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Abstract: The structure and phenomena arising from charge transfer in cold field emission mode
in a single closed carbon nanotube (CNT) under cold field emission conditions are studied. Inho-
mogeneities of the structure of CNT in the form of two types of superlattices are found by studying
microphotographs obtained by AFM, SEM, and TEM. The features of charge transfer in a quasi-one-
dimensional carbon nanotube emitter with a small gap between the anode and cathode are studied
under conditions of low-voltage field emission. It is established that the I-V characteristics reveal
voltage thresholds and resonant peaks, which are associated with the opening of conduction channels
in the region of van Hove singularities. In the region of peaks in the I-V characteristics, the emission
current exceeds the one calculated using the Fowler–Nordheim (F-N) function by one to three orders
of magnitude. The I-V characteristic is not that the curve straightens in F-N coordinates. It is found
that the peaks in the I-V characteristics have distinct regions of negative differential conductivity.

Keywords: carbon nanotubes (CNTs); cold field emission of electrons; Fowler–Nordheim law;
current–voltage characteristic (CVC); pointed cathodes; negative differential conductivity; van Hove
singularity; superlattice

1. Introduction

Experimentally, carbon nanotubes (CNTs) were discovered in 1991 by Iijima [1] and
almost simultaneously and independently in [2,3]. First, CNTs were discovered as multi-
walled carbon nanotubes (MWCNTs). The existence of single-walled carbon nanotubes
(SWCNTs) was experimentally proved in 1993 [4,5]. Cold field emission (CFE) from
carbon nanotubes was discovered in [6] and after this was extensively studied, see, for
example, reviews [7,8] and the literature cited therein. The CFE phenomenon is very inter-
esting from the viewpoint of fundamental science and consistently attracts the interest of
researchers [6–11]. CFE from CNTs makes it possible to study the features of the work
function and transport under field emission conditions for individual 1D objects and their
arrays. Individual CNTs are actually large single molecules, which demonstrate field
emission in the case of ballistic transport [12,13]; see the review [14] and the literature
cited therein.

CFE from CNTs is also of great practical interest, since high-efficiency cathodes can be
created on the basis of CNTs, which open up the possibility of developing a new generation
of microwave and THz components for micro- and nano-solid state and vacuum electronics,
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including generators, detectors, etc. [7,8,14–20]. The emission of single electrons from
individual CNTs makes it possible to create single-electron devices, which are necessary
for quantum technologies [21–23]. Miniature X-ray sources based on CNTs have also been
created [7,8,23–26].

Cathodoluminescence from CNTs in the optical range was observed in [27]. On the
basis of cathodoluminescence, it is possible to create both conventional light sources and
flexible screens. It is also suggested [28–32] that CNT-based probes for different scanning
microscopes such as atomic force (AFM) [28] make it possible to create scanning tunneling
microscopes (STMs) [29–31]. Due to the high density of the emission current and the
small size of the emission region, these microscopes can increase the spatial resolution
and image brightness. The CNT size makes it possible to scan by AFM deep and narrow
depressions on the sample surface, which is impossible for conventional probes [28,29].
The next application is vacuum meters based on CNTs [33].

The CFE performance of a single isolated CNT can be evaluated as remarkable. This
is due to the structural integrity, high thermal conductivity, and geometry of CNTs. It
should be noted that it is possible in principle to miniaturize all devices based on cold
field emission using CNTs. Many advantages of CNT-based cathodes are due to the high
aspect ratio of CNTs; hence, the electric field strength in the vicinity of the CNT tip can
be hundreds of times higher than the volume-average electric field strength generated
by an external source. Another important advantage of CNTs is their chemical inertness
and high mechanical strength. CNT-based cathodes have high efficiency, including energy
efficiency and short turn-on time. However, field cathodes based on CNTs also have a
number of disadvantages, the main of which being their fragility. The first studies of
field emission from CNTs showed anomalously low voltages at which field emission is
observed [6–8]. Despite great interest and numerous studies, there is still no complete
understanding of the mechanism of cold field emission from CNTs. The emission currents
were one or two orders of magnitude higher than it follows from the Fowler–Nordheim
(F-NT) equation [34–40]. The main theory of CFE from CNTs, as well as field emission
from the metals, is the Fowler–Nordheim theory, which was developed for bulk metal
cathodes [22] and its various modifications [7,8,35–38].

