here are some scenarios where microarrays might
have advantages over RNA-seq: (1) Microarrays are generally less expensive than RNA-
seq, making them a more budget-friendly option, especially when dealing with a large
number of samples. (2) Microarray data generate smaller datasets compared to RNA-seq,
which can be advantageous when dealing with limited storage or computational resources.
(3) Microarrays have been in use for a longer time, and the experimental protocols are
well-established. The process is relatively straightforward, while RNA-seq requires more
complex sample preparation and data analysis workflows [2].

Despite its usefulness, the high cost of these experiments often results in a limited
availability of experiments for classification. In combination with a large number of
genes being present in each experiment, this creates the “curse of dimensionality”, which
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presents a challenge for both classification and data processing in general. The majority of
genes present are housekeeping genes that provide little information for the classification
task, while only a small proportion of genes are discriminatory [3,4]. Therefore, gene
selection (GS) is an essential step in achieving effective classification. GS aims to identify
discriminatory genes and reduce the number of genes used for classification, which is
required in many applications. It should be noted that the number of irrelevant genes is
typically much higher than the number of discriminatory genes.

The process of GS involves identifying the most consistent, non-redundant, and
relevant features for use in constructing a model, as outlined by Lai et al. [5]. When
increasing the size and diversity of datasets, it is crucial to systematically reduce their
size. The primary objective of feature selection is to enhance the performance of predictive
models while minimizing the computational costs associated with modeling.

There are four types of feature selection methods, namely filter methods [6], wrapper
methods [7], hybrid methods [8], and embedded methods [9]. Filter methods select a subset
of appropriate features that are independent of any learning algorithm and use the intrinsic
and statistical characteristics of the features. To weight features, these methods assign a
weight to each feature based on its relevance to class labels, often using correlation criteria
and information-theory-based criteria. Examples of gene selection filter methods include
minimum redundancy maximum relevance (MRMR) [10], information gain (IG) [11], and
chi-square [12]. Wrapper methods employ heuristic search algorithms to find a subset of
features. These methods begin with a randomly generated solution and progress toward
the best subset of the solution with each iteration. The genetic algorithm [13], whale
optimization algorithm [14], ant colony optimization algorithm [15], binary particle swarm
optimization algorithm [16], binary grey wolf search algorithm [17], binary dragonfly
algorithm [18], and other evolutionary algorithms are used in wrapper methods.

In the field of microarray data analysis, researchers have proposed hybrid approaches
to enhance the identification of disease biomarkers. These methods aimed to overcome
the limitations of the filter and wrapper methods. Filter methods are useful for datasets
with a high number of features since they involve fewer computations, but their accuracy
may be compromised. Conversely, wrapper methods yield superior classification accu-
racy but demand significantly more computational resources. Due to the complementary
strengths and weaknesses of the two methods, the hybrid approach was developed. This
involves first selecting a subset of features based on their importance using a filter method,
followed by applying the wrapper method to the selected features, to determine the most
effective ones [19,20].

Although numerous non-iterative optimization algorithms (NIOAs) have been em-
ployed in microarray data, there is no assurance that these techniques will discover the
best subset of genes for classification problems, because of their stochastic nature [21]. In
addition, gene selection remains a challenging task, due to the large search space of genes
and intricate gene interactions [22,23]. Therefore, further research is necessary to develop
an efficient gene selection approach.

Among the different optimization algorithms, the gray wolf optimization (GWO)
algorithm is a bio-inspired optimization technique introduced by Mirjalili et al. [24] for
feature selection in classification problems and imitates the hunting behavior of gray wolves
in nature. Later, the binary version of gray wolf optimization (BGWO) [17] was proposed,
to maximize the classification accuracy, while minimizing the number of selected features.
BGWO provided significant results when compared to two well-known feature selection
methods and using KNN as a classifier.

Abualigah et al. [25] introduced the reptile swarm algorithm (RSA), which mimics
the hunting behavior of crocodiles, specifically their encircling and hunting coordination
and cooperation. However, the RSA currently only works for single-objective optimiza-
tion problems with conflicting variables, but it could be extended to handle binary and
multi-objective variants to address a wide range of discrete and multi-objective real-world
optimization problems.
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The RSA algorithm has gained popularity due to its attractive features, such as re-
quiring minimal initialization parameters and not needing derivative information in basic
search. It is also a scalable, easy-to-use, and sound algorithm, making it suitable for various
real-world problems. However, like other metaheuristic algorithms, RSA’s performance
may also be affected by the problem’s size and complexity, leading to premature conver-
gence, due to a lack of balance between exploration and exploitation capabilities [26]. To
overcome these limitations, the problem-specific knowledge embedded in the search space
should be considered, and the optimization structure of RSA should be appropriately ad-
justed. Moreover, there is evidence in the literature to show that continuous nature-inspired
algorithms can be converted into a binary version using appropriate transfer functions to
enhance classification accuracy. As a binary version of RSA has not yet been developed, in
this study a novel binary version of the RSA algorithm is proposed and evaluated using
COVID-19 data analysis.

