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Abstract: COVID-19, or coronavirus disease, has caused an ongoing global pandemic causing un-
precedented damage in all scopes of life. An infected person with underlaying medical conditions is
at greater risk than the rest of the population. Obstructive sleep apnea (OSA) is an illness associated
with disturbances during sleep or an unconscious state with blockage of the airway passage. The
comobordities of OSA with high blood pressure, diabetes, obesity, and age can place the life of an
already infected COVID-19 patient into danger. In this paper, a prediction model for the mortality
of a COVID-infected patient suffering from OSA is developed using machine learning algorithms.
After an extensive methodical search, we designed an artificial neural network that can predict
the mortality with an overall accuracy of 99% and a precision of 100% for forecasting the fatality
chances of COVID-infected patients. We believe our model can accurately predict the mortality of the
patients and can therefore assist medical health workers in predicting and making emergency clinical
decisions, especially in a limited resource scenario, based on the medical history of the patients and
their future potential risk of death. In this way, patients with a greater risk of mortality can receive
timely treatment and benefit from proper ICU resources. Such artificial intelligent application can
significantly reduce the overall mortality rate of vulnerable patients with existing medical disorders.

Keywords: COVID-19; obstructive sleep apnea (OSA); mortality; machine learning; artificial neural
network (ANN)

1. Introduction

COVID-19, or coronavirus disease, is an infectious deadly disease that has posed an
unprecedented impairment to health and overall wellbeing of people since its outbreak in
late December 2019 [1]. The virus SARS-CoV-2 is responsible for the rapid transmission of
the disease worldwide [2]. The virus has caused an ongoing global pandemic in all sectors
with substantial damage in the medical, economical, and service sectors. As of 18 February 2022,
there had been 420 million cases worldwide and 5.86 million deaths, making it the most
death-dealing virus in history.

Most individuals infected by the virus can suffer from undetectable, mild to severe
symptoms. The common symptoms of COVID-19 are fever, dry cough, sore throat, and
loss of smell and taste [3]. With proper medication and sufficient social distancing, an
infected person can recover from the virus from treatment at home. However, people with
underlying medical conditions remain at large risk due to the virus infection. Previous
research on the severity of COVID-19 states that the risk of mortality in COVID-19 patients
increases with age and comorbidities: obesity, chronic kidney disease, liver disease, diabetes,
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hypertension, cancer, and pulmonary diseases. From the study conducted on 12,526 patients
across Hubei region and outside, hypertension, diabetes, chronic kidney disease (CKD),
chronic liver diseases (CLD) and chronic obstructive pulmonary disease (COPD) have been
prevalent in COVID-19 infected patients [4].

Obstructive sleep apnea (OSA) is a medical condition to cause disruption during sleep
when the upper respiratory tract of the person is blocked by an object. The diaphragm and
chest muscles coordinate to push air into the lungs, making the person breathe shallowly.
Common symptoms, such as fatigue, restlessness during sleep, hypertension, gender, and
age, increase the prevalence of OSA, affecting 3–7% of the total population [5]. People with
underlying medical conditions such as diabetes, high blood pressure, smoking, obesity,
asthma, or older are more likely to develop OSA [6]. Studies show that these comorbidities
are firmly associated with the risk of the severity of COVID-19 [4]. Therefore, study on
the association of obstructive sleep apnea and the risk of the severity of COVID-19 has
been a relevant research topic globally. In the midst of the crisis caused by COVID-19, the
proper distribution of ICU beds is essential to support the patients who require mechanical
ventilation and support. The lack of ICU beds can cause capacity strain, which can impact
the life expectancy of a critical patients. A total of 18 studies out of 30 and 9 out of 12 intensive
care unit studies show that capacity strain in the hospital increases the mortality of patients [7].

OSA, which is closely associated with the comorbidities that increase the fatality of
a patient, can be a biomarker to identify critical patients. Identification of patients with
obstructive sleep apnea can help medical health workers to timely treat severely infected
patients and support them with ICU and mechanical ventilation. A mortality analysis and
prediction of patients with more life-threatening risks can assist health workers in making
these crucial medical decisions and minimize the human error caused due to mental strain.

The machine learning models used in our research have outstanding performance.
Since the beginning of the pandemic, we have been actively working on developing

widely accessible free telehealth care smartphone applications to potentially diagnose
and predict the mortality of COVID-19 patients [8] and pregnant women infected with
the virus [9]. Here, we present a machine learning model for OSA patients affected by
COVID-19. This can help critically ill patients to timely receive treatment and can reduce
the overall mortality rate from COVID-19.