Thus, the fundamental question of the nature of field emission from CNTs remains
relevant, without solving which it is hardly possible to select the optimal structure and
further develop cathodes and other devices from CNT. Most of the articles devoted to
CFE from CNTs explain the effect of anomalously low voltages at which it is observed
on the basis of various modifications of the Fowler–Nordheim theory. In order to explain
the discrepancy between the experimental data and these theories, special coefficients
are often introduced using the β-factor associated with the microgeometry of CNTs [7,8].
At the same time, there are other theories, alternative to the Fowler–Nordheim theory,
which are confirmed experimentally; moreover, they explain many new effects in CNTs
observed in the cold field emission mode. Among such theories, we should mention the
studies [41–44] in which a theory was put forward according to which the mechanism of
cold field emission from CNTs is explained on the basis of resonance tunneling of electrons
from the near-surface region of the cathode due to size quantization. Such a resonance
occurs when the Fermi level coincides with the size quantization level of a CNT [44]. It is
shown in these papers that in the case of resonant scattering, the transmission coefficient
can be significantly higher and, in the limit without a reflective potential, close to unity,
which significantly reduces the cold field emission threshold. Also noteworthy are the
works [45,46], which offer an explanation of the cold field emission mechanism based
on the Coulomb blockade. Experimentally, the Coulomb blockade manifests itself in the
steps in the I –V characteristics. In most of experimental works confirming the theory
of Fowler–Nordheim, the I–V characteristics were measured for large gaps between the
CNT and the anode (tens of microns). With such gaps, the onset of cold field emission
is observed when a voltage of several hundred volts is applied. Accordingly, the voltage
sweep when measuring the I-V characteristic is completed with steps of several tens of volts
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(>30 V) [47]. Under such experimental conditions, the I-V characteristics are satisfactorily
approximated by the Fowler–Nordheim function. At the same time, there are works in
which the I-V characteristics were measured at small gaps between the CNT emitter and
the anode (hundreds of nanometers). Naturally, to exclude the possibility of breakdown,
the applied voltages were tens of volts, and the I-V characteristic sweep was made in steps
of several tens of millivolts; see, for example, [48,49]. In these works, only the general
character of the I-V characteristic envelope is well approximated in Fowler–Nordheim
coordinates; however, peak-like features are observed in the I-V characteristic. When
measuring the I-V characteristics with a voltage sweep in steps of several tens of volts,
these features may simply remain unnoticed, in particular, due to a too large sweep step.
Thus, further refinement of the nature of I-V characteristics is necessary to elucidate the
mechanism of cold field emission from CNTs.

In this regard, in the present work, we measured the I-V characteristic in the cold
field emission mode for single CNTs at small gaps between the anode and CNT. The I-V
measurements were carried out at a voltage sweep with a step of 20–30 mV. In this mode,
it is possible to detect details of the I-V characteristics that would not be noticed in studies
with a large step. The present studies were carried out on closed single CNTs in order to
exclude the influence of CNTs on each other and the collective effects of many CNTs. The
resonance peaks found in the present work are explained using a model involving Van
Hove singularities.

2. Materials and Methods

The synthesis of CNT arrays was carried out by electron-beam evaporation of high-
purity 99.99% reactor graphite in a vacuum of 10−5 Torr at room temperature on a substrate.
The arrays of CNTs obtained by this procedure were the result of deposition of carbon
atoms on the surface of the substrates. The substrates were mirror polished silicon, quartz,
anodized aluminum, graphite, and ceramics. The CNT layers deposited on a silicon
substrate are a mixture of multiwalled CNTs with a diameter of 3 to 5 nm and single-walled
CNTs with a diameter close to 1.1 nm. Layers deposited on a quartz substrate consist mainly
of single-walled CNTs with a diameter close to 1 nm. The procedure of synthesis was
described for the first time in [2,6]. Individual CNTs were fabricated by the discharge-arc
method by depositing carbon on wire electrodes made of tungsten, nickel, and platinum.
The discharge-arc method is based on the thermal sputtering of a graphite anode in an arc
discharge plasma burning in a helium atmosphere. The sputter products are deposited on
the chamber walls and on the cathode surface (up to 90%). A single CNT synthesized by the
arc method was fixed on the top of a needle-shaped volumetric cathode made of tungsten
or steel, which, in turn, was attached to the microscope stage with conductive paste.

