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Abstract: The availability of accurate information has proved fundamental to managing health
crises. This research examined pandemic data provided by 198 countries worldwide two years
after the outbreak of the deadly Coronavirus in Wuhan, China. We compiled and reevaluated the
consistency of daily COVID-19 infections with Benford’s Law. It is commonly accepted that the
distribution of the leading digits of pandemic data should conform to Newcomb-Benford’s expected
frequencies. Consistency with the law of leading digits might be an indicator of data reliability. Our
analysis shows that most countries have disseminated partially reliable data over 24 months. The
United States, Israel, and Spain spread the most consistent COVID-19 data with the law. In line with
previous findings, Belarus, Iraq, Iran, Russia, Pakistan, and Chile published questionable epidemic
data. Against this trend, 45 percent of countries worldwide appeared to demonstrate significant
BL conformity. Our measures of Benfordness were moderately correlated with the Johns Hopkins
Global Health Security Index, suggesting that the conformity to Benford’s law may also depend on
national health care policies and practices. Our findings might be of particular importance to
policymakers and researchers around the world.

Keywords: COVID-19; forensic; Benford’s law; pandemic; public health

1. Introduction

Over two years ago, the World Health Organization (WHO) reported the emergence
of the new RNA virus—known as Coronavirus, COVID-19, or SARS-CoV-2—in Wuhan,
China [1]. Since its outbreak, the world has faced millions of cases of infection. The
continuing trends are still alarming. Researchers have identified several mutations of
the deadly virus. The world has mobilized an army of scientists, doctors, pharmaceutical
companies, and health experts to date to combat the pandemic’s rapid growth. These efforts
have led to a unique global ecosystem [2] of COVID-19 research and business communities.

In this context, a tidal wave of data has been emerging. More than 200 territories
globally have been reporting two primary metrics for the outbreak’s unfolding, namely
“new cases”—people who have tested positive for the virus—and “new deaths”—the
incidence of deaths due to infection with the virus [3]. After introducing COVID-19
testing, countries began to report the number of Coronavirus tests conducted as “new
daily tests.” The emergence of vaccines in a bumper crop allowed effective preventive
measures to control the highly infectious virus. Countries commenced reporting “new
daily vaccinations”, or the number of people vaccinated each day.

There is no doubt that reliable data are vital to tackle the pace of the global pandemic.
Researchers base their studies on publicly available data. Stringent measures, known
colloquially as lockdowns, travel bans, and flight restrictions, have been justified and
imposed in numerous countries based on such data. For this reason, public faith in COVID-
19 data is paramount to the effective implementation of each of these interventions. Public
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misgivings about the reliability of Coronavirus data can lead to a sluggish response of
societies or, in the worst case, a lack of public support [3].

Various scientists performed forensic studies on the COVID-19 data. Unanimously,
extant research provided empirical proof that COVID-19 data are to some extent reliable.
The basic idea of these studies goes back to applying the mathematical theory, Benford’s
law, which was pioneered initially as the so-called “logarithmic law” by the Canadian
American astronomer and mathematician, Simon Newcomb, in the American Journal of
Mathematics in 1881 [4]. Later in 1938, Frank Benford introduced the thorough proof of
Newcomb’s notion and provided empirical evidence for the widespread existence of the
theory [5]. We will explain Benford’s law (BL) in detail later in the Methods section of
this paper.

Since the onset of the pandemic, many papers emerged, which in part introduced
contradictory results. Some articles even included misleading claims and discussions on
statistical tests. As one of the first extensive studies on COVID-19, Sambridge and Jackson
operationalized Newcomb Benford’s law and analyzed pandemic data from 51 countries
from 16 January 2020 to 9 April 2020; they offered supporting evidence for the application
of the law in the context of pandemics. They showed partial integrity of global Coronavirus
data in broad terms [6]. Around the same time, Farhadi examined over 100,000 integers
from 154 countries and applied three goodness-of-fit criteria [3]. Approximately 28% of
countries adhered well to the frequency of distribution expected, while six countries
contained completely unreliable data. Farhadi recommended replicating the same study
and incorporating additional goodness of fit tests based on a larger sample of observations.
Extending the time frame and improving statistical measurement in the future will enhance
the body of knowledge.

