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Abstract: This work aims to study the factors that explain the COVID-19 vaccination rate through
a generalized odd log-logistic Lindley regression model with a shape systematic component. To
accomplish this, a dataset of the vaccination rate of 254 counties in the state of Texas, US, was
used, and simulations were performed to investigate the accuracy of the maximum likelihood
estimators in the proposed regression model. The mathematical properties investigated provide
important information about the characteristics of the distribution. Diagnostic analysis and deviance
residuals are addressed to examine the fit of the model. The proposed model shows effectiveness in
identifying the key variables of COVID-19 vaccination rates at the county level, which can contribute
to improving vaccination campaigns. Moreover, the findings corroborate with prior studies, and the
new distribution is a suitable alternative model for future works on different datasets.

Keywords: COVID-19; Lindey distribution; generalized odd log-logistic family; maximum likelihood;
regression; simulation; vaccination

1. Introduction

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has had a
profound impact on the world in the past few years. It has affected nearly every aspect of
human life, causing significant disruptions to healthcare systems, economies, and social
structures across the globe. The developments in the fight against the pandemic, mainly
the vaccination, provided a crucial tool to protect individuals and communities against the
virus and help to mitigate its spread.

Vaccination efforts are ongoing worldwide to combat the COVID-19 pandemic. In
November 2023, over 13.5 billion (https://ourworldindata.org/covid-vaccinations, ac-
cessed on 21 November 2023) doses of COVID-19 vaccines have been administered globally.
The US government has taken significant steps to ensure vaccine availability and accessibil-
ity, including funding vaccine production, distribution, and administration. Vaccination
rates have been highest among older adults and healthcare workers, but efforts are ongoing
to ensure that all eligible individuals have access to the vaccine. Despite challenges such as
vaccine hesitancy and supply chain issues, vaccination efforts are critical to reducing the
spread of the coronavirus and protecting public health.

According to data from Our World in Data, in November 2023, the US has ad-
ministered over 676 million doses of COVID-19 vaccines, with more than 81% of the
eligible population having received at least one dose and over 69% fully vaccinated
(https://covid.cdc.gov/covid-data-tracker, accessed on 21 November 2023). This puts the
US ahead of many other countries in terms of vaccination rates, but disparities in vaccina-
tion coverage remain among different age groups and communities. Globally, vaccination
rates vary widely across countries, with some countries still struggling to acquire and
distribute enough vaccines.

Consequently, the use of statistical techniques to analyze pandemic data has been
widespread in the US and other countries. A comprehensive study by [1] examines the
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correlation between vaccination rates and social vulnerability at the county-level, revealing
significant disparities in vaccination coverage across counties. Despite limited data on
vaccination safety and efficacy during pregnancy, a recent study by [2] found that vac-
cination coverage increased across all racial and ethnic groups during the study period.
Other studies by [3–5] revealed a correlation with determinant factors and the COVID-19
vaccination rate.

In this instance, the study aims to determine the factors that explain the COVID-19
vaccination rate by constructing a new regression model based on the generalized odd log-
logistic Lindley (GOLLL) distribution. In their study, ref. [6] elucidated the advantages of the
introduced family of distributions and its applicability across various fields, highlighting its
superiority over well-known generators. For example, ref. [7] proposed a parametric and a
partially linear regression model called genralized odd log-logistic Birnbaum–Saunders
distribution, and ref. [8] defined the generalized odd log-logistic Maxwell mixture model
to analyze COVID-19 Chinese data.

This particular distribution offers advantages compared to other competing models,
as elaborated in the upcoming sections. Researchers have made significant contributions to
the field by introducing and studying various generalizations of the Lindley distribution.
Some notable examples of these generalizations include: the study of the Lomax-Lindley
distribution in lifetime data [9], the perspective of the Lindley distribution on the unit
interval [10], the application of the Marshall-Olkin Lindley distribution in reliability data [11],
and the application of the modified-Lindley distribution in three real data sets [12].

Several studies have explored the relationships between various factors that are deter-
minants of vaccination rates, such as demographics, social-economics, and comorbidities,
among others. The construction of new models that capture the complexity of the data is
crucial to addressing research gaps related to COVID-19. Due to the extra shape parameters,
the new distribution has great flexibility in modeling a wide range of data shapes, and link
covariates to explain the response variable. The novel GOLLL regression aims to be an
efficient model for identifying the factors that influence vaccination and can be considered
an alternative for future work to help vaccination efforts.

Therefore, the focus of this study is the analysis of the COVID-19 completed primary
vaccination series at a county-level within the state of Texas. The main objective is to
investigate the influence of explanatory variables on the response variable, with a specific
focus on examining the impact of vaccination in the US. Through this study, the goal is to
make a significant contribution to the literature on this topic and provide valuable insights
into the factors that influence the response variable.

The paper is organized as follows. Section 2 defines the GOLLL distribution and
its main features. A linear representation and some of its mathematical properties are
presented. The maximum likelihood estimation method is utilized, and some simulations
examine the accuracy of the estimators. In Section 3, a new GOLLL regression model with
a systematic structure for the shape parameter is constructed, and the consistency of the
estimators is examined. Some measures for model checking are provided. In Section 4, an
application of the proposed model to COVID-19 vaccination rate data is considered, and its
performance is compared with other models. Diagnostic analysis and deviance residuals
confirme that the model is the best fit to explain the current data. In addition, in Section 5,
the study supports its conclusions with valuable findings that corroborate those from other
studies. Future works can verify the proposed model in other scenarios (states, countries,
etc.). Finally, Section 6 summarizes the key results of the study.

2. Materials and Methods
2.1. The Proposal Model

Recently, the development of new distributions using well-known distributions aims
to capture accurately the underlying distribution of the data and obtain more precise
estimates or key quantities of interest.
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In this context, the generalized odd log-logistic-G (GOLL-G) family, pioneered by [6], is
a versatile class of continuous distributions for modeling various types of data. In their
study, ref. [6] elucidated the advantages of the introduced family of distributions and its
applicability across various fields, highlighting its superiority over well-known generators.
This particular distribution offers advantages compared to other competing models, as
elaborated in the upcoming sections.

This family is based on the transformer-transformer (T-X) generator defined by [13].
Consider a baseline cdf G(x) = G(x; ξ), where ξ denotes an unknown parameter vector.
The GOLL-G cdf is defined by integrating the log-logistic density function, namely

F(y) =
∫ G(x)θ

1−G(x)θ

0

αwα−1

(1 − w)2 dw =
G(x)αθ

G(x)αθ + [1 − G(x)θ ]α
, (1)

where α > 0 and θ > 0 are two extra shape parameters.
The pdf corresponding to (1) can be expressed as

f (y) =
α θ g(x) G(x)αθ−1 [1 − G(x)θ ]α−1

{G(x)αθ + [1 − G(x)θ ]α}2 , (2)

where g(x) = g(x; ξ) is the baseline pdf. Its hazard rate function (hrf) is easily found as
τ(y) = f (y)/[1 − F(y)].