Microscopy Measurements Methods

The AFM measurements were carried out using a “Nanoscan” scanning probe microscope.
A piezoceramic resonator with high bending stiffness of the cantilever k ≈ 104–105 N/m and a
resonant frequency f0 of about 12 kHz was used as a probe. A trihedral diamond pyramid
with an apex angle of about 60◦ was used as a needle; the effective rounding radius of the
tip of the needle was about 100 nm. A needle with a sufficiently large radius of curvature
was chosen, which made it possible to measure precisely the macroscopic characteristics
of the sample with averaging over a region of the order of tens of nanometers. The study
of SEM images was carried out using a 1540 XB Crossbeam Neon40EsB SEM, Carl Zeiss,
Jena, Germany. All SEM images were taken at an accelerating voltage of 20 kV using a
secondary electron detector. STM images were obtained using a Scan-8 scanning tunneling
microscope in two modes: (a) in the dl/dZ regime, by changing the tunneling current; in
this geometry, the sample was located in the X, Y-plane, with Uconst = 0.27 V, and a step
size of 0.1 nm, and (b) in the I regime, with Iconst = 500.0 PA, with a step size of 0.8 nm.

Experimental studies of the charge transfer features were performed on the circuit
of a nanotube emitter. The diode cell for measuring the emission characteristics of CNTs
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was assembled in a NEON 49 Carls Zeiss scanning electron microscope. This SEM is
additionally equipped with an ion microscope column and Kleindiek micromanipulators
with electrodes as well as two SE-2 optical sensors with a spectral range from 1720 to
760 nm. The cathode emitters for the experiments were various single CNTs with diameters
from 2 to 14 nm and a length of about 1 µm. The acicular bulk conductive cathode, in
turn, was attached to the SEM table with a conductive paste. A pointed tungsten electrode
manipulator of a microscope with a diameter of∼ 0.5 mm sharpened to 100–200 nm served
as the anode. The use of a micromanipulator made it possible to set the gap between the
tungsten anode and the tip of the CNT emitter in the range from several hundred nm to
1 µm. The scheme for measuring the current–voltage characteristics (I-V characteristic)
of nanodiodes is shown in Figure 1. This scheme makes it possible to reverse the signs
on the electrodes and carry out measurements in the voltage sweep mode with a step of
0.02 V. In order to avoid a short circuit in the microscope chamber and heating of the
electrodes, the scheme provided a voltage and a current limit. At micron gaps between
the electrodes, the voltage did not exceed 30 V. At gaps of several tens of microns, the
voltage could be increased to 200 V. In any case, the current did not exceed 1 µA. If it
was necessary, a current sweep could be carried out. The measured values of voltage and
current were displayed on the screen in the form of I-V characteristics. Thus, we were
able to track the change in the current and voltage between the CNT and the opposite
electrode and, simultaneously, to observe all the changes occurring in the diode system by
the SEM. Electron-microscopic control of the electrode with CNTs and the opposite tungsten
electrode was carried out before and after the measurement of the I-V characteristics.
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Figure 1. Scheme of measurements of the I-V characteristics of nanodiode samples based on CNTs in
the SEM chamber.

The measurements of I-V characteristics in an electrostatic field were carried out with
a voltage sweep with a step of 30 mV, which was set by a highly stable programmable
Keithley 2400 source with an error of at most + 5 µV. The measurements of the direct
emission current and voltage in the emitter circuit were carried out with an error of +10 PA
and 1 µV, respectively.
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3. Experimental Results
3.1. Experimental Studies of the Structure of CNTs

SEM micrographs of a diode section with single CNTs are shown in Figure 2a, and
those of the array of CNTs are shown in Figure 2b. The structure of the samples of closed
CNTs was studied by various microscopes—atomic force microscope (AFM), SEM, and
STM. The study of the structure of the CNTs by all microscopes shows that the CNTs are
closed; see also [2,6].