Other researchers conducted Benford’s law focusing on smaller samples. Koch and
Okamura [7] verified the reliability of the official data of COVID-19 hotspots, the United
States, China, and Italy. Idrovo and Manrique-Hernandez also proved China’s compliance
with the law [8]. Lee et al. noted that Japan did not supply robust data; they also argued
that when the epidemic growth curve follows an exponential distribution, the number of in-
fections and deaths will obey BL [9]. According to Isea, China, Germany, Brazil, Venezuela,
Norway, South Africa, Singapore, Ecuador, Egypt, Ireland, France, Australia, Colombia,
India, Russia, and Croatia comply with the law. However, Italy, Portugal, the Netherlands,
the United Kingdom, Denmark, Belgium, and Chile failed three compliance tests [10].

Farhadi and Lahooti investigated the progress of Benfordness in 182 countries from
1 January 2020 to 6 June 2021 to explain previously reported results in COVID-19 reliability
by expanding both the time frame and statistical tests [11]. The researchers compiled data on
the inter-reliability of over 200,000 natural numbers and compared it with previous evidence
in forensic statistics. They proved that about 32% of the nations achieved measurable
Benfordness enhancements, while 68.2% showed no improvement. The self-same study
detected a moderate correlation between the goodness of fit tests for assessing Benfordness
and the 2019 Johns Hopkins Global Health Risk Index, implying a good relationship
between national health systems and policies and the trustworthiness of the epidemic data.

In another study, Morillas-Jurado et al. examined the COVID-19 epidemic specifically
during the first wave of the pandemic between February and August 2020 in Spain [12]. The
authors documented anomalies in the data that occurred in six Spanish regions. The study
conducted is a prime example of the poor application of BL in the context of pandemics.
Their report did not provide precise figures on the observed frequencies. In addition, the
regional data sets were small, in fact too small to assess the conformity of COVID-19 data
to BL. Furthermore, the researchers ignored that certain epidemic management limitations
at the beginning of the outbreak may have affected the distribution of leading digits.

The body of knowledge includes some discussion to investigate the reasons for non-
compliance of pandemic data with the law. In an extensive examination of pandemic
growth, Farhadi and Lahooti empirically provided the notion that the greater the mean
growth rates of new cases at the beginning of the epidemic, the larger the distance from
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Benford’s distribution [13]. The same authors collected data from 176 countries and ex-
plored the association between pandemic growth and the reliability of the global data. Their
findings suggested that the initial exponential growth factors within the first nine months
of the worldwide pandemic underlie the overall divergence from Benford’s Law later.
These outcomes were coherent with the notion provided in earlier studies. Lee et al. [9]
suggested that Benfordness decreases as the growth factors of daily cases flatten. Farhadi
and Lahooti reasoned that assessment of BL compliance should focus on new cases, which
are less influenced by the countries” health care processes and policy boundaries. Peaks and
troughs may occur when daily testing or vaccinations are administered in some countries.

Balashov et al. studied COVID-19 data from 185 countries to gauge pandemic data
accuracy [14]. They used cumulated daily data, applied multiple goodness-of-fit tests, and
claimed to be the pioneers of large-scale BL research into COVID-19 worldwide data while
neglecting similar previous COVID-19 studies focusing on global data [3,6,11,12]. Balashov
et al. did not provide details of their BL findings, partially neglected the extant body of
knowledge, and suggested a regressive relationship between democracy and epidemic
data accuracy. The authors assumed that BL divergence is caused by data manipulation
without considering the effect of exponential growth rates on conformity to the law. Fur-
thermore, they reported that undemocratic countries showed the empirical distance to BL
distribution. However, these findings were nothing new. Kilani, in July 2021, initiated
and assessed Benfordness of COVID-19 daily incidents and investigated the relationship
between democratic measures and conformity to the law [15]. By correlating the results
with four democracy and freedom indices using ordinary least squares, Kilani provided
evidence for the notion that countries with high freedom scores do show consistency with
the logarithmic law. Notably, the World Press Freedom index showed the most substantial
relationship with the expected frequencies. Table 1 summarizes the notable studies on
COVID-19 data, emphasizing the Newcomb-Benford law.

Table 1. Prior research into COVID-19 data reliability.