These equations define some characteristics of the GOLL-G family, allowing it to effec-
tively model a wide range of data types (skewed, bimodal, asymmetric, etc.) The parameters
α and θ play an important role in shaping the distribution. In addition, Equations (1) and (2)
do not involve complex mathematical functions, unlike the gamma and beta classes.

Table 1 reports some sub-models of Equation (1).

Table 1. Sub-models.

α θ Sub-Model

- 1 Generalized log-logistic family [14]
1 - Proportional reversed hazard rate family [15]
1 1 Baseline

The Lindley distribution with shape parameter λ > 0 is defined by the cumulative
distribution function (cdf) and probability density function (pdf) (for x > 0)

G(x) = 1 − 1 + λ + λx
1 + λ

e−λx, (3)

and

g(x) =
λ2

(1 + λ)
(1 + x)e−λx, (4)

respectively.
The new distribution, namely generalized odd log-logistic Lindley (GOLLL), is char-

acterized by inserting Equation (3) in (1), the cdf of the GOLLL distribution follows as

F(y) =

[
1 − 1+λ+λx

1+λ e−λx
]αθ

[
1 − 1+λ+λx

1+λ e−λx
]αθ

+

[
1 −

(
1 − 1+λ+λx

1+λ e−λx
)θ

]α . (5)

Let Y ∼ GOLLL(α, θ, λ) be a random varibale (rv) having cdf (5). By differentiating it,
the pdf of Y reduces to
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f (y) =

α θ λ2

(1+λ)
(1 + x)e−λx

[
1 − 1+λ+λx

1+λ e−λx
]αθ−1

[
1 −

(
1 − 1+λ+λx

1+λ e−λx
)θ

]α−1

{[
1 − 1+λ+λx

1+λ e−λx
]αθ

+

[
1 −

(
1 − 1+λ+λx

1+λ e−λx
)θ

]α}2 . (6)

Three special cases of the GOLLL model are given below:

1. For θ = 1 =⇒ OLLL model [16];
2. For α = 1 =⇒ exponentiated-Lindley (EL) model [17];
3. For θ = α = 1 =⇒ Lindley model [18].

Figures 1 and 2 provide plots of the pdf and hrf of Y for selected parameters. One of the
standout characteristic of the GOLLL distribution is its flexibility in generating a vast array
of hazard shapes. Figure 2 includes but are not limited to increasing-decreasing-increasing,
inverse J-shape, increasing-decreasing, and various other patterns shapes. This exceptional
versatility transforms the model into an immensely powerful tool for effectively modeling
complex data sets that encompass a wide range of diverse hazard rate patterns.

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
y

f(y
)

(θ,λ) = (2.5,4.5)

α = 0.8
α = 1.2
α = 1.6
α = 2.2
α = 2.8

0.0

0.5

1.0

0 1 2 3
y

f(y
)

(α,λ) = (1.15,0.85)

θ = 0.7
θ = 0.8
θ = 0.9
θ = 1
θ = 1.1

0.00

0.01

0.02

0.03

0 50 100 150 200
y

f(y
)

(α,θ) = (0.25,10)

λ = 0.09
λ = 0.11
λ = 0.13
λ = 0.15
λ = 0.17

(a) (b) (c)

Figure 1. GOLLL pdf. (a) Varying α, fixed θ and λ (b) Varying θ, fixed α and λ. (c) Varying λ, fixed α

and θ.
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Figure 2. GOLLL hrf (a) Varying α, fixed θ and λ (b) Varying θ, fixed α and λ. (c) Varying λ, fixed α

and θ.

2.2. Properties

No closed-form mathematical properties of the GOLLL distribution exist. Initially,
introducing the EL rv Wp ∼ exp-L(p) with power parameter p > 0 and density πp(y) = p,
g(y), G(y)p−1 is done, following from Equations (3) and (4)

πp(y) =
p λ2

(1 + λ)
(1 + y)e−λy

[
1 − 1 + λ + λy

1 + λ
e−λy

]p−1
.

Therefore, the pdf of Y can be expressed as a linear representation of EL densities
as follows.
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Applying the linear representation derived in [6], the GOLLL density (6) can be
expressed as

f (y) =
∞

∑
k=0

bkπk+1(y), (7)

where πk+1(y) is the density of Wk+1, and

bk =
αθ

k + 1

∞

∑
i,j=0

∞

∑
l=k

(−1)j+k+l
(
−2

i

)(
l
k

)(
−(i + 1)α

j

)(
(i + 1)αθ + jθ − 1

l

)
.

Equation (7) is the main result of this section. The GOLLL properties is obtained in a
straightforward way by utilizing some EL properties discussed in [17].

2.3. Quantile Function

The quantile function (qf) y = Q(u) = F−1(u) of Y can be obtained from [6] as

y = Q(u) = QLindley

[
t(u)1/α

1 + t(u)1/α

]1/θ
, (8)

where t(u) = u/(1 − u), and QLindley(·) is the Lindley qf. Equation (8) is a useful tool for
simulating the GOLLL distribution when U is drawn from a uniform distribution on the
interval (0, 1).

Figure 3 displays Galton’s skewness [19] and Moors’ kurtosis [20] based on quantiles
varying α and θ, with λ = 5.25. These measures are more robust than traditional skew-
ness and kurtosis measures. These plots highlight the impact of both parameters on the
distribution shape.

(a) (b)

Figure 3. (a) Galton’s skewness. (b) Moors’ kurtosis.

2.4. Moments

Theorem 1. The nth ordinary moment of Y is given by

µ′
n =

∞

∑
k=0

(k + 1)λ2

1 + λ
bk K(k + 1, λ, n, λ), (9)

where

K(k + 1, λ, n, λ) =
∞

∑
i=0

i

∑
j=0

j+1

∑
l=0

(−1)i λj Γ(1 + l + n)
(1 + λ)i [(i + 1)λ]1+n+l

(
k
i

)(
i
j

)(
j + 1

l

)
.
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Proof. The proof is straightforward by applying Equation (7) and using the EL moments
in [17].

The generating function (gf) MY(·) of Y can also be determined straightforwardly
from Equation (7), and the EL gf reported in [17,21].

2.5. Estimation

Let y1, · · · , yn be a random sample from Y ∼ GOLLL(α, θ, λ). The log-likelihood
function for the parameter vector ψ = (α, θ, λ)⊤ is given by

ln(ψ) = n log(αθ) +
n

∑
i=1

log
[

λ2

(1 + λ)
(1 + yi)e−λyi

]
+ (αθ − 1)

n

∑
i=1

log
[

1 − 1 + λ + λyi
1 + λ

e−λyi

]

+ (α − 1)
n

∑
i=1

log

[
1 −

(
1 − 1 + λ + λyi

1 + λ
e−λyi

)θ
]

− 2
n

∑
i=1

log

{(
1 − 1 + λ + λyi

1 + λ
e−λyi

)αθ

+

[
1 −

(
1 − 1 + λ + λyi

1 + λ
e−λiyi

)θ
]α}

.