Micro 2023, 3, FOR PEER REVIEW 5 
 

 

 
Figure 1. Scheme of measurements of the 𝐼 − 𝑉 characteristics of nanodiode samples based on CNTs 
in the SEM chamber. 

3. Experimental Results 
3.1. Experimental Studies of the Structure of CNTs 

SEM micrographs of a diode section with single CNTs are shown in Figure 2a, and 
those of the array of CNTs are shown in Figure 2b. The structure of the samples of closed 
CNTs was studied by various microscopes—atomic force microscope (AFM), SEM, and 
STM. The study of the structure of the CNTs by all microscopes shows that the CNTs are 
closed; see also [2,6]. 

 
(a) 

Micro 2023, 3, FOR PEER REVIEW 6 
 

 

 
(b) 

Figure 2. The samples of CNTs studied in SEM. (a) SEM image of the single CNT in the scheme for 
measuring its current–voltage characteristic (𝐼 − 𝑉  characteristics) on a nanodiode mock-up. 1—
nanotube emitter, 2—cathode, 3—tungsten microwire anode. The CNT length is 710 𝑛𝑚; the dis-
tance to the anode is 873 𝑛𝑚. (b) The array of the oriented CNTs. 

Micrographs of diode structures of closed CNTs were obtained by AFM, SEM, and 
STM on the diode circuit with the CNT cathode, anode, and vacuum gap in the cold field 
emission mode (CFE). Structural inhomogeneities in closed CNTs were studied in situ un-
der conditions of CFE for the diode scheme shown in Figures 3–6. 

 
Figure 3. Micrographs of CNT samples obtained in SEM. An SEM image of CNTs that have different 
types of large-scale lattice deformations defined with the letters “a”, “b”, “c”, and “d” on the figure. 

Figure 2. The samples of CNTs studied in SEM. (a) SEM image of the single CNT in the scheme
for measuring its current–voltage characteristic (I-V characteristics) on a nanodiode mock-up.
1—nanotube emitter, 2—cathode, 3—tungsten microwire anode. The CNT length is 710 nm; the
distance to the anode is 873 nm. (b) The array of the oriented CNTs.
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Micrographs of diode structures of closed CNTs were obtained by AFM, SEM, and
STM on the diode circuit with the CNT cathode, anode, and vacuum gap in the cold field
emission mode (CFE). Structural inhomogeneities in closed CNTs were studied in situ
under conditions of CFE for the diode scheme shown in Figures 3–6.
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Figure 6. SEM image of a nanodiode in secondary electrons. 

Figure 4. AFM image of CNT superlattices obtained at external electric field Ug = 0.

Figure 3 shows SEM micrographs of CNT samples with different types of lattice
deformations, which are indicated by letters “a”, “b”, “c”, and “d”.

Figure 4 shows the AFM image of CNT superlattices at Ug = 0. Figure 5 shows
mi-crographs of the superlattices detected in single CNTs in SEM (5a), AFM (5b) and STM
(5c) images. During this study of micrographs in Figure 5a,b and Figure 6, the external field
was directed along the CNT, and in Figure 5c, the external field was directed across it.

The superlattice shown in Figure 5a revealed a period of about 30–40 nm. In Figure 5b,
one can see the AFM image of a CNT superlattice (period of ~30–40 nm). The emission
current also flows along the CNT. Figure 5c shows the STM micrograph of a superlattice in
CNTs with a period of about 3 nm. The applied electric field is perpendicular to the CNT
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axis. Figure 6 shows an SEM image of a nanodiode in secondary electrons of CNTs with a
superlattice with a period of ~30–40 nm.
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image of a CNT superlattice (period∼ 30–40 nm). The emission current flows along the CNT. (c) STM
micrograph of a superlattice in CNTs (period T~3 nm). The applied electric field is perpendicular to
the CNT axis. Current I = 1.25 nA, U = 0.27 V.
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3.2. Experimental Studies of the Features of Charge Transfer in the Circuit of a Nanotube Emitter

Figure 7 shows an example of the SEM image of one of the diode structures with a
single CNT deposited on a tungsten electrode.