In this study, a two-stage hybrid feature selection approach is utilized to improve
classification performance. Initially, the best transfer function was selected among the
common support vector machine (SVM) [27], random forest (RF) [28], and k-nearest neigh-
bor (KNN) [29] classifiers. It is worth noting that most binary versions of nature-inspired
algorithms in the literature employ average classification accuracy as the fitness function.
Therefore, in the second stage, an alternative fitness function was explored, to yield better
results in terms of feature selection and classification accuracy.

Indeed, a novel optimized feature selection method is proposed, combining the LASSO
regression method with the binary reptile search algorithm (BRSA). This hybrid approach
guides the search for a more robust and useful subset of genes while considering feature
selection accuracy and stability. The performance of the proposed BRSA was evaluated
with the identified best classifier and appropriate sigmoid transfer function, and the results
indicated its superior classification accuracy compared to other existing gene selection
techniques. Finally, the proposed method was used to identify the optimal subset of genes
associated with COVID-19 from the RNA-seq dataset.

2. The Preliminaries

This section begins by introducing the LASSO filtering method and proceeds to de-
scribe the standard RSA and its basic steps. Additionally, the SVM classification algorithm
is introduced.

2.1. The Penalized Logistic Regression—LASSO Method

LASSO, which stands for least absolute shrinkage and selection operator, is a method
used for feature selection and regression analysis [30]. Its primary objective is to reduce
certain coefficients while setting others to zero. The LASSO method employs an l1 penalty,
which results in some of the estimated coefficients becoming equal to zero.

Given a linear regression with standardized predictors xij and centered response
values yi for i = 1, 2, . . . , N and j = 1, 2, . . . , p, LASSO solves the l1-penalized regression
problem as

arg minβ1,...,βp

N

∑
i=1

(yi − β0 −
p

∑
j=1

xijβ j)
2 + λ

p

∑
j=1
‖β j‖, (1)

where λ is a tuning parameter that controls the amount of shrinkage applied to the coefficients.
The optimal value of λ is typically determined through techniques such as cross-validation.

Cross-validation [31] is a statistical technique employed to assess a model’s perfor-
mance and its ability to generalize to unseen data. It involves dividing the dataset into
subsets, training the model on some of them, and validating it on the remaining data.
Cross-validation helps to evaluate a model’s robustness and prevent overfitting. Optimal
lambda cross-validation [32] is a specific application of cross-validation used to find the
optimal value of lambda in LASSO regression, balancing the trade-off between model
complexity and data fitting. By performing optimal lambda cross-validation, the most



COVID 2023, 3 1339

suitable lambda value is determined, resulting in an effectively tuned LASSO model with
improved predictive performance and meaningful variable selection [33].

2.2. The Reptile Search Algorithm (RSA)

Nature-inspired optimization algorithms often take inspiration from various natural
processes and organisms to develop efficient algorithms. Abualigah et al. [25] introduced
the RSA, a metaheuristic optimization algorithm inspired by the hunting behavior of
crocodiles. The algorithm mimics the natural habitat of crocodiles, which prefer areas
with abundant food and water and are able to hunt both in and out of the water. The RSA
algorithm incorporates essential features of modern optimization algorithms to compute
its main formula. The procedure of RSA can be summarized as below:

Stage 1: RSA parameter initialization
Before running the RSA algorithm, it is necessary to initialize the control and algorith-

mic parameters. The control parameters consist of N, the number of candidate solutions
(i.e., the number of crocodiles); T, the maximum number of iterations, α, which controls
the exploitation ability; and β, which controls the exploration ability. These parameters are
used throughout the search process to balance exploration and exploitation.

Stage 2: Population initialization of RSA
In this stage, a random set of solutions is initialized using the following equation, as

proposed by Abualigah et al. [25]:

xij = rand ∗ (UB− LB) + LB, i = 1, 2 . . . , N, and j = 1, 2, . . . , n. (2)

Here, xi,j refers to the jth position of the ith solution, n is the dimension size of the
problem, rand is a random value between 0 and 1, LB is the lower bound value, and UB is
the upper bound value. Thus, a set of N solutions is generated and stored in a matrix:

X =



x1,1 . . . x1,j x1,n−1 x1,n
x2,1 . . . x2,j x2,n−1 x2,n

. . . . . . .