2. Literature Review

The association and outcome linking of COVID-19 with OSA was studied in [10]. The
authors discussed the potential origin, the effects of COVID-19 in caring for OSA patients,
and the effects of COVID-19 on OSA. The paper concludes that OSA patients have a higher
risk of mortality and the study suggests that risk factors and comorbidities of OSA, e.g., obesity,
hypertension, and diabetes, are likely linked to COVID-19 outcomes. One notable conclusion is
that the treatment of OSA is independently associated with the risk of COVID-19.

The probable risk factors of OSA with COVID-19 were studied by [11]. The paper
finds that interleukin-6, interleukin-17, and tumor necrosis factor are induced by poor sleep
quality. This promotes the inflammatory activity in the neutrophil in an infected person’s
body. However, the study also suggests that diagnosis of OSA is an independent factor of
the poor COVID-19 outcomes. The study also suggests that optimum sleep is essential for
adequate immune development against COVID-19.

The clinical outcomes in patients hospitalized with COVID-19 have been studied by
the authors in [12]. The dataset in this study was collected from the medical records of
patients with a history of OSA: both COVID-19-affected and not-affected patients. The
study finds that rate of mortality increased significantly in patients with history of OSA
compared to that of patients without history of OSA. The history of OSA associated also
increased the possibility of longer hospital staying.

The aim to find the relationship between OSA and COVID-19 was studied in [13]. In
the meta-analysis from 21 studies and a total of 54,276 COVID-19-affected patients, the
study found that OSA is related to poor COVID-19 outcomes. The study also found that
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OSA can be associated with higher mortality, more mechanical ventilation requirement,
and prolonged staying in the hospital due to severity. The study notes that most of the
patients with OSA have medical history of obesity, cardiovascular disease, and diabetes,
which eventually supports the evidence of higher risk of mortality of patients with OSA.

Potential influences of OSA and obesity on COVID-19 severity were presented in [14].
The study found evidence that obstructive sleep apnea can worsen hypoxemia and cy-
tokinin storm in the body of COVID-19 patients. In contrast, the study also found that
OSA can also be associated with acute kidney failure injury in critically affected COVID-19
patients. Contamination fear from using nasal palp is also one of the catalyzing event that
worsens OSA in patients.

OSA and the risk of COVID-19 infection, hospitalization, and respiratory failure is
discussed in [15]. The study was conducted on 9405 COVID-19-affected patients. The
authors found evidence that OSA was more common among critically affected patients.
This also leads to further evidence than OSA is responsible for respiratory failure and other
complications. The study suggests that patients with history of OSA are eight-fold more at
risk of complications than other patients in terms of fatality caused by COVID-19.

The concerning issue of whether OSA is really a comorbidity of COVID-19 was studied
in [16]. There are a lot of similarities of OSA comorbidity along with COVID-19. Evidence
from the study suggests that hypoxia from OSA can interact with pulmonary parenchymal
from the infection of COVID-19. Thus, OSA works as a factor hampering the inflammatory
outcome of patients. This can be a potential reason for the severity of COVID-19-affected
patients with OSA. The study does not establish OSA as a risk factor for COVID-19, but the
comorbidities with OSA such as hypertension and diabetes are very strongly associated
with worsening the state for COVID-19-infected patients.

The study on various other comorbidities associated with COVID-19 was conducted
in [17]. Based on the study conducted on 3994 patients, the authors claim that hypertension,
diabetes mellitus, cardiovascular disease, chronic obstructive pulmonary disease (COPD),
and chronic kidney disease (CKD) are all noteworthy comobordities. The study heavily
implies that presence of any of the aforementioned factors can greatly increase the chances
of mortality in patients.

The risk factors associated with OSA has been studied in [18]. Based on evidence and
history of records of OSA patients, the authors suggest that OSA can be strongly associated
with hypertension. Affecting around 5 to 15 percent of the total population, patients
affected with OSA are also at a risk of stroke and transient ischemic attacks. For patients
with previous pulmonary disease, OSA can worsen and cause pulmonary hypertension.

3. Methods and Materials

The overall flowchart explaining the methodologies used in the research is illustrated in
Figure 1.