(10)

For simplicity, let

Ai = Ai(λ) =

(
1 − 1 + λ + λyi

1 + λ
e−λyi

)
.

Then, the components of the score vector, for ψ = (α, θ, λ)⊤, are

Uα =
n
α
+ θ

n

∑
i=1

log(Ai) +
n

∑
i=1

log
(

1 − Ai
θ
)

−2
n

∑
i=1

θ log(Ai)Ai
αθ + (1 − Ai

θ)α log(1 − Ai
θ)

Ai
αθ + (1 − Ai

θ)α
,

Uθ =
n
θ
+ α

n

∑
i=1

log(Ai)− (α − 1)
n

∑
i=1

Ai
θ log(Ai)

1 − Ai
θ

+
n

∑
i=1

αAi
αθ log(Ai) + (1 − Ai

α)θ log(1 − Ai
α)

Ai iαθ + (1 − Ai
α)θ

and

Uλ = n
(

λ + 2
λ2 + λ

)
−

n

∑
i=1

yi − (αθ − 1)
n

∑
i=1

λyi(2 + λ + yi + λyi)

(1 + λ)[1 + λ − eλyi (1 + λ) + λyi]
.

The maximum likelihood estimate (MLE) of ψ can be found from the score equations
Uα = Uθ = Uλ = 0 using a a Newton-Raphson type algorithm. Alternatively, Equation
(10) can be maximized numerically using the optim routine available in [22].

2.6. Simulations

We generate 1000 samples of sizes 50, 100, 200, 400, 800, and 1000, to evaluate the
accuracy of the estimators under two scenarios: ψ = (0.50, 0.75, 1.25)⊤ for scenario 1, and
ψ = (1.45, 0.25, 0.95)⊤ for scenario 2. The average estimates (AEs), biases, and mean square
errors (MSEs) are calculated for each sample size, and the findings are reported in Table 2.
The measures are

AEϵ(n) =
1
N

N

∑
i=1

ϵ̂i, Biasϵ(n) =
1
N

N

∑
i=1

(ϵ̂i − ϵ) and MSEϵ(n) =
1
N

N

∑
i=1

(ϵ̂i − ϵ)2,

for ϵ = α, θ, λ.
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Table 2. Simulation.

Scenario 1

Par
n = 50 n = 100 n = 200

AE Bias MSE AE Bias MSE AE Bias MSE

α 0.561 0.061 0.126 0.507 0.007 0.010 0.538 0.0038 0.061
θ 1.019 0.269 0.588 0.778 0.028 0.035 0.883 0.133 0.238
λ 1.529 0.279 0.919 1.280 0.030 0.074 1.389 0.139 0.420

Par
n = 400 n = 800 n = 1000

AE Bias MSE AE Bias MSE AE Bias MSE

α 0.515 0.015 0.025 0.560 0.060 0.212 0.511 0.011 0.013
θ 0.822 0.072 0.099 1.280 0.530 1.467 0.778 0.028 0.043
λ 1.328 0.078 0.194 1.774 0.524 1.719 1.278 0.028 0.087

Scenario 2

Par
n = 50 n = 100 n = 200

AE Bias MSE AE Bias MSE AE Bias MSE

α 1.466 0.016 0.534 1.457 0.007 0.040 1.453 0.003 0.249
θ 0.393 0.143 0.214 0.255 0.005 0.002 0.308 0.058 0.047
λ 1.694 0.744 4.627 0.981 0.031 0.066 1.282 0.332 1.280

Par
n = 400 n = 800 n = 1000

AE Bias MSE AE Bias MSE AE Bias MSE

α 1.431 −0.019 0.097 1.546 0.096 1.399 1.444 −0.006 0.047
θ 0.271 0.021 0.007 0.608 0.358 0.855 0.258 0.008 0.002
λ 1.087 0.137 0.251 2.556 1.606 13.543 1.007 0.057 0.085

The results indicate that the AEs converge to the true parameters, and the biases and
MSEs decay when n increases, thus indicating that the consistency criterion holds.

3. The GOLLL Regression Model

In recent years, new regression models have been proposed to handle various types of
data without any transformation. The development accommodates non-normal data and
captures the complexity and diversity of real data sets, providing accurate results. Ref. [23]
proved the applicability of the utilized family in real engineering data sets. Another
work [24] studied the COVID-19 ICU survival times in a Brazilian hospital.

In this situation, new models represent an important step to improve the analysis of
different outcomes. Therefore, using the proposed GOLLL distribution, a new regression
model is constructed as a tool to investigate any dataset that does not satisfy normality
assumptions.

3.1. Definition

The systematic component of the GOLLL regression model takes into account the fact
that the parameter λ in Equation (6) varies across observations (i = 1, . . . , n) as

g(λi) = exp(x⊤i β), (11)

where g(·) is a twice continuously differentiable log-linear link function, and
β = (β1, · · · , βp)⊤ is the p-dimensional parameter vector associated with the explana-
tory variables x⊤i = (xi1, · · · , xip). The components of β are assumed to be independent.
Therefore, the non-linear function g(·) plays the link with the covariates and the new
regression model.

Consider a sample of n independent observations (y1, x1), · · · (yn, xn). The log-likelihood
function for the parameter vector ψ = (α, θ, β⊤)⊤ in this regression model has the form
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ln(ψ) = n log(αθ) +
n

∑
i=1

log

[
λ2

i
(1 + λi)

(1 + yi)e−λiyi

]
+ (αθ − 1)

n

∑
i=1

log
[

1 − 1 + λi + λiyi
1 + λi

e−λiyi

]

+ (α − 1)
n

∑
i=1

log

[
1 −

(
1 − 1 + λi + λiyi

1 + λi
e−λiyi

)θ
]

− 2
n

∑
i=1

log

{(
1 − 1 + λi + λiyi

1 + λi
e−λiyi

)αθ

+

[
1 −

(
1 − 1 + λi + λiyi

1 + λi
e−λiyi

)θ
]α}

.

(12)

Numerical maximization is employed using the optim routine in [22] to estimate ψ
in Equation (12). The likelihood ratio (LR) statistic is adopted to compare the proposed
regression with its nested models.