. . . . . . .
xN−1,1 . . . xN−1,j xN−1,n−1 xN−1,n

xN,1 . . . xN,j xN,n−1 xN,n

. (3)

Stage 3: Fitness function estimation
The fitness value of each solution xij in the population, denoted by X, is computed

as f (xij).
Stage 4: Exploration phase
The RSA algorithm utilizes two strategies, known as high walking and belly walking,

during the exploration phase to discover better solutions by exploring new regions in the
problem’s search space. The following equation is used to update the position of each
solution in the population during the exploration phase:

xi,j(t + 1) = Bestj(t) ∗ −ηi,j(t) ∗ β− Ri,j(t) ∗ rand if (t ≤ T/4) , (4)

and

xi,j(t + 1) = Bestj(t) ∗ xr1,j ∗ ES(t) ∗ rand if (T/4 < t ≤ 2T/4) (5)

with xi,j representing the decision variable of the ith solution at the jth position. The value
of Bestj(t) corresponds to the jth position in the best solution obtained at iteration t, while
t + 1 represents the new iteration, and t represents the previous iteration. The hunting
operator of the jth position in the ith solution, ηi,j(t), can be calculated using Equation (6).
xr1,j refers to the decision variable at the jth position in the ith solution, where r1 is a value
between 1 and N. The high walking strategy is controlled by t ≤ T/4, whereas the belly



COVID 2023, 3 1340

walking strategy is controlled by T/4 < t ≤ 2T/4 [25]. The values of ηi,j , M(xi) , Pi,j, Ri,j
and ES(t) are calculated using

ηi,j = Bestj(t) ∗ Pi,j, (6)

M(xi) =
1
n

n

∑
i=1

x(i,j), (7)

Pi,j = α +
xi,j −M(xi)

Bestj(t) ∗ (UBj − LBj) + ε
, (8)

ES(t) = 2 ∗ r3 ∗ (1− 1/T), (9)

and

Ri,j =
Bestj(t)− xr2,j

Bestj(t) + ε
. (10)

Here, the percentage difference between the decision variable at the jth position of the
best solution (Bestj(t)) and the decision variable at the position of the current solution (xi)
is denoted by Pi,j, while α is used to control the exploration capability of the RSA during
the hunting phase, with a value of α = 0.1. Additionally, ε is a random value between 0
and 2, and M(xi) is the average value of all decision variables of the current solution. The
variable Ri,j is used to reduce the search area of the jth position in the ith solution. The
evolutionary sense probability, ES(t), is randomly assigned a value decreasing from 2 to
−2, and is calculated using Equation (9). The parameter r2 is a random value between 1
and N, and r3 is a random integer value of −1, 0, and 1 [25].

Stage 5: Exploitation phase
This phase of RSA is designed to exploit current search areas, to find optimal solutions

using two strategies: hunting coordination and hunting cooperation, as shown in

xi,j(t + 1) = Bestj(t) ∗ Pi,j ∗ rand if (2T/4 ≤ t ≤ 3T/4) , (11)

and

xi,j(t + 1) = Bestj(t)− ηi,j ∗ ε− Ri,j ∗ rand if (3T/4 ≤ t ≤ T). (12)

During the time interval 2T/4 ≤ t ≤ 3T/4, the hunting coordination strategy is
employed, while during the time interval 3T/4 ≤ t ≤ T, the hunting cooperation strategy
is used.

Stage 6: Stop criterion
The process of Steps 3–5 needs to be repeated iteratively, until the maximum number

of iterations T is achieved.
Finally, a flow chart of the continuous RSA is shown in Figure 1, and Algorithm 1

presents the pseudo-code of the RSA.

2.3. Support Vector Machine

SVMs are known to perform exceptionally well in microarray data analysis, which
can be attributed to several theoretical factors [34]. First, SVMs are resilient to high ratios
of variables to samples, as well as large numbers of variables. Additionally, they can
effectively learn complex classification functions in a computationally efficient manner and
employ robust regularization principles to prevent overfitting.

The fundamental principle underlying SVM classifiers is to identify a hyperplane
with a maximum margin that can effectively separate two classes of data [35]. However,
in situations where the data are not linearly separable, kernel functions are utilized to
implicitly map the data to a higher-dimensional space and identify a suitable hyperplane.
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In this study, the linear kernel implementation of the SVM classifier was adopted, utilizing
the “libSVM” software library [36].

Figure 1. Flow chart of RSA.