The CNT length was approximately 700 nm. In the experiments, the CNT diameter
was about 14 nm. The distance between the tip of the nanotube and the tungsten counter
electrode was at least 0.5 µm. Figure 8a,b show some of the obtained I-V characteristics.
Figure 8a shows the I-V characteristic plotted in I-V coordinates, and Figure 8b shows the
I-V characteristic plotted in log

(
I/U2)− 1/U coordinates or Fowler–Nordheim coordinates.

The dotted line is a straight line corresponding to the Fowler–Nordheim function. Based on
these experimental data, we estimated the electron work function ϕ and the electric field
gain at the tip of the free end of the nanotube β. The threshold voltage of the beginning of
the emission Vthr obtained from Figure 8b is 1.079 V. The parameter (R2) for fitting to the
Fowler–Nordheim function in Figure 8 is about 0.47.
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nanotube in a transverse electric field is similar to a semiconductor superlattice. That is, 
in this case, the size of the superlattice inhomogeneities observed in our experiments in a 
field perpendicular to the CNT axis coincides in order of magnitude with the inhomoge-
neities observed in our experiments. 
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served on the 𝐼 − 𝑉 characteristic. In the region of peaks, the emission current exceeds by 
one to three orders of magnitude the calculated one using the Fowler–Nordheim (F-N) 
function, and there are also smaller peaks. The 𝐼 − 𝑉 characteristics with resonance peaks 
are not rectified in F-N coordinates. In general, the 𝐼 − 𝑉 has nonlinear characteristics. The 
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tens of millivolts to tens of volts. Figure 8b shows the 𝐼 − 𝑉  characteristics in Fowler–
Nordheim coordinates, and the threshold of the beginning of emission 𝑈௧௛௥  is clearly 

Figure 8. I-V characteristic of the field emission measured on the nanodiode model (a) and the
corresponding graph plotted in log

(
I/U2)− 1/U coordinates (b). The dotted line is a straight line

corresponding to the Fowler–Nordheim function. V threshold is 1079 Vthr.
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4. Discussion

Superlattices in CNTs have been theoretically and experimentally considered in many
works, for example, [50–53]. In [50], the elastic free energy of CNTs grown by the iron-
catalyzed decomposition of acetylene was theoretically considered to provide the equilib-
rium shape of slightly curved CNTs. Equilibrium forms have been found for both stable
and metastable cases. All of the found equilibrium forms are deformation superlattices,
which were observed in the experiments of the authors of [50]. As suggested in this work,
the deformations are caused by fluctuations in the growth conditions, such as pressure,
temperature, and vapor composition. Also in our experiments, the results clearly show
the presence of deformations along the CNT length. See Figure 3, which could also be
caused by growth conditions. Superlattices in an electric field perpendicular to the CNT
axis were theoretically considered in [51]. In this paper, the motion of an electron in a CNT
carbon nanotube (n, 1) is considered as a de Broglie wave propagating along a helix on
the nanotube wall. It is theoretically shown that this motion leads to periodicity of the
electron potential energy in the presence of an electric field normal to the nanotube axis;
the period of this potential is proportional to the nanotube radius and greater than the
interatomic distance in the nanotube. As a result, the behavior of an electron in an (n, 1)
nanotube in a transverse electric field is similar to a semiconductor superlattice. That is, in
this case, the size of the superlattice inhomogeneities observed in our experiments in a field
perpendicular to the CNT axis coincides in order of magnitude with the inhomogeneities
observed in our experiments.

Figure 8a,b shows the CNT’s I-V characteristics in the course of the cold field emission.
It has been established that the voltage has thresholds, and resonant peaks are observed on
the I-V characteristic. In the region of peaks, the emission current exceeds by one to three
orders of magnitude the calculated one using the Fowler–Nordheim (F-N) function, and
there are also smaller peaks. The I-V characteristics with resonance peaks are not rectified
in F-N coordinates. In general, the I-V has nonlinear characteristics. The graphs clearly
show the absence of the current saturation in the measurement region. The width of the
resonant peaks increases with increasing the applied voltage from several tens of millivolts
to tens of volts. Figure 8b shows the I-V characteristics in Fowler–Nordheim coordinates,
and the threshold of the beginning of emission Uthr is clearly visible and Uthr = 1079.
It is noted that the voltage sweep step is of decisive importance for the detection of I-V
characteristics peaks. Thus, at a voltage sweep step of several millivolts, the first resonance
peak, the threshold for the onset of emission, was observed at a field strength between the
anode and cathode of the order of 1 V/µm.