3.2. Simulations of the Regression Model

The accuracy of the MLEs in the GOLLL regression model can be assessed using the mea-
sures: bias, MSE, estimated average length (AL), and coverage probability (CP). The measures are

Biasϵ(n) =
1
N

N

∑
i=1

(ϵ̂i − ϵ), MSEϵ(n) =
1
N

N

∑
i=1

(ϵ̂i − ϵ)2, ALϵ(n) =
3.919928

N

N

∑
i=1

sϵ̂i

and

CPϵ(n) =
1
N

N

∑
i=1

I(ϵ̂i − 1.95996 · sϵ̂i , ϵ̂i + 1.95996 · sϵ̂i ),

for ϵ = α, θ, λ.
One-thousand samples of sizes n = 25, 55, · · · , 1.000 are generated from Equation (8)

by setting α = 0.75, θ = 1.85, β0 = 2.75, and β1 = 3.40. The Monte Carlo simulation pro-
vides a versatile approach to analyzing the parameters of the model, enabling researchers
to explore the behavior of a distribution under various conditions.

Figures 4–7 report how the measure values change with respect to the sample size. The
biases, MSEs, and ALs decay toward zero when n increases. Additionally, the CPs approach
the true value of 0.95 if n increases. These findings provide strong evidence of the consis-
tency of the MLEs. The simulation contributed to the reliability and comprehensiveness of
the new regression model.
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Figure 4. Plots of the biases of the estimates. (a) α̂. (b) θ̂. (c) β̂0. (d) β̂1.
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Figure 6. Plots of the ALs of the estimates. (a) α̂. (b) θ̂. (c) β̂0. (d) β̂1.
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Figure 7. Plots of the CPs of the estimates.

3.3. Model Checking

Diagnostic measures and residual analysis are employed to know if the model accu-
rately represents the data. This involves investigating whether the sample contains any
outliers or influential observations that may affect the model’s performance.

Measures based on case deletion are considered in the systematic component to
identify influential observations in the regression model

g(ψl) = exp(xl
⊤β), l = 1, . . . , n, l ̸= i. (13)

Here, the effect of excluding the ith observation is examined on the parameter es-
timates. Hence, the log-likelihood function for ψ from model (13) by deleting the ith
observation is l(i)(ψ), and the MLE of the parameter vector is ψ̂(i).

The influence of the ith observation is measured by comparing the difference between
the estimated parameter ψ̂(i) and the original MLE ψ̂. If excluding the ith observation leads
to a substantial change in the estimated parameters, then this observation is influential.

A popular influence measure is the generalized Cook distance (GCD), namely

GCDi = (ψ̂(i) − ψ̂)⊤[ J̈(ψ̂)](ψ̂(i) − ψ̂), (14)

where J̈(ψ̂) is the estimated observed information matrix.
Another commonly used influence measure is the likelihood distance (LD), namely

LDi = 2
{

l(ψ̂)− l
(

ψ̂(i)

)}
. (15)

In addition to global influence measures, analyzing residuals can also be an effec-
tive way to assess model adequacy and check for incompatibilities with the response
distribution. The deviance residuals for the GOLLL regression are

rDi = sgn
(
r̂Mi

)√
−2[r̂Mi + log(1 − r̂Mi )], (16)
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where r̂Mi are the martingale residuals (see [25]), and sgn(·) takes value ±1 if the argument
is positive/negative.

4. Application

Initially, a comparative analysis of the GOLLL model against some alternative models
is conducted. The EL, beta Lindley (BL) [26], Kumaraswamy Lindley (KwL) [27], and
gamma-Lindley (GL) [28] distributions are given by

FBL(x) = IG(x)(a, b) =
1

B(a, b)

∫ G(x)

0
wa−1(1 − w)b−1dw,

FKwL(x) = 1 − {1 − G(x)a}b,

FGL(x) =
γ{a,− log[1 − G(x)]/b}

Γ(a)
.

The parameters of all distributions are positive real numbers, and G(x) is the Lindley
distribution. For all fitted models, the goodness.fit function, using the BFGS method from the
AdequacyModel package [29], computes the MLEs (SEs in parentheses). The selection of the
best fitted model is based on several well-known measures, including Cramér-von Mises
(W∗), Anderson-Darling (A∗), and Kolmogorov-Smirnov (KS) (p-values in parentheses).

4.1. COVID-19 Vaccination Rates on County-Level

To demonstrate the usefulness of the new GOLLL regression model over other com-
petitive models, we provide an application that utilizes county-level COVID-19 vaccination
rates in the state of Texas, USA.

The data set refers to 254 percentages of the population in counties with a completed
vaccination (aged adjust) to COVID-19 extracted from CDC (https://covid.cdc.gov/covid-
data-tracker/#datatracker-home, accessed on 22 February 2023). This data set is used since
Texas is the state with the highest number of counties in the US. Further investigation
with other data sets (states, countries, and counties) should be addressed to examine the
accuracy of the new model.

Additional research has examined the impact of covariates on the COVID-19 vac-
cination. Ref. [30] analyzed the COVID-19 vaccination coverage associated with social
vulnerability and urbanity. Ref. [31] verified the impact of some variables in vaccination
coverage and suggested that interventions be undertaken to improve COVID-19 vaccine
acceptance and future uptake. The study conducted by [32] utilized machine learning to
study the vaccination rate in the USA. The findings provide insights to increase vaccination
acceptance and combat the COVID-19 pandemic. Other investigations, Refs. [33,34] demon-
strate some predictors for vaccine hesitancy using variables such as social-demographics
and comorbidities and conclude a strong association. Therefore, the inclusion of the
study variables is based on past research, comparisons, and investigations of possible new
associations to aid vaccination campaigns.

The explanatory variables were extracted from County Health Rankings (https://
www.countyhealthrankings.org/, data from 2020, accessed on 22 February 2023) are out-
lined below (for i = 1, . . . , 254):

1. VR: Population rate with complete primary series of COVID-19 vaccination (response
variable);

2. HP: Total number of hospitals reporting vaccination;
3. PR: Poverty rate (percentage of individuals with income below the poverty line);
4. MS: Metropolitan status (0 = non-metropolitan, 1 = metropolitan);
5. HR: High school completion rate (proportion of individuals aged 25 and above who

have completed high school or its equivalent);
6. BA: Broadband access (percentage of households that have access to broadband

internet);

https://covid.cdc.gov/covid-data-tracker/#datatracker-home
https://covid.cdc.gov/covid-data-tracker/#datatracker-home
https://www.countyhealthrankings.org/
https://www.countyhealthrankings.org/
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7. HT: Heart disease rate (percentage of individuals that have chronic heart disease).

Table 3 reports the descriptive statistics for the data set, and the histogram is given in
Figure 8. The average rate of vaccination in counties was 0.483 in the period of the study.
The standard deviation is 0.132, which can be explained by the range of 0.189 and 0.950,
respectively, the minimum and the maximum. Furthermore, the skewness and kurtosis
are positive.

Table 3. Descriptive statistics.

Statistics

Variable Mean Median SD Skewness Kurtosis Min. Max.