Researcher

Variables Deadline Number of Countries

Idrovo and
Manrique-Hernandez

Confirmed cases, suspected cases,
and deaths cumulated confirmed 21 January 2020-15 March 2020 1
cases and cumulated actual deaths

Koch and Okamura Daily Cases, Deaths 20 January 2020-28 April 2020 3
Lee, Han and Jeong Daily Deaths 22 January 2020-6 April 2020 10
Wei and Vellwock Daily Cases, Deaths 1 January 2020-1 September 2020 20
Isea Daily Cases, Deaths 29 December 2019-30 April 2020 23

- dlggifgg dge C“mmafr‘f dcggftrh“s‘ed cases 16 January 20204 September 2020 51
Farhadi Daily Cases, Deaths, Tests 31 December 2019-24 September 2020 182
Farhadi and Lahooti D;;gsc\‘;:iznz‘;a(fﬂs 31 December 2019-6 June 2021 176
Farhadi and Lahooti Periodic growth ratios, Daily Cases 31 December 2019-6 June 2021 176

Morillas-Jurado et al. Daily death cases 1 March 2020-30 June 2020 1

There are three major underlying concerns with the studies to date: (a) inconsistent
statistical results due to small sample size, (b) misleading application of goodness of fit
tests to assess Benfordness, and (c) disingenuous use of variables to examine Benfordness.
These limitations may have led to deceptively conservative statistical results.

Our primary concern is to go beyond the previous limitations and comprehensively
assess the most recent data. Therefore, we aim to evaluate Benfordness by improving
the statistical tests and the quality of raw data from over 200 countries within 24 months
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since the onset of the coronavirus pandemic in 2020. This research examines the central
question: “After two years, are countries still telling the truth about the spread of the virus
in their territories?”

2. Method
2.1. Benford’s Law and Goodness-of-Fit Tests

Benford’s Law (BL), also known as the “Law of First Digits”, is a widely known
technique that refers to the frequency of first digits in naturally generated data sets. The
idea was initiated and grounded on the specification of the probabilities of the first digits
with Equation (1). According to BL, the leading digits of numerals adhere to a particular
logarithmic pattern: 30.1% for one, 17.6% for two, 12.5% for three, 9.7% for four, 7.9% for
five, 6.7% for six, 5.8% for seven, 5.1% for eight, and 4.6% for nine [4,5]. See Table 2.

P(d) :logm(l—i—;) de{l,23,...,9} )

Table 2. Benford’s Law Distribution of First Digit.

First Digit

1 2 3 4 5 6 7 8 9

Benford’s frequency

0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

BL has been empirically and elusively proven in various distributions, such as stock
market indexes [16], the numbers of cases by country of (almost any type of) infectious
diseases reported to the World Health Organization (WHO) [17]. Since pandemic data
follow an exponential logistic curve, BL is useful for studying Benfordness of infectious
disease samples that show progressive growth over time, especially in the early stages of
dissemination or the arrival of a new variant during pandemics [9,13].

It is generally accepted that BL applies to a data set exhibiting exponential growth. In
some cases, this pattern is not proven [18]. BL is best applied to data sets that span multiple
orders of magnitude (e.g., population counts of cities, income distributions). Not all data
sets conform to this theory, especially when the underlying data do not exhibit a geometric
trend characterized by the absence of minima and maxima. Or, to put it another way, when
data contain numbers tied to a maximum or minimum, such as individuals” height, weight,
and intelligence quotient. The theory is also not feasible when the data comprise numbers
that span only a few orders of magnitude. Furthermore, artificially constructed data sets
can contradict the expected BL distributions [19].

BL is a common practice in forensic studies within the social sciences and has been applied
in various disciplines, e.g., finance and accounting [20-22], politics [23,24], medicine [25],
and pandemics [6-18]. The body of knowledge is grounded upon various goodness-of-
fit tests that evaluate the deviation between observed and expected frequencies. The
methods frequently used in prior research are, inter alia, the Kolmogorov-Smirnov, Kuiper
for continuous data as well as the Chi-square test, the Euclidean Distance, and M-statistics for
discrete data [26-28].