Algorithm 1 Pseudocode of the Reptile Search Algorithm (RSA)

1: Initialization phase
2: Initialize RSA parameters
3: Initialize the solution’s positions randomly; X : i = 1, . . . , N
4: while t < T do
5: Calculate the Fitness value for the candidate solutions (X)
6: Find the best solution
7: Update the ES using Equation (9)
8: The beginning of the RSA
9: for (i = 1 to N) do

10: for (j = 1 to n) do
11: Update the ηi,j , Pi,j , Ri,j and values using Equations (6), (8) and (10), respectively
12: if (t ≤ T/4) then
13: x(i,j)(t + 1) = Bestj(t) ∗ −η(i,j)(t) ∗ β− R(i,j)(t) ∗ rand
14: else if (t ≤ 2T/4 and t > T/4) then
15: x(i,j)(t + 1) = Bestj(t) ∗ x(r1,j) ∗ ES(t) ∗ rand
16: else if (t ≤ 3T/4 and t > 2T/4) then
17: x(i,j)(t + 1) = Bestj(t) ∗ P(i,j) ∗ rand
18: else
19: x(i,j)(t + 1) = Bestj(t)− η(i,j) ∗ ε− R(i,j) ∗ rand
20: end if
21: end for
22: end for
23: t = t + 1
24: end while
25: Return the best solution (Best(X))
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3. The Proposed Method

This section provides a detailed account of the methodology and techniques utilized
in the proposed BRSA approach, which is divided into two primary modules:

• LASSO-based filter approach: This stage involves identifying a set of relevant features
through the application of a LASSO-based filter approach;

• BRSA-based wrapper approach: In this stage, the final subset of features is determined
utilizing a BRSA-based wrapper approach.

The following subsections provide a complete description of these two phases.

3.1. The First Stage: Filter Approach

The LASSO approach involves utilizing the LASSO method to choose an initial subset
of features based on gene significance and redundancy, rather than exhaustively studying
all extracted features. By reducing the high dimensionality of the original dataset, the
LASSO method generates more discriminative genes for the wrapper method, resulting
in improved classification accuracy and reduced computational burden. The LASSO
method achieves parameter regularization by shrinking and eliminating some regression
coefficients, resulting in a feature selection phase that includes only non-zero values in the
final model.

3.2. The Second Stage: Wrapper Approach

In this phase, the wrapper method is utilized to choose a subset of the most significant
genes from the list of top genes identified by the LASSO filtering technique. BRSA was
specifically designed to serve as a rapid search strategy for the wrapper model. RSA
is a gradient-free, population-based method that can tackle both simple and complex
optimization problems, subject to certain constraints. Although the RSA is susceptible
to local optimization, it is more stable than other algorithms and can be applied to a
binary algorithm. The recommended BRSA evaluates the quality of feature subsets using
the F-measure as the fitness function, with the ultimate goal of improving classification
performance by minimizing the number of selected genes.

3.2.1. Solution Representation

The process of feature selection involves identifying the most important features from
the original dataset, in order to perform classification. This is achieved using the BRSA
algorithm, where features are assigned a value of either ‘0’ to denote non-selected features
or ‘1’ to indicate selected features.

3.2.2. The Fitness Function

In general, feature selection aims to identify a small set of features that exhibit high
classification performance. The quality of the chosen subset is determined by the combi-
nation of high classification accuracy and a low number of selected features. With this
in mind, the fitness function for the proposed feature selection technique was carefully
designed. The F-measure was selected as the fitness function, with higher scores indicating
better performance, ranging from 0 (worst) to 1 (best). Therefore, the optimization problem
focused on maximizing the fitness function.The formula for the F-measure is expressed as

F-measure = 2 ∗ True Positive
2 ∗ True Positive + True Negative + False Negative . (13)

It should be noted that reducing the number of selected genes can enhance classifi-
cation accuracy. Therefore, when two subsets exhibit a similar classification accuracy, the
subset containing fewer genes is preferred.

3.2.3. Binary Reptile Search Algorithm (BRSA)

The first stage of the proposed approach involves the selection of the top n genes
using the LASSO filter approach, which is then passed on to the new BRSA algorithm
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in the second stage. In this phase, the BRSA algorithm is utilized to design an effective
gene selection strategy that offers improved exploration and exploitation capabilities, with
rapid convergence. While the BRSA algorithm is conceptually similar to the original RSA
algorithm, the main difference lies in the search space. The original RSA operates in a
continuous search space, whereas the binary version operates in a discrete search space.
Since the search space for the BRSA is restricted to binary values (0 and 1), it is not possible
to alter the position of the search space. To overcome this, the sigmoid transfer function is
employed to transform the new reptile’s position from continuous to binary values. The
sigmoid transfer function is chosen to ensure that the selected transfer function lies within
the range of [0, 1].