VR 0.483 0.452 0.132 1.485 6.021 0.189 0.950
HP 1.717 1.000 4.282 6.666 56.447 0.000 45.000
PR 0.161 0.152 0.061 1.022 4.878 0.026 0.395
HR 0.818 0.830 0.085 −2.056 12.509 0.220 0.970
BA 0.769 0.770 0.084 −0.388 3.301 0.480 0.970
HT 0.082 0.082 0.017 0.248 2.906 0.045 0.134
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Figure 8. Histogram and empirical density of COVID-19 vaccination rates.

First, the analysis involves modeling only the response variable by fitting the GOLLL,
OLLL, EL, L, BL, KwL, and GL distributions. The MLEs, SEs, and the previous statistics
(with the p-values of KS) are reported in Table 4 for the fitted distributions to the COVID-19
vaccination rate data. The GOLLL distribution is the most suitable model for the current
data based on these measures.

Three LR tests compare the GOLLL distribution with its nested models. The numbers
in Table 5 indicate that the inclusion of extra parameters is significant for accurately
modeling the current data.

The histogram and fitted densities of the two best models are illustrated in Figure 9a.
Further, the estimated cdfs of these models are reported in Figure 9b. Although the model
presents a good fit to the current data, it is not enough to know whether the model will be
suitable for other datasets at different time or space scales. Future research can test other
datasets in different states and at different spatial scales or county levels to investigate the
accuracy of the new model.
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Table 4. Findings from the fitted models.

Model Parameters W∗ A∗ KS

GOLLL(α, θ, λ)
1.490 18.003 7.814 0.306 2.076 0.059

(0.0002) (0.0001) (0.0003) (0.338)

OLLL(α, λ) 4.985 1 2.084 0.444 2.774 0.067
(0.264) (-) (0.025) (0.202)

EL(θ, λ) 1 35.255 9.127 0.321 2.275 0.097
(-) (5.861) (0.400) (0.015)

L(λ) 1 1 2.640 0.702 4.480 0.450
(-) (-) (0.136) (<0.0001)

BL(a, b, λ) 30.015 1.810 7.245 0.397 2.696 0.079
(7.324) (0.503) (1.155) (0.082)

KwL(a, b, λ) 20.113 2.156 6.676 0.493 3.235 0.081
(4.372) (0.514) (0.764) (0.069)

GL(a, b, λ) 7.807 0.005 0.307 0.793 5.013 0.126
(0.751) (<0.001) (0.022) (<0.0001)

Table 5. LR tests.

Models Statistic w p-Value

GOLLL vs. OLLL 5.194 0.0227
GOLLL vs. EL 15.127 0.0001
GOLLL vs. L 498.805 <0.0001
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Figure 9. Fitted models. (a) Histogram and estimated pdfs. (b) Empirical and estimated cdfs.

4.2. Results New Regression

Next, utilizing the new regression model proposed, the systematic component is
considered (for i = 1, . . . , 254)

λi = exp
(
γ + HP xi1 + PR xi2 + MS xi3 + HR xi4 + BA xi5 + HT xi6

)
. (17)

Table 6 reports the MLEs, SEs, and p-values for the fitted GOLLL regression model to
the current data. The numbers support that all six explanatory variables are significant (at
the level of 5%).
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Table 6. Fitted GOLLL regression to COVID-19 vaccination rates.

Parameter Estimate SE p-Value

γ 1.017 0.347 0.004
HP −0.010 0.003 0.003
PR −0.524 0.243 0.032
MS −0.149 0.031 <0.001
HR 0.408 0.197 0.039
BA 0.637 0.223 0.005
HT 2.275 0.995 0.023

4.3. Diagnostic and Residual Analysis

Thereafter, the quality of the fit of the GOLLL regression model is examined. The LD
and GCD measures in Figure 10 are useful to identify potentially influential observations.
They show that the 83th, 151th, and 176th observations (referring to the counties below) are
possibly influential. However, their impacts on the regression model are not particularly
significant.

• 83th: Gaines county with VR: 0.222, HP: 1, PR: 0.142, MS: 0, HR: 0.62, BA: 0.80 and HT:
0.063;

• 151th: Loving county with VR: 0.189, HP: 0, PR: 0.186, MS: 0, HR: 0.97, BA: 0.97 and
HT: 0.05;

• 176th: Newton county with VR: 0.251, HP: 0, PR: 0.206, MS: 1, HR: 0.81, BA: 0.75 and
HT: 0.105.
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Figure 10. The GOLLL regression. (a) LD. (b) GCD.

Additionally, the plot of the deviance residuals in Figure 11a shows that they fall
randomly within the bands. The normal probability plot with simulated envelope in
Figure 11b proves the accuracy of the model to fit the data set. So, the GOLLL regression
model provides a good fit.

Finally, Figure 12 reports profile log-likelihood plots for the parameters while keeping
all other estimates constant. These plots are useful for determining confidence intervals for
estimates and the reliability of statistical analyses. The curves of all parameters provide the
accuracy and uncertainty associated with parameter estimates.
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tions). (b) Normal probability plot of rD’s with envelope.
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Figure 12. Profile log-likelihood functions from the fitted GOLLL regression model to COVID-19 data
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5. Discussion

The model checks reveal that the GOLLL regression model is suitable to explain the
vaccination rates in Texas counties. From the parameter estimates reported in Table 6, the
GOLLL regression model becomes

λ̂i = exp
(
1.017 − 0.010 xi1 − 0.524 xi2 − 0.149 xi3 + 0.408 xi4 + 0.637 xi5 + 2.275 xi6

)
. (18)

Several facts can be drawn from Equation (18). For each covariate, the study reveals
findings that corroborate with other research and indicate the importance of the model for
future applications with diverse other vaccination data.

• All variables are statistically significant at a significance level of 5%;
• The HP variable shows a slight negative estimate, and this negative change is statisti-

cally significant;
• The PR variable is significant, and its estimate is negative. COVID-19 increased poverty

and inequality worldwide [35,36]. Individuals living in poverty may lack access to
reliable transportation, face barriers to accessing healthcare facilities, and have limited
resources for paying out-of-pocket costs associated with vaccination [37,38]. The study
of [39] revealed the lack of access to the COVID-19 vaccine in the lowest county’s
poverty rates across the American state of Illinois. Other study [40] showed a strong
negative correlation with poverty and vaccine coverage in the 189 countries’ research.
This can result in lower vaccination rates among populations living in poverty, which
is supported by data from the proposed model and prior studies;

• The MS variable has a negative estimate, which indicates that the vaccination rate
is lower in metropolitan urban areas. The differences in vaccination rates between
urban and rural communities are likely driven by various factors, such as differ-
ences in access to healthcare resources, vaccine distribution challenges, and mainly
vaccine hesitancy [41]. Patterns in COVID-19 vaccination coverage by urbanity are
addressed by [30]. It indicated lower vaccination rates in rural than urban areas,
which corroborates with the study; Further, the study of [42] presented disparities in
COVID-19 vaccination coverage between urban and rural counties and explained it
by educational attainment, healthcare infrastructure, and Trump vote share.