3.1. Dataset Collection

The dataset was collected from the paper “Association between the degree of obstruc-
tive sleep apnea and the severity of COVID-19: An explorative retrospective cross-sectional
study” [19]. The paper studied the relation between obstructive sleep apnea and the de-
grees of risk associated with it on COVID-19-infected patients. The study and the dataset
associated with it were approved by Medical Ethics Committee, Isala Academy, Zwolle, the
Netherlands (reference number 210221). The medical records of obstructive sleep apnea
patients from Isala Hospital and the patients admitted here were collected through full
consent. The dataset of the patients was collected based on the criteria of the severity of the
symptoms of COVID-19 based on the general criterion by the World Health Organization
and the medical records in the hospital. There are 24 parameters in the dataset: age, sex, ad-
mission to hospital, number of days of hospital admission, intubation days, WHO CAT 3,4,5,
apnea hypopnea index (AHI), low oxygen saturation (LSAT), respiratory disturbance index
(RDI), body mass index (BMI), treatment for obstructive sleep apnea, smoking, diabetes melli-
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tus (DM), cardiovascular disease (CVD), asthma, chronic kidney disease, active malignancy,
immune suppression, and death due to COVID-19.
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3.2. Data Statistical Analysis
3.2.1. Inclusion Exclusion Criteria for the Dataset

According to Ref. [19], the dataset was constructed from patients from Isala Hospital
(Zwolle, the Netherlands) from March to December 2020. Adults above the age of 18,
patients with polysomnography (PSG) or home sleep apnea testing (HSAT), positive for
COVID-19 disease, and containing mild to severe obstructive sleep apnea (OSA) were
included for the study. The absence of AHI, LSAT, ODI, and RDI in the samples were
considered the exclusion criteria for the overall dataset.

3.2.2. Pre-Processing the Dataset

The dataset collected was processed through encoding the attributes of a sample into
its counter numeric parts. The gender attribute for the sample was encoded as Male: 0,
Female: 1. The rest of the attributes of the samples were already encoded into the uploaded
dataset by [19] with 1 as positive and 0 as not positive in answer to the attribute. For the
column “smoking entire life”, 0 represents that the person has never smoked, 1 represents
that the person has smoked in his life, and 2 represents that the smoking habit is still present
in the person. A total of 136 rows were selected from the dataset and the missing values in
the specific attributes were replaced using K-nearest neighbor [20] impute. Afterwards, the
outliers of the dataset were detected using interquartile range (IQR) proximity rule [21]. For
all the columns, the outlier data were removed using the proximity rule of IQR (data not in
between the upper bound and lower bound of interquartile range). In order to evaluate the
performance of the model, the data samples were split: 20% were used for training, while
the rest of the samples were used for testing the prediction models. In Table 1, the programs
and packages used in the research are included, along with their respective versions.
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Table 1. Details of the versions of the libraries and programs used in the research.

Programs and Packages Application Version

Python Programming language
for encoding and decoding. Python 3.6.

NumPy
Creation of array
objects and applying
functions of linear algebra.

numpy 1.22.4

Pandas Importing and analyzing
the dataset. pandas 1.4.2

Scikit Learn

Machine learning
prediction modeling.

scikit-learn 1.1.1
Developing correlation
between variables.
Analyzing performance
metrics of the models.

Seaborn Visualizing the dataset
and other statistics. 0.11.2

3.2.3. Developing Correlation Matrix

The correlation matrix of the dataset was plotted using the matplotlib.pyplot library.
The correlation matrix is a two-dimensional figure defining the relationship among the
variables of the dataset. The matrix was developed using the Pearson correlation ma-
trix [22]. The matrix was visualized using the Seaborn library. The detailed explanation
understanding the relationship of the variables is given in the results discussion.

3.2.4. Balancing the Dataset

Due to unequal class distribution, the dataset was imbalanced. In order to increase
the performance of the machine learning algorithms, the dataset was balanced through the
synthetic minority oversampling technique (SMOTE) [23]. In this technique, the minority
class is oversampled. In this data augmentation, new records are generated from the
minority existing records. In the oversampling technique of SMOTE used in the code, the
examples that are close to the feature space are selected which are connected to form a
line segment with all the records in between. The synthetic space is chosen as a convex
combination between two chosen spaces. The target variable is the mortality of patients
with two discrete values: 1, representing the death of the patient, and 0, representing that
the patient is alive.