3.2.4. Sigmoid Transfer Functions

The transfer function plays a crucial role in determining the probability of changing
binary solution values from 0 to 1. The S-shaped transfer function is mathematically
defined as

S =
1

1 + exp(−x)
. (14)

The positions in the S-shaped function are updated using

Bstep =

{
1 if (s ≥ randn)
0 else

, (15)

and

Xi,j(t + 1) =

{
1 if (xi,j + Bstep ≥ 1)
0 else

, (16)

where randn means a random number between 0 and 1.
In this study, the impact of four different sigmoid transfer functions on the performance

of BRSA was examined [37]. The mathematical formulas for each of these functions are
provided in Table 1, and their corresponding graphs are shown in Figure 2.
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Table 1. Description of the four sigmoid transfer functions [37].

Function Formula

S1 1/(1 + exp(−x))
S2 1/(1 + exp(−x/2))
S3 1/(1 + exp(x/2))
S4 1/(1 + exp(x/3))

To sum up, the proposed BRSA is presented in Algorithm 2, and its corresponding
flow chart is provided in Figure 3.

Algorithm 2 Pseudo-code of the Binary Reptile Search Algorithm (BRSA)

1: Initialization phase
2: Initialize BRSA parameters α , β , etc.
3: Initialize the solution’s positions randomly. X : i = 1, . . . , N
4: while t < T do
5: Calculate the Fitness Function for the candidate solutions (X).
6: Find the Best solution so far.
7: Update the ES using Equation (9)
8: The beginning of the BRSA
9: for (i = 1 to N) do

10: for (j = 1 to n) do
11: Update the η, R, P and values using Equations (6), (8) and (10), respectively
12: if (t ≤ T/4) then
13: x(i,j)(t + 1) = Bestj(t) ∗ −η(i,j)(t) ∗ β− R(i,j)(t) ∗ rand
14: else if (t ≤ 2T/4 and t > T/4) then
15: x(i,j)(t + 1) = Bestj(t) ∗ x(r1,j) ∗ ES(t) ∗ rand
16: else if (t ≤ 3T/4 and t > 2T/4) then
17: x(i,j)(t + 1) = Bestj(t) ∗ P(i,j) ∗ rand
18: else
19: x(i,j)(t + 1) = Bestj(t)− η(i,j) ∗ ε− R(i,j) ∗ rand
20: end if
21: Update the position using Equations (15) and (16)
22: end for
23: end for
24: t = t + 1
25: end while
26: Return the best solution (Best(X))
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Figure 3. Flow chart of proposed BRSA.

4. Case Study
4.1. GSE149273 (COVID19) Dataset

The GSE149273 dataset is an SRA dataset downloaded from the GEO that contains
25343 genes, 90 samples, and three categories (RVA, RVC, Control). A description of the
dataset is given below:

• Status—Public on 25 April 2020
• Title—RV infections in asthmatics increase ACE2 expression and stimulate cytokine

pathways implicated in COVID-19
• Organism—Homo sapiens
• Experiment type—Expression profiling using high throughput sequencing
• Summary—We present evidence that (1) viral respiratory infections are potential mech-

anisms of ACE2 overexpression in patients with asthma and that (2) ACE activation
regulates multiple cytokine anti-viral responses, which could explain a mechanism of
cytokine surge and associated tissue damage.

These results suggest that the recent finding of severe COVID-19 in asthma patients
with recent exacerbations may be attributable to synergistic biomolecular interactions with
viral co-infections.

Overall design—In paired design experiments across discovery and validation cohorts
of asthmatic patients, biological replicates treated with RVA and RVC were compared to
non-treated ones [38].

4.2. Experimental Results

This study utilized a binary metaheuristic algorithm to decrease the number of features
in the common gene dataset obtained through differential expression analysis, resulting
in an optimized dataset that includes only crucial features pertinent to the research. The
LASSO regression method was used to analyze data from a maximum of 14 genes.

The implementation of the method was carried out using R software. In LASSO re-
gression, the lambda (λ) value needs to be kept constant, to adjust the amount of coefficient
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shrinkage. The optimal lambda cross-validation for the dataset minimizes the prediction
error rate. Figure 4 shows that the left dashed vertical line corresponds to the logarithmic
value of the optimal lambda that minimizes the prediction error, which is approximately
−5 and provides the most accurate results.

Figure 4. Graph of cross-validation error.