• The HR variable is significant with a positive coefficient. Thus, counties with higher
high school graduation rates tend to have higher vaccination rates as well, which
can be attributed to more access to accurate information regarding vaccines to access
better healthcare and vaccination services [43]. Other studies [44–46] revealed that
high school is a key difference in coverage, access, and hesitancy vaccination;

• The BA variable has a positive estimate, which shows the internet has played a signif-
icant role in the COVID-19 vaccination effort. Websites and social media platforms
have been used to disseminate information about vaccine availability, eligibility, and
safety. The study’s results suggest that counties with greater access to broadcast media
have a higher COVID-19 vaccination rate, which highlights the disparities in access to
the internet and technology among some communities. This finding is consistent with
the research presented in [47]. Alternative studies [48,49], showed that lack of internet
access is a barrier to vaccination. In New York City and some counties in North
Carolina, the COVID-19 vaccine hesitancy increases if there is difficulty accessing
the internet;

• The HT variable has a highly positive estimate. Several studies [50–52] have demon-
strated the heightened risk of individuals with chronic heart disease contracting and
experiencing severe symptoms from COVID-19, as well as increased rates of hospi-
talization and mortality. For these reasons, many states in the US have implemented
targeted outreach efforts to ensure that these populations have access to the vaccine.
Hence, the study’s results indicate that counties with high rates of chronic heart
disease have a correspondingly higher rate of vaccination. This finding highlights
the importance of the government’s focus on prioritizing at-risk populations [53].
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Subsequent studies [54,55], illustrated the efficacy and safety of the COVID-19 vaccine
based on the presence of comorbidities, including heart disease.

6. Conclusions

This article investigated the factors that explain the COVID-19 vaccination rate us-
ing the generalized odd log-logistic Lindley regression model with a shape systematic
component. Some mathematical properties of this model were provided, and the maxi-
mum likelihood method was used to estimate the parameters. A Monte Carlo simulation
evaluated the parameters of the proposed regression model, which revealed the consis-
tency of the estimators and the approach to the nominal level of the coverage probabilities.
Diagnostic analysis and deviance residuals proved the suitability of the new model.

The analysis of COVID-19 vaccination rates at the county level in Texas, US, uncovered
significant findings. The total number of hospitals reporting vaccination is a slight predictor
of vaccination, and it is suggested to be considered in future work for further investigations.
Poverty rate and metropolitan status are evidenced in this work as determinants. The
first one discussed in [35–38], among others, reveals the lack of access to the COVID-
19 vaccine among individuals living in poverty. The second one examined in [30,41,42]
presented disparities in COVID-19 vaccination coverage between urban and rural counties,
corroborating with this study. The education level was also identified as a determinant
of increasing the vaccination rate. Supporting studies by [43,44,46] indicated that the
high school rate is a significant variable in coverage, access, and hesitancy vaccination.
Another important variable is broadband access. The internet, supported by websites and
social media platforms, disseminates information about vaccines, as suggested by prior
studies [47–49], and is consistent with the findings of this study. Several studies [50–52]
worldwide demonstrated how comorbidities influence COVID-19. Countries prioritized
the availability of vaccines for people in the risk group, as highlighted in [53]. Subsequent
studies [54,55], illustrate findings similar to the current study, including heart disease.

The new model showed that it was more flexible than some competitive models.
Hence, it is possible to conclude that the proposed model can provide better insights into
the relationship between the explanatory variables and the response variable and serve as
an alternative model to evaluate other research. It is recommended to apply the regression
model introduced in other states, countries, or cities and verify if the same covariates would
be significant in future works.
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Abbreviations
The following abbreviations are used in this manuscript:

A∗ Anderson Darling
AE average estimate
AL average estimate length
cdf cumulative distribution function
COVID-19 corona virus disease 2019
CP coverage probability
L Lindley distribution
EL exponentiated Lindley distribution
GCD generalized Cook distance
GL gamma-Lindley distribution
GOLL-G generalized odd log-logistic distribution
GOLLL generalized odd log-logistic Lindley distribution
KS Kolmorogov-Sminorv
KwE Kumaraswamy Lindley distribution
LD loglikelihood distance
LR likelihood ratio
MLE maximum likelihood estimate
MSE mean squared error
OLLL odd log-logistic Lindley distribution
pdf probability distribution function
T-X transformer-transformer generator
W∗ Cramér-von Misses
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12. Coşkun, K.U.Ş.; Korkmaz, M.Ç.; Kinaci, İ.; Karakaya, K.; AkdoĞan, Y. Modified-Lindley Distribution and its Applications to the
Real Data. Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat. 2022, 71, 252–272. [CrossRef]

http://doi.org/10.15585/mmwr.mm7012e1
http://dx.doi.org/10.15585/mmwr.mm7024e2
http://dx.doi.org/10.15585/mmwr.mm7123a2
http://dx.doi.org/10.1186/s12889-021-12432-x
http://www.ncbi.nlm.nih.gov/pubmed/35031053
http://dx.doi.org/10.1037/amp0001020
http://www.ncbi.nlm.nih.gov/pubmed/36074569
http://dx.doi.org/10.1080/00949655.2016.1238088
http://dx.doi.org/10.1080/03610926.2022.2117987
http://dx.doi.org/10.1080/02664763.2022.2163229
http://dx.doi.org/10.31801/cfsuasmas.772812
http://dx.doi.org/10.24200/sci.2022.58409.5712
http://dx.doi.org/10.1109/ICCITM56309.2022.10031767
http://dx.doi.org/10.31801/cfsuasmas.744141


COVID 2023, 3 1779

13. Alzaatreh, A.; Lee, C.; Famoye, F. A New Method for Generating Families of Continuous Distributions. Metron 2013, 71, 63–79.
[CrossRef]

14. Gleaton, J.U.; Lynch, J.D. Properties of Generalized Log-Logistic Families of Lifetime Distributions. J. Probab. Stat. Sci. 2006, 4,
51–64. Available online: https://www.researchgate.net/publication/283595537_Properties_of_generalized_log-logistic_families_
of_lifetime_distributions (accessed on 21 November 2023).