3.2.5. Distribution of Data

To verify the reliability of the updated dataset after oversampling, the distribution of
attributes of the dataset was checked. For categorical values, the frequency distribution
before and after balancing the dataset was analyzed. For continuous values, the KDE plot
and p-value distribution was taken into consideration to understand the significance of
the columns with respect to the class. The machine learning algorithms were applied after
verifying the equal sample distribution and the descriptive statistics of attributes in the
dataset before and after oversampling.

3.3. Machine Learning Algorithms

The machine learning algorithms used in the research study were selected based on
the most popular, supervised, classification training models [24] available.

3.3.1. Random Forest Classifier

The random forest classifier [25] is one of the most popular supervised training
machine learning algorithms. The algorithm can be utilized both for classification and
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regression model problems. In this model, the dataset is divided into multiple subsets
which are known as “decision trees”. The algorithm takes the average from all the subsets
to increase the model’s predictive and accuracy performance. The number of subdivisions
of the problem (that is, the more decision trees in the problem) increases the efficiency of
the overall model. The number of trees in the random forest can also have an effect of the
overfitting issue of the dataset. The model is very well capable of handling datasets with
higher dimensions.

3.3.2. Decision Tree Classifier

The decision tree classifier [26] is a supervised learning technique that is mostly used
for classification-related problems. On given conditions, the model is capable of producing
the accurate graphic representation of all the possible solution approaches in a predictive
model. Every node in the algorithm represents a feature of the dataset. The branches are
the decisions that lead to the child which are also the outcome of the features. The decisions
are usually based on two conditions: yes and no.

3.3.3. Support Vector Machine

Support vector machine [27] is a widely used classification machine learning model.
The model aims to create a hyperplane line or “decision boundary” that can segregate
all the given dimensional classes of the dataset. The hyperplane is created by using the
extreme points. This points are also called support vectors, naming the overall algorithm.
The new dataset is then placed in the correct decision region. This is how the model is able
to predict outcomes for a given column.

3.3.4. Gradient Descent Classifier

The gradient descent classifier [28] is one of the most popular classification learning
models. It is an optimizing procedure which makes trade-off between runtime for update
and accuracy. There are two types of gradient boosting algorithms: batch gradient and stochastic
gradient descent. In batch gradient boosting, the update is calculated by forming and calculating
derivatives from the input training data. On the other hand, in stochastic gradient boosting, the
derivative of each data is calculated from the instance of each training data.

3.3.5. Logistic Regression

Logistic regression [29] is a popular supervised machine learning model. This model
is applicable for classification supervised machine learning and it can be classified into
binary and multinomial logistic regression algorithm based on the outcome. The curve of
logistic regression is different than linear regression, in a S-form shape. The S-shaped curve
predicts the maximum values of 0 and 1. The S-form curve is known as sigmoid function
or logistic function.

3.3.6. K-Nearest Neighbor

K-nearest neighbor (K-NN) [30] is a simple supervised machine learning technique. It
is a technique used in classification algorithms where new data are categorized based on
trained available datasets. The available data are stored and new data are classified based
on the similarity found with available data. It is called lazy learner algorithm, as it does
not make any underlying assumptions about trained data.

3.3.7. Extreme Gradient Boosting

The eXtreme gradient boosting (XgBoost) [31] is a popular machine learning algorithm
that is a developed version of gradient boosting machines. For every independent variable
in the dataset, a weight is assigned, and based on the weight, decision trees are formed. If the
probability of the weight of the predicted variable being wrong is increased, then the algorithm
is fed into a second decision tree. The process is continued until the errors are minimized. This
results in stronger machine learning models and enhances the concepts of gradient boosting.
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3.3.8. AdaBoost

AdaBoost [32] is a common machine learning algorithm with decision trees of one
level, which are also called decision stumps. The weak classifying algorithms are combined
into a stronger classifier. The algorithm has high performance in binary classification.

3.3.9. Light Gradient Boosting Machine

Light gradient boosting machine (LGBM) [33] is a popular machine learning algorithm
that uses the concept of decision trees and gradient boosting framework. The algorithm can
overcome the limitations of common gradient boosting algorithms by using gradient-based
one side sampling and exclusive feature bundling (EFB) techniques. The combination of
the two techniques greatly increases the memory storage, processing power, and overall
accuracy of the model.