In the context of epidemic distributions, the goodness of fit tests compares the leading
digits” observed proportions to the expected BL frequencies. The Chi-square test is sen-
sitive to the sample size and does not allow reliable inferences when a data set contains
5000 observations or more [3,13,26-32]. The Chi-square goodness-of-fit test can be applied
to discrete distributions when there are no parameters that need to be estimated [28,29].
If the sample size is too large, the null hypothesis can be rejected with a high degree of
probability (even if there is no significant difference between the actual and the expected
subset). With a small sample size, x? encounters difficulties in measurement too. It is
calculated as follows:

2

VA

1 pi

e

1
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The Euclidean test (4* or d-factor) ultimately measures the Euclidean distance between
the measured and expected frequencies of leading digits in discrete data, where p; and p;
are the observed and expected frequencies [3,23,30]. According to Goodman, the d-factor
quantifies the distance between the sample and the cumulative distribution function of the
reference dataset after normalization by 1.03606, the maximum possible distance [30], which
converts the Euclidean test into a value bounded by 0 and 1. A d* equal to 0 suggests full
conformity to BL, while the highest Euclidian distance, d* = 1, signifies full non-conformity.
As a rule of thumb, perhaps, d* of 0.25 or higher may indicate non-conformity to the
law [3,30,31]. The Euclidean distance is defined as follows [20,23]:

*

~ 1.03606 ©)

Another commonly applied (but a simple maximum norm) statistic is Chebyshev
Distance Test or M-statistic [15,16]. The M-statistic concentrates on the maximum deviation
of the observed proportions from the expected BL values, above or below the anticipated
frequencies (see Equation (4)). According to Morrow [31], rejection regions for common
test levels are 0.967 and 1.212 for &« = 0.05 and a = 0.01, respectively:

M= +/nx max {|O;— Ej} (4)
i=1,2,...9

Consistent with Fairweather [20], we operationalize Weighted Maximum Statistic, the
largest term in )(2 and a modification of Leemis M-statistic; mathematically, it is delineated
as follows; see Equation (5):

2
_ |0; — Ej
wWw=nX max ————

i=1,2,....9 E;

©)

To align with previous studies, we posit the following null hypothesis for all countries
in the scope, mainly, Hy: COVID-19 data from i adhere to BL, where Ji stands for individual
jurisdiction in the range. In this study, we initialized the goodness-of-fit tests based on a
significance level. Notably, several previous studies in the pandemic, financial, or forensic
fields suggest that data manipulations cause a divergence from the BL. The hypothesis in
our study did not assume that variation in BL is an indication of fraud or data manipulation.
Deviation from the BL distribution may also be due to inconsistent policies or an indicator
of national public health countermeasures against the spread of epidemics. Thus, the
hypothesis here addresses the conformity to BL distribution only.

2.2. COVID-19 Data Sampling

As data sets grow over time, compliance with the BL can be improved by expanding
the sample size [3,9,13]. Two years after the pandemic outbreak, the available data on
new cases and new deaths have reached a sufficient level to conduct empirical tests. We
sampled from the COVID-19 database at the Centre for Systems Science and Engineering at
Johns Hopkins University and the Our World in Data repository. Nine cases were ruled out
after consolidating all regions with small samples, including Vatican, Congo, and Tanzania.

We collected 404,489 integers, including 159,832 new cases, 142,336 new deaths,
66,218 new tests, and 36,103 new deaths from 201 countries and territories between
1 January 2020 and 18 February 2022. We intentionally excluded recent deaths, new
tests, and new vaccinations as these values exhibit certain minima and maxima in the data
due to the inherent limitations of national health policies and capabilities that may affect
testing procedures and patient care services—the WHO addressed early that some nations
do not have sufficient access to testing kits, for instance [27]. Statistical examination of
Benfordness makes sense if the COVID-19 data set is of a substantial range. There is no
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explicit minimum threshold as guidance. If a data set is too small, BL will be ineffective in
spotting abnormalities.

Daily incidents—new cases and new deaths—were less suitable for the BL assessment.
Detailed analysis of the data revealed that 62 percent of countries had an order of mag-
nitude of three or less. Previous research sought to alleviate the range of observed data
by accumulating daily incidents. Over time, however, the cumulative data can become
overly large and skew the observed frequencies of leading digits. As such, assessment of
data highly likely leads to falsified outcomes. We overcame this issue by moving away
from daily toward periodic data intervals. Data in a three-day, five-day, or seven-day
interval led to obvious improvements. Our analysis discovered that the five-day interval
spanned 50 percent of territories with an order of magnitude of four or larger. We therefore
accumulated daily data based on a five-day interval leading to a final sample of 98 countries
with an order of magnitude of at least four and an average sample size (1) of 146 sporadic
cases for each territory.