15. Gupta, R.C.; Gupta, R.D. Proportional Reversed Hazard Rate Model and its Applications. J. Stat. Plan. Inference 2007, 137,
3525–3536. [CrossRef]

16. Ozel, G.; Alizadeh, M.; Cakmakyapan, S.; Hamedani, G.G.; Ortega, E.M.M.; Cancho, V.G. The Odd Log-Logistic Lindley Poisson
Model for Lifetime Data. Commun.-Stat.-Simul. Comput. 2017, 46, 331–359. [CrossRef]

17. Nadarajah, S.; Bakouch, H.S.; Tahmasbi, R. A Generalized Lindley Distribution. Sankhya B 2011, 73, 331–359. [CrossRef]
18. Lindley, D.V. Fiducial Distributions and Bayes Theorem. J. R. Stat. Soc. Ser. B 1958, 20, 102–107. Available online: http://www.jstor.

org/stable/2983909 (accessed on 21 November 2023). [CrossRef]
19. Galton, F. Enquiries into Human Faculty and Its Development; Macmillan & Company: London, UK, 1883. Available online:

https://psycnet.apa.org/doi/10.1037/14178-000 (accessed on 21 November 2023).
20. Moors, J.J.A. A Quantile Alternative for Kurtosis. J. R. Stat. Soc. Ser. D 1988, 37, 25–32. [CrossRef]
21. Ranjbar, V.; Alizadeh, M.; Altun, E. Extended Generalized Lindley Distribution: Properties and Applications. J. Math. Ext. 2019,

13, 117–142. Available online: https://ijmex.com/index.php/ijmex/article/viewFile/755/377 (accessed on 21 November 2023).
22. R Core Team. R Core Team: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,

Austria, 2023.
23. Prataviera, F.; Ortega, E.M.; Cordeiro, G.M. A New Bimodal Maxwell Regression Model with Engineering Applications. Appl.

Math. Inf. Sci. 2020, 14, 817–831. [CrossRef]
24. da Costa, N.S.; Cordeiro, G.M. A New Normal Regression with Medical Applications. Appl. Math. Inf. Sci. 2023, 17, 309–322.

[CrossRef]
25. Pregibon, D. Logistic Regression Diagnostics. Ann. Stat. 1981, 9, 705–724. [CrossRef]
26. Merovci, F.; Sharma, V.K. The beta-Lindley Distribution: Properties and Applications. J. Appl. Math. 2014, 2014, 198951. [CrossRef]
27. Çakmakyapan, S.; Kadilar, G.O. A New Customer Lifetime Duration Distribution: The Kumaraswamy Lindley Distribution. Int.

J. Trade Econ. Financ. 2014, 5, 4–12. [CrossRef]
28. Zeghdoudi, H.; Nedjar, S. Gamma Lindley Distribution and its Application. J. Appl. Probab. Stat. 2016, 11, 129–138.
29. Marinho, P.R.D.; Silva, R.B.; Bourguignon, M.; Cordeiro, G.M.; Nadarajah, S. AdequacyModel: An R package for probability

distributions and general purpose optimization. PLoS ONE 2019, 14, e0221487. [CrossRef] [PubMed]
30. Barry, V.; Dasgupta, S.; Weller, D.L.; Kriss, J.L.; Cadwell, B.L.; Rose, C.; Pingali, C.; Musial, T.; Sharpe, J.D.; Flores, S.A.; et al.

Patterns in COVID-19 Vaccination Coverage, by Social Vulnerability and Urbanicity—United States, 14 December 2020–1 May
2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 818–824. [CrossRef]

31. Wang, Q.; Yang, L.; Jin, H.; Lin, L. Vaccination against COVID-19: A systematic review and meta-analysis of acceptability and its
predictors. Prev. Med. 2021, 150, 106694. [CrossRef] [PubMed]

32. Osman, S.H.I.; Sabit, A. Predictors of COVID-19 vaccination rate in USA: A machine learning approach. Mach. Learn. Appl. 2022,
10, 100408. [CrossRef] [PubMed]

33. Muthukrishnan, J.; Vardhan, V.; Mangalesh, S.; Koley, M.; Shankar, S.; Yadav, K.; Khera, A. Vaccination status and COVID-19
related mortality: A hospital based cross sectional study. Med. J. Armed Forces India 2021, 77, S278–S282. [CrossRef] [PubMed]

34. Savoia, E.; Piltch-Loeb, R.; Goldberg, B.; Miller-Idriss, C.; Hughes, B.; Montrond, A.; Kayyem, J.; Testa, M.A. Predictors of
COVID-19 Vaccine Hesitancy: Socio-Demographics, Co-Morbidity, and Past Experience of Racial Discrimination. Vaccines 2021, 9,
767. [CrossRef]

35. Buheji, M.; da Costa Cunha, K.; Beka, G.; Mavric, B.; De Souza, Y.L.; da Costa Silva, S.S.; Yein, T.C. The Extent of COVID-19
Pandemic Socio-Economic Impact on Global Poverty. A Global Integrative Multidisciplinary Review. Am. J. Econ. 2020, 10,
213–224. [CrossRef]

36. Deaton, A. COVID-19 and Global Income Inequality. LSE Public Policy Rev. 2021, 1, 1. [CrossRef]
37. Hyder, A.A.; Hyder, M.A.; Nasir, K.; Ndebele, P. Inequitable COVID-19 Vaccine Distribution and its Effects. Bull. World Health

Organ. 2021, 99, 406A. [CrossRef] [PubMed]
38. Parolin, Z.; Lee, E.K. The role of poverty and racial discrimination in exacerbating the health consequences of COVID-19. Lancet

Reg. Health 2022, 7, 100178. [CrossRef] [PubMed]
39. Liao, T.F. Social and economic inequality in coronavirus disease 2019 vaccination coverage across Illinois counties. Sci. Rep. 2021,

11, 18443. [CrossRef] [PubMed]
40. de Oliveira, B.R.B.; da Penha Sobral, A.I.G.; Marinho, M.L.M.; Sobral, M.F.F.; de Souza Melo, A.; Duarte, G.B. Determinants of

access to the SARS-CoV-2 vaccine: A preliminary approach. Int. J. Equity Health 2021, 20, 183. [CrossRef] [PubMed]
41. Murthy, B.P.; Sterrett, N.; Weller, D.; Zell, E.; Reynolds, L.; Toblin, R.L.; Harris, L.Q. A Disparities in COVID-19 vaccination

coverage between urban and rural counties—United States. Morb. Mortal. Wkly. Rep. 2015, 70, 759–764. [CrossRef] [PubMed]
42. Sun, Y.; Monnat, S.M. Rural-urban and within-rural differences in COVID-19 vaccination rates. J. Rural. Health 2022, 38, 916–922.