3.3.10. Naive Bayes

Naive Bayes [34] is a powerful classification machine learning algorithm. It uses the
most fundamental Bayes theorem of probability during calculation. The algorithm assumes
that the occurrence of features and outcomes are independent of each other. In this paper,
Gaussian distribution of the model was used. The model follows a normal distribution. If
continuous value is taken instead of discrete, then the model assumes that these values are
dataset sampled from Gaussian distribution.

3.3.11. Artificial Neural Network

Artificial neural network (ANN) [35] is a widely popular algorithm for data processing.
In this algorithm, the processed data are organized in an architecture resembling the cerebral
cortex of the human brain. As a result, ANN algorithms are capable of accomplishing
results which could not be achieved by conventional algorithm codes. In the architecture, the
nodes in the network can be considered as weighted graph organized in multi-level, while each
nodes of the graph are connected with edges and nonlinear activation function. In the algorithm,
in between the input and output layer, there are multiple hidden layers in which every layer
contains at least one node and it is interconnected with the previous and next layer.

3.4. Parameter Optimization and Cross-Validation

In order to best fit results, parameters in the models used are optimized through
hyperparameter tuning. For the confidence of the applied machine learning models to
not just work on the given dataset, but also real-life data, cross-validation is used. Cross-
validation is a technique used to resample the data to avoid overfitting and to estimate
the true prediction errors of the models used in the research [36]. In this research, 10-fold
cross-validation was applied. For parameter tuning, one of the post popular methods, grid
search, was adopted. In this technique, a range of selection of parameters are taken and the
combination of the best fit parameters validates the machine learning algorithm more with
better accuracy [37]. The detailed statistics of the hyperparameters used for the applied
machine learning algorithms is given in Table 2.
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Table 2. Classification parameters used in the research.

Algorithm Parameters Used

Logistic Regression C = 0.001, random_state = 0

KNeighborsClassifier
n_neighbors = 13,

metric = ’minkowski’,
p = 1, weights = ’uniform’

SVC

kernel = ’rbf’,
probability = True,

C = 0.1, gamma = 0.01,
random_state = 0

GaussianNB var_smoothing = 0.012328467394420659

DecisionTreeClassifier

Criterion = ’gini’,
max_depth = 5,

max_leaf_nodes = 11,
min_samples_split = 3

RandomForestClassifier

Criterion = ’gini’,
max_depth = 7,

max_features = ’sqrt’,
n_estimators = 8

XGBClassifier

colsample_bytree = 0.7,
max_depth = 15,
n_estimators = 2,
reg_alpha = 1.1,

reg_lambda = 1.1,
subsample = 0.7

AdaBoostClassifier

base_estimator = DecisionTreeClassifier
(max_depth = 2, max_leaf_nodes = 5),

learning_rate = 0.01,
n_estimators = 100

lgb.LGBMClassifier

colsample_bytree = 0.7,
max_depth = 15,

min_split_gain = 0.4,
n_estimators = 400,
num_leaves = 50,
reg_lambda = 1.1,
Subsample = 0.7,

subsample_freq = 20

GradientBoostingClassifier

criterion = ’friedman_mse’,
learning_rate = 0.05,

loss = ’deviance’,
max_depth = 3,

max_features = ’log2′,
min_samples_leaf = 0.1,
min_samples_split = 0.5,

n_estimators = 10,
subsample = 0.618

3.5. Evaluation Metrics

The machine learning algorithms used in the research were evaluated based on three
metrics: accuracy, precision, recall, and F1 score. While evaluating the model, the accuracy
of the algorithm identifies the relationship and pattern of the dataset based on the trained
data. It overall accords the rate of the correct predicted data based on the input data. While
evaluating the other three metrics, the confusion matrix can be helpful to understand the
whole picture. In the confusion matrix, there are four evaluating criteria: true positive (TP),
true negative (TN), false positive (FP), and false negative (FN). The confusion matrix to
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evaluate the performance of machine learning algorithms has been added in Table 3. A true
positive is the number of outcomes where the model has correctly predicted the positive
class. The true negative, at the same time, is the number of outcomes the model has correctly
predicted in the negative class. On the other hand, the false positive and false negative
are the outcomes where the model has incorrectly predicted a positive and negative class.
The second factor of our evaluation metrics is the precision, which gives the ratio of the
true positive by the total positive data predicted by our model. Precision is also called
“positive predicted value”. The third factor, recall, is the ratio of data that are relevant to
the instance. It is also called “sensitivity”. The final metric, F1 score, is the mean of the
precision and recall of the dataset. It is primarily used to calculate the performance between
two classifiers. The formula to calculate these performance metrics has been given below
in Equations (1)–(4).

Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalsePositive + FalseNegative
(1)

Recall =
TruePositive

TruePositive + FalseNegative
(2)

Precision =
TruePositive

TruePositive + FalsePositive
(3)

F1 =
2× Precision × Recall

Precision + Recall
(4)

Table 3. Confusion matrix to evaluate models.

True Class

Predicted Class

0 1

0 True Negative (TN) False Positive (FP)

1 False Negative (FN) True Positive (TP)

4. Result and Discussion

According to Ref. [19], there are 24 columns in the dataset, among which the mortality
of the patients is tested as the target variable while the rest of the columns are trained
and tested as training variable. The columns are as follows: mortality of patients, WHO
categories, hospital admission, gender, treatment for obstructive sleep apnea, smoking,
diabetes mellitus (DM), cardiovascular disease (CVD), asthma, chronic kidney disease,
active malignancy, and immune suppression, which are all categorical variables. The
dataset was divided into two categories based on Ref. [19]: the independent variables
and the dependable variables. The treatment for obstructive sleep apnea and factors
associated with it are termed as independent factors. These are apnea hypopnea index
(AHI), low oxyhemoglobin desaturation (LSAT), oxygen desaturation index (ODI), and
respiratory disturbance index. The dependable variables for COVID-19 patients include
the severity of a COVID-19 patient based on categorization of severity [38], number of days
of hospitalization, number of mechanical ventilation or ICU days, and death of COVID-19
patients. The severity of the COVID-19 infected patient based on symptoms is described in
Table 4. The presence of a dependable factor for any patients’ medical record was written in
the dataset as 1 and the absence as 0, for ease of machine learning code. After preprocessing
the dataset, to increase the performance metrics of the prediction algorithms, the dataset
was balanced using SMOTE. The common symptoms of COVID-19 are fever, dry cough,
dyspnea, myalgia, fatigue, hypolymphemia, and radiographic evidence of pneumonia [39].
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Table 4. Categorization of patients based on WHO progression scale [40].

WHO Progression
Scale Used in the Paper Explanation

WHO-Cat_3
Mild disease and infection.
Ambulatory care is needed.

WHO-Cat_4
Patient is moderately diseased
and infected.
Patient may require to be hospitalized.

WHO_Cat_5
Patient is severely infected.
Patient may require intensive care unit (ICU)
and have severe mortality risk (death).

The categorization of COVID-19 patients based on severity and effects of pulmonary
of the infection helps to identify the patients who are at greater risk of death based on
statistics. Based on the classification of majority class and minority class from the column of
COVID-19 mortality, SMOTE was applied to oversample and balance the ratio of majority
and minority class. Initially, the number of death for COVID-19 patients (majority class)
was 96, while the number of alive patients from COVID-19 disease (minority class) was 40.
After oversampling, the number of both majority and minority class were 96 each.

After balancing the dataset, the sample distribution of the attributes in the dataset
before and after were checked and verified. For categorical values of parameters, the
frequency distribution before and after balancing the dataset was observed to be equal
and was visualized through pie charts. For continuous value attributes, kernel density
estimate (KDE) was observed and the p-values for the columns were calculated. After the
preprocessing, the dataset, the descriptive statistics of the attributes of the dataset before
and after balancing the dataset using SMOTE was analyzed. A visualization of the KDE plot
for the continuous values can be seen in Figures 2 and 3. The statistical distribution of the
categorical columns before and after balancing the dataset is given in Table 5. The p values
for the attributes with continuous values has been added in Table 6. After verification of
the descriptive data remaining intact before and after balancing the dataset, the correlation
matrix was constructed for visualizing the relationship among parameters in the dataset.
The correlation matrix is given in Figure 4. The interrelationship among parameters are
expressed as 228, with values within a range from −1 to +1. The values closely associated
with +1 are termed “strong correlation”, while the values closely associated with −1 are
termed “weak correlation”. From the correlation matrix we can see that mortality of
COVID-19 patients is closely associated with category 4 and category 5 of severely infected
patients. Death of COVID-19 patients is also associated with comorbidity. There is weak
correlation between gender (female, 1) and COVID-19. According to study, it is evident
that male gender is more likely to be severely affected by COVID-19 than female [41]. The
mortality is also associated with medical records of patients: the number of days spent
in hospital and the number of days the patient has received mechanical ventilation. The
independent factor associated with OSA is the respiratory saturation index, which has
weak correlation with the mortality of COVID-19 patients. However, the treatment received
by OSA patients is weakly correlated with the mortality of COVID-19 patients. This backs
up our studies from the literature review that not receiving treatment for obstructive
sleep apnea could possibility increase the comorbidity in COVID-19 patients, which also
increases the severity and mortality [13]. The morbidity malignancy, smoking, diabetes, and
respiratory distress index have a strong relation with the mortality of COVID-19 patients.
These are also comorbidities of COVID-19 [42].
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Table 5. Frequency Distribution of categorical data before and after applying SMOTE.