3. Results

We evaluated the conformity of the observed leading digits to the expected BL frequen-
cies. The goodness of fit test, Pearson x2, was operationalized. We furthermore calculated
the d*and M-statistic based on a significant level. These tests were frequently used for ex-
amining discrete pandemics data. Table 3 summarizes the detailed results for all countries
investigated in this study. Figure 1 summarizes our results in a nutshell.

Table 3. Results of the leading digit distribution analysis.

Territory oM GHSI n d* m w p-Value x>
Albania 4 53 143 0.10 0.840 4.696 0.879 3.750
Algeria 4 24 145 0.09 0.923 6.821 0.710 5.435
Argentina 5 59 144 0.15 1.030 6.736 0.706 5.473
Armenia 4 50 143 0.06 0.362 1.657 0.947 2.786
Australia 5 76 148 0.12 0.745 3.894 0.168 11.632
Austria 5 59 145 0.11 1.026 3.495 0.316 9.317
Azerbaijan 4 34 144 0.07 0.499 1.995 0.998 1.024
Bahrain 4 39 145 0.09 0.624 4.924 0.647 6.003
Bangladesh 4 35 142 0.13 1.112 4.109 0.141 12.232
Belarus 4 35 144 0.29 2.612 40.873 0.000 59.001
Belgium 5 61 145 0.09 0.591 6.106 0.322 9.250
Bolivia 4 36 142 0.13 1.070 4.933 0.609 6.346
Bosnia & Herzegovina 4 43 142 0.06 0.462 3.190 0.991 1.616
Botswana 4 31 130 0.07 0.479 3.956 0.959 2.559
Brazil 6 60 144 0.12 1.054 6.304 0.410 8.243
Bulgaria 4 46 142 0.07 0.483 3.088 0.989 1.691
Cameroon 4 34 109 0.10 0.748 3.175 1.000 0.643
Canada 4 75 151 0.19 1.997 13.253 0.009 20.402
Chile 4 58 145 0.27 3.019 30.272 0.000 43.576
China 4 48 151 0.12 0.929 4.896 0.879 3.751
Colombia 4 44 143 0.26 2.596 22.392 0.000 44.757
Costa Rica 4 45 143 0.12 1.091 5.205 0.663 5.860
Croatia 4 53 145 0.11 0.958 5.210 0.825 4.341
Cuba 4 35 141 0.16 1.478 8.831 0.038 16.344
Cyprus 4 43 142 0.09 0.776 7.599 0.954 2.658
Czechia 4 144 0.15 1.470 12.275 0.487 7.466
Denmark 5 70 149 0.13 1.299 5.603 0.248 10.253
Dominica 4 282 0.13 1.733 9.982 0.071 14.420
Dominican Republic 4 38 144 0.28 2.362 32.039 0.000 46.674
Ecuador 4 50 143 0.18 1.844 11.292 0.006 21.481
El Salvador 4 44 140 0.12 0.900 4.885 0.091 13.679
Estonia 4 57 149 0.09 0.718 2.926 0.959 2.554
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Table 3. Cont.