[CrossRef] [PubMed]

http://dx.doi.org/10.1007/s40300-013-0007-y
https://www.researchgate.net/publication/283595537_Properties_of_generalized_log-logistic_families_of_lifetime_distributions
https://www.researchgate.net/publication/283595537_Properties_of_generalized_log-logistic_families_of_lifetime_distributions
http://dx.doi.org/10.1016/j.jspi.2007.03.029
http://dx.doi.org/10.1080/03610918.2016.1206931
http://dx.doi.org/10.1007/s13571-011-0025-9
http://www.jstor.org/stable/2983909
http://www.jstor.org/stable/2983909
http://dx.doi.org/10.1111/j.2517-6161.1958.tb00278.x
https://psycnet.apa.org/doi/10.1037/14178-000
http://dx.doi.org/10.2307/2348376
https://ijmex.com/index.php/ijmex/article/viewFile/755/377
http://dx.doi.org/10.18576/amis/140509
http://dx.doi.org/10.18576/amis/170213
http://dx.doi.org/10.1214/aos/1176345513
http://dx.doi.org/10.1155/2014/198951
http://dx.doi.org/10.7763/IJTEF.2014.V5.412
http://dx.doi.org/10.1371/journal.pone.0221487
http://www.ncbi.nlm.nih.gov/pubmed/31450236
http://dx.doi.org/10.15585/mmwr.mm7022e1
http://dx.doi.org/10.1016/j.ypmed.2021.106694
http://www.ncbi.nlm.nih.gov/pubmed/34171345
http://dx.doi.org/10.1016/j.mlwa.2022.100408
http://www.ncbi.nlm.nih.gov/pubmed/36128042
http://dx.doi.org/10.1016/j.mjafi.2021.06.034
http://www.ncbi.nlm.nih.gov/pubmed/34334894
http://dx.doi.org/10.3390/vaccines9070767
http://dx.doi.org/10.5923/j.economics.20201004.02
http://dx.doi.org/10.31389/lseppr.26
http://dx.doi.org/10.2471/BLT.21.285616
http://www.ncbi.nlm.nih.gov/pubmed/34108746
http://dx.doi.org/10.1016/j.lana.2021.100178
http://www.ncbi.nlm.nih.gov/pubmed/35018358
http://dx.doi.org/10.1038/s41598-021-97705-6
http://www.ncbi.nlm.nih.gov/pubmed/34531435
http://dx.doi.org/10.1186/s12939-021-01520-4
http://www.ncbi.nlm.nih.gov/pubmed/34391416
http://dx.doi.org/10.15585/mmwr.mm7020e3
http://www.ncbi.nlm.nih.gov/pubmed/34014911
http://dx.doi.org/10.1111/jrh.12625
http://www.ncbi.nlm.nih.gov/pubmed/34555222


COVID 2023, 3 1780

43. Khairat, S.; Zou, B.; Adler-Milstein, J. Factors and Reasons Associated with Low COVID-19 Vaccine Uptake among Highly
Hesitant Communities in the US. Am. J. Infect. Control 2022, 50, 262–267. [CrossRef]

44. Malik, A.A.; McFadden, S.M.; Elharake, J.; Omer, S.B. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine
2020, 26, 100495. [CrossRef]

45. Agarwal, R.; Dugas, M.; Ramaprasad, J.; Luo, J.; Li, G.; Gao, G. Socioeconomic privilege and political ideology are associated with
racial disparity in COVID-19 vaccination. Proc. Natl. Acad. Sci. USA 2021, 118, e2107873118. [CrossRef]

46. Coughenour, C.; Gakh, M.; Sharma, M.; Labus, B.; Chien, L.C. Assessing determinants of COVID-19 vaccine hesitancy in Nevada.
Health Secur. 2021, 19, 592–604. [CrossRef]

47. Goel, R.K.; Nelson, M.A. COVID-19 Internet Vaccination Information and Vaccine Administration: Evidence from the United
States. J. Econ. Financ. 2021, 45, 716–734. [CrossRef]

48. Michaels, I.H.; Pirani, S.J.; Carrascal, A. Disparities in Internet Access and COVID-19 Vaccination in New York City. Prev. Chronic
Dis. 2021, 18, 210143. [CrossRef] [PubMed]

49. Doherty, I.A.; Pilkington, W.; Brown, L.; Billings, V.; Hoffler, U.; Kumar, D. COVID-19 vaccine hesitancy in underserved
communities of North Carolina. PLoS ONE 2021, 16, e0248542. [CrossRef]

50. Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.
COVID-19 and Cardiovascular Disease. Circulation 2010, 141, 1648–1655. [CrossRef]

51. Zhang, J.; Dong, X.; Cao, Y.; Yuan, Y.; Yang, Y.; Yan, Y.; Akdis, C.A.; Gao, Y. Associations of 4 Geographic Social Vulnerability
Indices with US COVID-19 Incidence and Mortalit. Allergy 2020, 75, 1730–1741. [CrossRef] [PubMed]

52. Guan, W.; Liang, W.; Zhao, Y.; Liang, H.; Chen, Z.; Li, Y.; Liu, X.; Chen, R.; Tang, C.; Wang, T. Comorbidity and its Impact on 1590
Patients with COVID-19 in China: A Nationwide Analysis. Eur. Respir. J. 2020, 55, 2000547. [CrossRef]

53. Osuagwu, U.L.; Langsi, R.; Ovenseri-Ogbomo, G.; Mashige, K.P.; Abu, E.K.; Envuladu, E.A.; Agho, K.E. Analysis of Perception,
Reasons, and Mtivations for COVID-19 Vaccination in People with Diabetes Across Sub-Saharan Africa: A Mixed-Method
Approach. Int. J. Environ. Res. Public Health 2022, 19, 7875. [CrossRef]

54. Choi, W.S.; Cheong, H.J. COVID-19 Vaccination for People with Comorbidities. Infect. Chemother. 2021, 153, 155–158. [CrossRef]
55. Yelin, I.; Katz, R.; Herzel, E.; Berman-Zilberstein, T.; Ben-Tov, A.; Kuint, J.; Kishony, R. Associations of the BNT162b2 COVID-19

vaccine effectiveness with patient age and comorbidities. Medrxiv 2021, 3. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ajic.2021.12.013
http://dx.doi.org/10.1016/j.eclinm.2020.100495
http://dx.doi.org/10.1073/pnas.2107873118
http://dx.doi.org/10.1089/hs.2021.0079
http://dx.doi.org/10.1007/s12197-021-09551-x
http://dx.doi.org/10.5888/pcd18.210143
http://www.ncbi.nlm.nih.gov/pubmed/34436987
http://dx.doi.org/10.1371/journal.pone.0248542
http://dx.doi.org/10.1161/CIRCULATIONAHA.120.046941
http://dx.doi.org/10.1111/all.14238
http://www.ncbi.nlm.nih.gov/pubmed/32077115
http://dx.doi.org/10.1183/13993003.00547-2020
http://dx.doi.org/10.3390/ijerph19137875
http://dx.doi.org/10.3947/ic.2021.0302
http://dx.doi.org/10.1101/2021.03.16.21253686

	Introduction
	Materials and Methods
	The Proposal Model
	Properties
	Quantile Function
	Moments
	Estimation
	Simulations

	The GOLLL Regression Model
	Definition
	Simulations of the Regression Model
	Model Checking

	Application
	COVID-19 Vaccination Rates on County-Level
	Results New Regression
	Diagnostic and Residual Analysis

	Discussion
	Conclusions
	References