In general, regularization aims to balance accuracy and simplicity by finding a model
with the highest accuracy and the minimum number of predictors. The optimal value
of lambda is usually chosen by considering two values: lambda.1se and lambdamin. The
former produces a simpler model but may be less accurate, while the latter is more accurate
but less parsimonious. In this study, the accuracy of LASSO regression was compared with
the accuracy of the full logistic regression model, as shown in Table 2. The results showed
that lambdamin produced the highest accuracy, and the obvious choice of the optimal value
was 0.001. Finally, the most significant genes were selected based on this optimal value.

Table 2. Accuracy comparison.

Parameter Name Accuracy

lambdamin 0.988764
lambda.1se 0.9775281
Original logistic model 0.9325843

The LASSO method applies l1 or absolute value penalties in penalized regression
and is particularly effective for variable selection in the presence of many predictors. The
resulting solution is often sparse, containing estimated regression coefficients with only
a few non-zero values. Table 3 presents the list of selected genes obtained using the
LASSO method.
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Table 3. Extracted genes from the LASSO model.

No Gene No Gene

1 ANKRD33 8 RAB34
2 BEX2 9 SLC7A6
3 CHST13 10 SNHG9
4 DNAJC30 11 TMEM229A
5 DUSP21 12 TRIM14
6 IFIT5 13 VPS35
7 X4.Mar 14 ZNF354A

Next, the best classification algorithm was selected among SVM, RF, and KNN, by
applying each algorithm to the full dataset and the filtered dataset separately. As shown in
Table 4 and Figure 5, the RF algorithm achieved the highest average accuracy of 73.32%
on the full dataset. On the other hand, the filtered dataset performed very well with the
SVM classifier, achieving a high average classification accuracy and low variance. The
performance of SVM with the BRSA algorithm was found to be the highest (87.22%) when
compared to the KNN and RF classifiers. Therefore, the SVM was selected as the best
classifier to be adopted in this study.
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Figure 5. Average classification accuracy of the three different classifiers.

Table 4. Mean and standard deviation of the classification accuracy of the three classifiers.

All Genes without BRSA Top Genes with BRSA

KNN SVM RF KNN SVM RF

Mean 0.65557 0.6889 0.73332 0.82777 0.87222 0.77776
STD 0.11653 0.09515 0.12505 0.04098 0.04573 0.08282

To convert the continuous search area into a binary version in BRSA, a sigmoid function
was used. Table 5 shows the statistical outcomes obtained for each of the evaluation matrices
used in each sigmoid transfer function. The best statistical results of the sigmoid transfer
functions are highlighted in bold.
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Table 5. Performance of the evaluation matrices.

S1 S2 S3 S4

Accuracy

AVG 0.8611 0.8583 0.8667 0.8722
STD 0.0494 0.0525 0.0522 0.0480
Best 0.9444 0.9444 0.9444 0.9444
Worst 0.7778 0.7778 0.7778 0.7778

F-measure

AVG 0.8696 0.8696 0.8757 0.8789
STD 0.0472 0.0466 0.0504 0.0475
Best 0.9474 0.9474 0.9474 0.9474
Worst 0.7778 0.8000 0.7778 0.7778

Precision

AVG 0.8238 0.8154 0.8253 0.8444
STD 0.0731 0.0739 0.0735 0.0773
Best 0.9000 0.9000 0.9000 0.9000
Worst 0.7273 0.7273 0.7273 0.7500

Sensitivity

AVG 0.9278 0.9264 0.9320 0.9208
STD 0.0903 0.0777 0.1005 0.0984
Best 1.0000 1.0000 1.0000 1.0000
Worst 0.7778 0.7500 0.7500 0.7500

Specificity

AVG 0.8000 0.7945 0.8056 0.8278
STD 0.1117 0.1098 0.1074 0.0986
Best 1.0000 1.0000 1.0000 1.0000
Worst 0.6667 0.6667 0.6667 0.6667

No. of selected features

AVG 6.6500 6.1500 6.2500 6.0500
STD 1.7252 1.6944 1.7733 1.3169
Best 3.0000 4.0000 4.0000 4.0000
Worst 10.0000 11.0000 9.0000 9.0000

The fourth sigmoid transfer function (S4) showed significantly higher averages for
classification accuracy, fitness value, precision, and specificity compared to the other three
transfer functions. Specificity refers to the percentage of true negatives, and S4 exhibited
a specificity of 82.78%, indicating that 82.78% of those without the target disease will
test negative. The best and worst values for the evaluated matrices of the four transfer
functions were almost equal. Figure 6 provides a clearer representation of the average
number of selected features, where S4 has the fewest significant features (6.05). Furthermore,
Figure 7, shows that S1 and S2 had similar average fitness values, but different accuracy and
sensitivity values. A higher sensitivity in S2 indicates that the model correctly identifies
most positive results, whereas a low sensitivity means the model misses a significant
number of positive results.