Territory OM GHSI n d* m w p-Value x2
Finland 4 69 150 0.13 1.049 8.662 0.133 12.421
France 5 68 151 0.18 1.502 10.589 0.204 10.964
Georgia 4 52 144 0.09 0.696 4.309 0.161 11.780
Germany 5 66 150 0.13 1.237 5.086 0.440 7.938
Greece 4 54 145 0.08 0.718 2.872 0.942 2.877
Guatemala 4 33 146 0.18 1.899 11.984 0.026 17.380
Honduras 4 28 141 0.19 1.867 19.798 0.001 27.624
Hungary 4 54 143 0.07 0.645 7.163 0.972 2.248
India 5 47 150 0.10 1.049 3.733 0.345 8.972
Indonesia 5 57 143 0.08 0.589 2.722 0.989 1.693
Iran 5 38 146 0.26 2.810 26.226 0.000 37.730
Iraq 4 26 145 0.33 3.766 47.118 0.000 67.430
Ireland 4 59 143 0.07 0.454 3.076 0.997 1.155
Israel 5 47 146 0.06 0.375 2.427 0.887 3.648
Italy 5 56 150 0.12 1.237 5.086 0.504 7.307
Japan 5 60 151 0.09 0.721 4.166 0.551 6.865
Jordan 4 42 143 0.10 0.909 6.609 0.089 13.720
Kazakhstan 4 41 140 0.12 0.816 6.530 0.135 12.389
Kuwait 4 46 145 0.22 1.964 17.655 0.000 29.546
Kyrgyzstan 4 49 140 0.23 2.270 17.113 0.000 37.253
Latvia 4 63 144 0.15 1.554 8.025 0.156 11.888
Lebanon 4 43 145 0.14 1.124 15.978 0.008 20.827
Libya 4 26 143 0.21 1.760 11.234 0.000 33.983
Lithuania 4 55 144 0.11 0.946 2.971 0.622 6.227
Malaysia 4 62 151 0.11 0.929 5.295 0.639 6.073
Mexico 5 58 156 0.12 1.031 10.977 0.030 17.024
Mongolia 4 50 142 0.05 0.481 4.530 0.954 2.658
Morocco 4 44 148 0.11 0.909 4.695 0.069 14.520
Myanmar 4 43 138 0.10 0.983 3.207 0.632 6.139
Nepal 4 35 151 0.07 0.607 1.368 0.987 1.801
Netherlands 5 76 144 0.05 0.304 1.595 1.000 0.057
Norway 4 65 145 0.16 1.275 8.692 0.436 7.972
Pakistan 4 36 145 0.25 1.856 23.045 0.000 65.686
Palestine 4 22 143 0.11 0.840 4.783 0.091 13.649
Panama 4 44 142 0.17 1.573 9.909 0.032 16.859
Paraguay 4 36 142 0.17 1.489 11.460 0.115 12.918
Peru 5 49 143 0.15 1.585 8.344 0.153 11.969
Philippines 4 48 150 0.14 1.001 8.142 0.007 21.077
Poland 5 55 143 0.12 1.007 4.669 0.619 6.253
Portugal 4 60 144 0.09 0.780 4.195 0.553 6.847
Romania 4 46 144 0.09 0.971 3.132 0.809 4.509
Russia 5 44 150 0.21 1.482 26.752 0.000 55.319
Saudi Arabia 4 49 143 0.14 1.426 7.163 0.079 14.125
Serbia 4 52 144 0.17 1.638 8.909 0.008 20.830
Singapore 4 59 151 0.06 0.455 1.612 1.000 0.026
Slovakia 4 48 143 0.10 0.832 3.001 0.839 4.195
Slovenia 4 67 149 0.11 0.889 5.792 0.372 8.661
South Africa 4 55 148 0.15 1.310 9.748 0.332 9.125
South Korea 5 70 151 0.13 1.014 7.805 0.565 6.740
Spain 5 66 149 0.03 0.234 0.485 0.995 1.359
Sri Lanka 4 34 150 0.09 0.593 2.874 0.453 7.806
Sweden 5 72 147 0.06 0.456 3.581 1.000 0.276
Switzerland 5 67 145 0.08 0.635 3.435 0.983 1.922
Thailand 4 73 155 0.13 1.181 7.923 0.184 11.328
Tunisia 4 34 143 0.08 0.673 1.932 0.962 2.486
Turkey 5 52 142 0.18 1.511 12.965 0.042 16.042
Uganda 4 44 138 0.06 0.347 1.531 1.000 0.477
Ukraine 5 38 142 0.10 0.650 4.651 0.924 3.160
United Arab Emirates 4 47 148 0.09 0.909 4.695 0.826 4.331




COVID 2022, 2

479

Table 3. Cont.