Attributes
Frequency Distribution

Before Balancing Dataset After Balancing Dataset

Gender
Male = 66.9% Male = 74.5%

Female = 33.1% Female = 25.5%

Admission In Hospital Yes = 65.4% Yes = 67.7%
No = 34.6% No = 32.3%

Treatment OSAS
Yes = 82.4% Yes = 78.6%
No = 17.6% No = 21.4%

Smoking Yes = 4.4% Yes = 3.1%
No = 95.6% No = 96.9%

Smoking Entire Life
Ever = 52.2% Ever = 51.6%

Never = 46.3% Never= 57.4%
Present = 1.5% Present = 1%

DM
No = 66.9% No = 73.4%
Yes = 33.1% Yes = 26.6%

CVD
Yes = 66.9% Yes = 62.5%
No = 30.1% No = 37.5%

COPD Asthma
No = 66.2% No = 72.4%
Yes = 33.8% Yes = 27.6%

Chronic Kidney Disease No = 84.6% No = 89.1%
Yes = 15.4% Yes = 10.9%

Immunosuppression No = 94.1% No = 96.4%
Yes = 5.9% Yes = 3.6%

Active Malignancy No = 94.1% No = 93.8%
Yes = 5.9% Yes = 6.2%

Who_Cat_4

2 = 38.2% 4 = 49%
1 = 30.1% 2 = 27.1%
4 = 27.9% 1 = 21.4%
3 = 3.7% 3 = 2.6%

Who_Cat_5

3 = 38.2% 5 = 49%
1 = 30.1% 3 = 27.1%
5 = 27.9% 1 = 21.4%
4 = 3.7% 4 = 2.6%

Who_Cat_3
2 = 38.2% 3 = 57.6%
3 = 31.6% 2 = 27.1%
1 = 30.1% 1 = 21.4%

Death
No = 70.6% No = 50%
Yes = 29.4% Yes = 50%
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Table 6. p-values for columns in the dataset.

One-Sample
Test Test Value = 0 t df Sig. (2-Tailed) Mean 95% Confidence

Difference Interval of the Difference

Lower Upper

Age 53.722 135 0.0001 65.82353 63.4003 68.2467

Hospital
Admission
Days

7.004 135 0.0001 5.93529 4.2594 7.6111

ICU Admission
Days 2.579 135 0.011 1.71324 0.3995 3.0270

Intubation Days 2.740 135 0.007 1.39706 0.3887 2.4054

AHI 14.885 135 0.0001 27.11103 23.5089 30.7131

LSAT 120.979 135 0.0001 82.32206 80.9763 83.6678

ODI 15.197 135 0.0001 27.88897 24.2597 31.5183

RDI 14.622 135 0.0001 33.31853 28.8122 37.8249

BMI 57.142 135 0.0001 32.02709 30.9186 33.1355

After that, the dataset was fed to the machine learning algorithms based on the
evaluation metrics. The six models implemented have an overall high accuracy and
worked excellently. The models that were implemented are all popular classifying machine
learning algorithms: decision tree, random forest, support vector machine, naive Bayes,
gradient boosting, and artificial neural network. In the following research, the machine
learning models implemented are random forest, support vector machine, gradient descent,
naive Bayes, logistics regression, K-nearest neighbor, XgBoost, AdaBoost, LightGBM, and
artificial neural network.