Furthermore, the convergence of four distinct sigmoid functions is compared in
Figure 8 and illustrates the efficiency of the algorithms.

Figure 8 depicts that the S4 sigmoid transfer function not only attained a superior
convergence speed but also acquired the best fitness scores. It typically achieved its optimal
solution in around 70 iterations, whereas S1 began with a low fitness value and converged
to a high fitness value after approximately 220 iterations. As a result, the S4 sigmoid transfer
function was deemed the most appropriate for the proposed BRSA.
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Figure 6. Bar graph of average no. of selected features for the four different transfer functions.
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Figure 7. Bar graph of the average accuracy and fitness function of the four different transfer functions.

Next, the proposed BRSA was compared with four alternative algorithms: the binary
dragonfly algorithm (BDA), binary particle swarm optimization (BPSO), and two variants of
the binary gray wolf optimization algorithm (BGWO1 and BGWO2). To initiate the analysis,
we applied various statistical metrics, and the results are presented in Table 6. Indeed,
Table 6 indicates that the average accuracy, average F-measure, and average sensitivity of
BRSA were higher than those of the other algorithms, except for the average precision value.
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Table 6. Comparison of BRSA with the other algorithms based on evaluation matrices.

BRSA BDA BPSO BGWO1 BGWO2

Accuracy

AVG 0.8472 0.8278 0.8250 0.7806 0.8194
STD 0.0472 0.0595 0.0924 0.0459 0.0740
Best 0.8889 0.9444 0.9444 0.8889 0.9444
Worst 0.7778 0.7222 0.5556 0.7222 0.7222

F-measure

AVG 0.8624 0.8261 0.8255 0.7576 0.8091
STD 0.0381 0.0599 0.0864 0.0622 0.0902
Best 0.9474 0.9412 0.9474 0.8750 0.9474
Worst 0.8000 0.7143 0.7000 0.7059 0.6154

Precision

AVG 0.7970 0.8556 0.8355 0.8459 0.8443
STD 0.0772 0.1196 0.1126 0.0795 0.0909
Best 1.0000 1.0000 1.0000 1.0000 1.0000
Worst 0.6923 0.6923 0.5385 0.7273 0.7273

Sensitivity

AVG 0.9500 0.8222 0.8389 0.7000 0.7945
STD 0.0672 0.1162 0.1418 0.1146 0.1498
Best 1.0000 1.0000 1.0000 1.0000 1.0000
Worst 0.7778 0.5556 0.5556 0.5556 0.5556

Specificity

AVG 0.7444 0.8334 0.8111 0.8556 0.8445
STD 0.1146 0.1464 0.1575 0.0960 0.1045
Best 1.0000 1.0000 1.0000 1.0000 1.0000
Worst 0.5556 0.5556 0.6667 0.6667 0.6667

No. of selected features

AVG 6.2000 5.4000 6.9500 7.1500 6.8500
STD 1.5079 1.5694 1.6694 1.5985 1.5985
Best 4.0000 2 4 4 4
Worst 9 8 10 9 10

Additionally, BDA was found to be the most competitive algorithm, with BRSA follow-
ing closely behind. Based on these findings, we can infer that BRSA outperformed BPSO,
BDA, BGWO1, and BGWO2 in selecting the most relevant features from the tested datasets
to optimize classification performance, while minimizing the number of selected features.

Furthermore, according to the conclusion by Demšar [39] and Benavoli et al. [40] that
“the non-parametric tests should be preferred over the parametric ones”, we employed
the Friedman test [41] to validate the obtained results and determined that the differences
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between the competing methods were significant. Tables 7–9 display the final rank of each
algorithm as determined by the Friedman test. The test was conducted using IBM SPSS
Statistics version 22. Based on the ranks, it is evident that BRSA achieved the first rank in
terms of performance measures for both classification accuracy and fitness value, thereby
taking first place among all algorithms. However, in terms of the number of selected
features, BRSA ranked second, with BDA obtaining first place in the Friedman test.

Table 7. Ranks of accuracy using the Friedman test.

Algorithm Final Rank

BRSA 1
BDA 3
BPSO 2
BGWO1 5
BGWO2 4

Table 8. Ranks of fitness value using the Friedman test.

Algorithm Final Rank

BRSA 1
BDA 3
BPSO 2
BGWO1 5
BGWO2 4

Table 9. Ranks of number of selected features using the Friedman test.