Territory OM GHSI n d* m w p-Value x2
United Kingdom 5 78 150 0.09 0.804 2.538 0.721 5.338
United States 6 84 150 0.08 0.838 5.616 0.997 1.122
Uruguay 4 41 141 0.07 0.552 4.560 0.999 0.801
Venezuela 4 23 141 0.16 1.132 10.516 0.239 10.378
Vietnam 5 49 144 0.06 0.446 1.824 1.000 0.421
Zambia 4 29 139 0.06 0.437 3.385 0.999 0.940
Zimbabwe 4 38 139 0.09 0.804 3.669 0.858 3.994

Plot Area

OM: The oder of magnitude; GHSI: Global Health Security Index; n: Sample size; d*: Euclidean test (d* or d-factor);
m: Chebyshev Distance Test or M-statistic; w: Weighted Maximum Statistic; x2: Chi-square test.

.’q___&

s

Figure 1. COVID-19 data conformity to BL worldwide.

Seven countries failed to comply with BL based on all tests. These countries are Iraq,
Belarus, Dominican Republic, Chile, Iran, Colombia, and Pakistan. We confidently rejected
the null hypothesis for these jurisdictions. Fifty-one jurisdictions (52%) passed the x?,
Chebyshev Distance, and Euclidean Distance tests. Chebyshev Distance test red-flagged
Iraq, Chile, and Iran (2.81 < m < 3.77). Seventeen (83%) countries passed the test according
to the Chi-square results. Belarus, Iraq, Pakistan, and Russia showed the largest distance to
BL accordingly (x> > 55; p < 0.001). Our findings are overwhelmingly consistent with prior
research, including equivalent conclusions for the stated jurisdictions [3,13].

Other notable countries that fully conformed to BL are Australia, Israel, the United
Kingdom, the United States, and Spain. It is noteworthy to emphasize that the null
hypothesis can be overwhelmingly confirmed for these countries. Spain showed the
smallest distance to BL frequencies based on at least two measures and disclosed the
highest BL conformity (see Figures 2 and 3).



COVID 2022, 2

480

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0.000

0.400

0.350

0.300

0.250

0.200

0.150

0.100

0.050

0.000

BL

o == Chile

e
2 3 4 5 6 7 8 9
-------- Iraq Belarus = = = = Dominican_Republic
e «= e]ran @ (Colombia emm— P akistan

Figure 2. Countries with the lowest level of compliance with BL.

Figure 3. All countries with acceptable compliance with BL.

The territorial score of BL conformity is constructed as the logarithmic sum of all
goodness of fit results. The logarithmic sum made the scores more comparable and removed
the effect of outliers in ranking (see Equation (6)). This approach allows plotting the BL
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results via a global map, cf. Figure 1. Higher scores intensify the color of the countries.
Territories that are not highlighted were intentionally excluded from the analysis.

n
Z M;, w;, Xir 1) (6)
i=1

4. Conclusions

Two years after the COVID-19 outbreak, can we rely on the pandemic data published
by countries worldwide? It is commonly accepted that the number of cases by country of al-
most any type of infectious diseases reported to the WHO follow Benford’s law. Researchers
have conducted multiple studies worldwide, addressing the conformality of pandemic
data to Benford’s law. Today, we better understand pandemic growth and the emergent
data from territories worldwide. Societies and politicians initiate local countermeasures
against the epidemics and mobilize policies based on evidence-based data. However, can
the world rely on the COVID-19 data?

To answer this crucial question, researchers recurrently applied multiple statistical
tests to examine respective data quality. In our eyes, these papers are inconsistent and,
to some extent, misleading. Rudimentary application of cumulative incidents of new
cases and new deaths, problematic use of goodness-of-fit tests, and lack of attention to the
detailed data quality may have created contradictory results.

We collected pandemic data disclosed by 201 countries. To improve the accuracy
of the measurements, our sample was focused on cases that showed a significant order
of magnitude of at least four. We operationalized four statistical tests. In prior research,
Chi-square, M-statistics, and d-factor were commonly used [2,4,11]. This study confirmed
that up to 48 countries did not adhere to BL after two years. For the most part, our
outcomes are in agreement with prior research [3-10]. The United States, United Kingdom,
Australia, and most European countries demonstrated BL conformity by satisfying at least
two goodness-of-fit tests. Spain and Israel overwhelmingly revealed compliance with
the law.

Once countries experience rapid growth of new COVID-19 cases, they tend to demon-
strate shrinking conformity to the common law of leading digits. This behavior was
extensively studied, empirically tested, and reported in earlier research [9,11]. BL con-
formity works well for data originating from phases of progressive growth along the
logistic curve [6,9,13].