The machine learning algorithms gave outstanding performance as seen from Table 7. The
accuracies for the models are logistic regression: 98.67%, K-NN: 99.33%, SVM: 98.67%, naive
Bayes: 98.66%, decision tree: 98.67%, random forest: 99.99%, XgBoost: 98%, AdaBoost: 98.67%,
LightGBM: 98%, gradient descent: 99.33%, and artificial neural network: 98.99%. The high-
est accuracy we achieved was from artificial neural network and random forest. All the
models have accuracy over 97%. The precision scores of the machine learning models
are logistic regression: 98.82%, K-NN: 99.38%, SVM: 98.75%, naive Bayes: 98.89%, de-
cision tree: 98.26%, random forest: 99.99%, XgBoost: 97.64%, AdaBoost: 97.64%, Light-
GBM: 98.19%, gradient descent: 98.19%, and ANN: 100%. The highest precision score
we obtained was from random forest. The recall scores of the models are logistic regres-
sion: 98.66%, K-NN: 99.38%, SVM: 98.75%, naive Bayes: 98.57%, decision tree: 97.95%,
random forest: 99.99%, XgBoost: 98.04%, AdaBoost: 97.32%, LightGBM: 98.04%, gradient
descent: 98.04%, and ANN: 98.99%. The highest recall score we obtained was from random
forest. The F1 scores of the models are logistic regression: 98.65%, K-NN: 99.33%, SVM: 98.67%,
naive Bayes: 98.64%, decision tree: 97.31%, random forest: 99.99%, XgBoost: 97.99%, AdaBoost:
97.31%, LightGBM: 97.99%, gradient descent: 97.99%, and ANN: 98.99%. The highest recall
score we obtained was from the K-NN model. The trade-off between the sensitivity and
specificity of the machine learning algorithms was measured through the receiver operating
characteristic (ROC) curve [43]. The ROC area under curve (AUC) scores obtained through the
analysis are as follows: logistic regression: 100%, K-NN: 100%, SVM: 100%, naive Bayes:
98.75%, decision tree: 98.04%, random forest: 99.99%, XGBoost: 100%, AdaBoost: 99.38%,
LightGBM: 100%, and gradient boosting: 100%.
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Table 7. Overview of result statistics of the performance of machine learning algorithms.

Algorithms Accuracy Precision Recall F1 Score AUC

Logistic Regression 0.9867 0.9882 0.9866 0.9865 1.0000
K-NN 0.9933 0.9938 0.9938 0.9933 1.0000
SVM 0.9867 0.9875 0.9875 0.9867 1.0000

Naive Bayes 0.9867 0.9889 0.9857 0.9864 0.9875
Decision Tree 0.9867 0.9826 0.9795 0.9731 0.9804

Random Forest 0.9999 0.9999 0.9999 0.9999 0.9999
XGBoost 0.9800 0.9819 0.9804 0.9799 1.0000
AdaBoost 0.9867 0.9764 0.9732 0.9731 0.9938
LightGBM 0.9800 0.9819 0.9804 0.9799 1.0000

Gradient Boosting 0.9933 0.9819 0.9804 0.9799 1.0000
ANN 0.9899 1.0000 0.9899 0.9899 1.0000

In comparison to all the performance metrics of the applied algorithms, the accu-
racy, precision, recall, and F1 scores for random forest algorithm are highest, followed by
ANN and K-NN. ANN model has better performance in predicting and retrieving data,
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giving the highest precision score of 100%. The machine learning algorithms had nearly
perfect accuracy with very minimum error. Therefore, these algorithms are very reliable in
comparison to the traditional method of suspecting critically affected patients.

5. Conclusions

The 11 machine learning algorithms used in the research are widely popular and are
ideal classification supervised learning algorithms. The models had significant performance
scores, making them reliable for decision-making. The highest performances were achieved
by ANN, K-NN, and gradient boosting algorithms. The decision-making capability of these
machine learning algorithms are highly reliable and they are capable of minimizing the
human error caused during the stress in intensive care units. This paper recommends the
application of these machine learning algorithms in order to assist medical workers to make
critical emergency decisions. The efficiency and effectiveness of the algorithms in order
to make decisions for large numbers of patients can also reduce the strain on medical
workers who work in intensive care units. This approach can help medical workers
identify critically affected patients, and with timely treatment and medical decisions,
the life of the critical patient can be saved. This also allows proper distribution of ICU
beds and mechanical ventilation which can overall minimize the mortality and damage
caused by COVID.
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