Algorithm Final Rank

BRSA 2
BDA 1
BPSO 4
BGWO1 3
BGWO2 5

After implementing the proposed BRSA approach on 4055 common DE genes, the top
subset of six genes was identified as the optimal subset with 87.22% accuracy for the SVM
classifier. Table 10 presents the selected genes obtained using this approach.

Table 10. Proposed prediction model for COVID-19 identification.

Gene Index Gene Name

Covid-19 GSE149273

1637 BEX2
3527 CHST13
5239 DUSP21
8554 IFIT5

20839 SNHG9
23214 TRIM14

In order to enhance the predictive accuracy of ACE2 in COVID-19 diagnosis, the
selected genes obtained using the proposed method were compared with the ACE2 gene,
and genes were identified through LASSO regression. Figure 9 illustrates a heatmap
presenting the ACE2 gene and the genes selected through LASSO regression. Displaying
gene expression data as a heatmap is a popular way to visualize it. A heatmap can also be
used in conjunction with clustering techniques, which pair together genes and/or datasets
based on how similarly their genes are expressed. This can be helpful for determining the
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biological signatures linked to a specific situation (such as disease or an environmental
condition) or genes that are frequently regulated.

Figure 9. Heat map of the best subset of genes obtained using the LASSO method.

The heatmap displayed in Figure 9 indicates that the expressions of ACE2, IFIT5, and
TRIM14 were almost identical, and the proposed algorithm selected them. This implies
that IFIT5 and TRIM14 share the characteristics of ACE2, which is a COVID-19-related
gene. ACE2, also known as ACEH, may play opposing roles in health and disease. The
COVID-19 virus uses the ACE2 receptor to enter human cells, and this receptor is found
in almost all organs of the body [42,43]. In addition, BEX2 and SNHG9 show similarities
in their up and downregulated genes, but they are not related to COVID-19 symptoms.
According to “the National Library of Medicine” website, BEX2, and SNHG9 genes have
no connection with COVID-19 symptoms.

5. Conclusions

This paper introduced the binary reptile search algorithm (BRSA), an extension of
the reptile search algorithm (RSA), which is critical for enhancing the performance of
machine learning algorithms and delivering superior results in gene selection problems.
The proposed method is divided into two stages. First, the LASSO regression method is
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utilized to select 14 genes (as shown in Table 3). Next, the identified gene subset is passed
through the BRSA to extract the most significant genes. The SVM was selected as the
best classifier among KNN and RF as classification models, with an average classification
accuracy of 87.22%. Out of the four sigmoid transfer functions, S4 proved the optimal choice,
with a high average classification accuracy; moreover, the F-measure was introduced as a
fitness function in BRSA. Finally, the performance of the proposed method was evaluated
using COVID-19 gene expression data.

The effectiveness of the BRSA was compared with existing binary metaheuristic
algorithms, which identified that the BRSA outperformed the others, with a higher accuracy.
Evaluating the proposed method with a COVID-19 dataset yielded even better results,
with a higher average classification accuracy, a higher average fitness value, and fewer
features than the existing methods. Using BRSA, six significant genes were selected (BEX2,
CHST13, DUSP21, IFIT5, SNHG9, and TRIM14), and the heatmap revealed that there were
similarities between ACE2, IFIT5, and TRIM14. As ACE2 is a COVID-19-related gene, we
could conclude that IFIT5 and TRIM14 are likely to be classified as COVID-19-related genes.
However, the performance of the proposed method was limited when working with an
unbalanced dataset.

As the importance of feature selection in machine learning continues to grow, there is
a need for further research to improve its efficiency. This study lays a foundation for future
research to enhance feature selection. Other supervised learning algorithms, such as logistic
regression [44], naive Bayes [45], and decision trees [46], could be incorporated to improve
performance. Additionally, combining the BRSA with various continuous metaheuristic
algorithms and their binary counterparts could create a new hybrid algorithm to solve
feature selection problems. The proposed method has potential applications in various real-
world domains. To further improve the classification accuracy, state-of-the-art filter feature
selection methods such as MRMR [47] and Relief [48] could be integrated with the current
method. In addition, our study’s main contribution was identifying genes associated
with COVID-19 through an analysis of the GSE149273 dataset with a modified binary
optimization algorithm, and this work did not extensively delve into the generalizability
aspect using various benchmark datasets. Hence, we will further validate and refine our
new algorithm through comparisons with additional datasets in future work. Moreover,
since most modern analyses are in fact performed using RNA seq [49], for data modeling,
we may further modify our method to handle new challenges, e.g., discrete count-based
expression, overdispersion, normalization, batch effects, and reference integration.
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