The most significant irregularities occurred in Iran, Belarus, Chile, and Iraq. These are
socially and economically distressed countries under challenging public health conditions
and therefore demonstrate the poor conformity of pandemic data to BL. These findings
affirm that the leading violators of the BL in previous studies exhibited similar behaviors.
In previous studies, Belarus and Iran—the leaders in BL violations—showed the greatest
distance to BL frequencies. COVID-19 has exacerbated existing and, in some cases, deep-
rooted political, economic, social, and security problems in these countries.

In early 2020, Belarusian President Alexander Lukashenko denied the threat of Coron-
avirus in his country [32]. He called on people to go to work in the fields and ride tractors
in order to get rid of the infectious disease. In the case of Iran, the British news channel
BBC reported in August 2021 that the number of deaths and new cases in Iran was almost
triple and double the official figures [33]. In 2020, the Washington Post released satellite
images of mass graves for Coronavirus casualties in Qom, the main hub of the outbreak
in Iran [34]. At the same time, WHO confirmed that the actual figures on the COVID-19
spread out of Iran must be five times higher than the official numbers made public by
the government [35].

Johns Hopkins University (JHU) studied national health care systems and policies
in the context of epidemics [36]. In an extensive study conducted for the first time in
2019—the Global Health Security Index (GHSI)—JHU identified the highest scores for

“early detection and reporting for epidemics of potential international concern” for the



COVID 2022, 2

482

countries with significant BL conformity, such as the US (ranked 1), Australia (ranked 2),
the UK (ranked 6), Germany (ranked 10), or Spain (ranked 11). Later in 2021, JHU shared
its 2021 GHSI report. In this context, we replicated Farhadi’s and Farhadi and Lahooti’s
approach [3,11] based on 2019 and 2021 GHSIs. In a further effort, we operationalized
Pearson’s product-moment correlation analysis to explore potential relationships between
the GHSI scores and the goodness-of-fit tests applied here. A preliminary examination of
statistics was conducted to ensure no violation of normality, linearity, and homoscedasticity
assumptions occurred. We identified negative correlations between the GHSI scores and
Chi-square statistics (r: —0.27, n: 98, p < 0.001) in 2019 and (r: —0.23, n: 98, p < 0.001) in
2021, which suggest moderate and weak relationships among the variables respectively.

Disobeying BL does not indicate fraud by default [3-11]. Irregularities with BL show
the distance between observed and expected leading digits’ frequencies only. This may
pertain to varying national public health policies and boundaries in capacity management
or poor reporting. The Coronavirus mainly affects frail or immunocompromised people.
The situation can worsen when new variants of the deadly virus accelerate to spread
worldwide. For instance, the new variant, Omicron, affects the elderly, adolescents, and
even children [37]. While the new variant has a very high transmission rate, it does not
cause severe diseases like the previous variants. Young people infected with Omicron
may develop mild flu-like symptoms, and after a few days, they recover from the illness.
Perhaps, they do not bother to report positive test results from rapid antigen tests to
health authorities. This may have a hidden impact on incident reporting, especially in
territories severely affected by the virus. We recommend establishing global governance
over pandemic data to effectively address these issues. Access to reliable data is vital in the
fight against submicroscopic infectious organisms.

5. Future Research

Our study found substantial problems with the quality of prior BL research into
COVID-19 worldwide. It is of particular importance to evaluate these studies and define
the essential criteria for Benfordness analysis. To address the national issues with BL
accurately, one shall further examine countries” economic, political, and social issues. In
the case of the red-flagged countries, we still need to understand the domestic healthcare
processes and epidemic reporting policies. The authors recommend replicating the BL
assessment in a later re-examination.

6. Limitation

The data collected in our study are affected by diverging public health systems and
policies. Lack of common and shared practices in reporting epidemic incidents globally,
particularly in developing countries, might have affected the quality of COVID-19 reports
and thus caused noncompliance with BL. Furthermore, the emergence of new variants of
Coronavirus, such as Omicron, in connection with extensive vaccination programs, may
have also affected the pandemic growth and the BL conformity, testing processes, and
policies. Although we know that Benfordness decreases as the growth factors of daily
incidence flatten, the phenomenon is still poorly understood.
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