When the step was increased by an order of magnitude, the Uthr threshold was in the
region of 10 V/µm. However, there have been cases where Uthr was as low as 0.36 V, which
is many times lower than the work function measured by the photoelectric effect.

On the I-V characteristics with peaks, regions of negative differential conductivity
(NDC) are clearly visible. Thus, from the above I-V characteristics and its comparison with
the Fowler–Nordheim model, it can be seen that in the regions of high and low currents,
there are significant deviations from the theory in the framework of the Fowler–Nordheim
model.

In [51,54–56], taking into account the quantum nature of the electron spectrum and
high aspect ratio, it was shown that the emission current j1D(E) from a one-dimensional
emitter CNT through a potential barrier into vacuum is described by the following equation:

j1D =
2e0

h3 ∑
n=1, 2...

∗ ∑
m=1,2...

∗
px, m, n∫
px=0

N(ε)D(εx)
∂ε

∂px
dp, (1)

where

N(ε)α

ϑ(ε− εFm,n)√
ε− εFm,n

;
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Here, N(ε) is the CNT electron density depending on electron current energy ε related
to the momentum component p along the nanotube X axis, Θ is the Heaviside function,
which is equal to Θ for x > 0 and Θ = 0 for x < 0, D(ε, x) is the potential barrier trans-
parency, h is Planck’s constant, e0 is the electron charge, εm,n are the energies corresponding
to band breaks near Van Hove energy singularities, and m, n are integer sub-band numbers
corresponding to Van Hove singularities.

The appearance of van Hove singularities in CNTs was first experimentally shown
in [54] and then in other works [55,56]. Since there are Van Hove singularities at energies
corresponding to the quantum levels of CNTs, this property manifests itself as resonant
conductivity peaks in the I-V characteristics, and in the F-N coordinates (ln(j/U2)− 1/U)
the I-V characteristic will be a straight line with a kink at the Van Hove points. According
to [54,55], the observed peaks may correspond to the features of the density of states at
Van Hove energies for CNTs. The graphs show significant deviations from linearity and
the absence of current saturation, which indicates a fundamentally different field emission
mechanism than F-NT.

Cold field emission from CNTs can be significantly affected by periodic inhomo-
geneities in the structure of CNTs, including superlattices. The appearance of a periodic
superlattice in the case of one-dimensional systems leads to the splitting of the energy
bands into a set of sub-bands [57,58], and energy gaps are opened at the center and at
the edges of the Brillouin zone, which can have a significant effect on the CFE. In general,
the emergence of periodic inhomogeneities, primarily superlattices, can play a significant
role in the features of many CNT properties, including the transport properties and the
mechanism of cold field emission. There are not only large peaks but also small peaks in
the I-V characteristics, which create sub-bands in the band structure of CNT, and these
sub-bands due to the same mechanism cause smaller Van Hove singularities and smaller
amplitude peaks.

Superlattices arising in nanowires and nanotubes attract significant attention from
scientists, see, for example, [59] and the literature cited therein. It should be noted that there
is a fundamental difference between superlattices purposefully created during the synthesis
of nanowires and nanotubes, which are discussed in the cited work, and superlattices that
arise as a result of structural transformation in nanowires and nanotubes, which were
grown as homogeneous nano-objects.

For the first time, superlattices were experimentally discovered and theoretically
predicted in [50], where it was found that a modulated equilibrium or quasi-equilibrium
form of CNTs grown by the iron-catalyzed decomposition of acetylene can have various
deformations, which are superlattices. That is, superlattices have also been found in the
studied closed CNTs grown in a different way but also with existing deformations.

In these works, as well as in [60], superlattices were observed along the CNT axis.
The appearance of superlattices in a field perpendicular to the CNT axis was theoretically
predicted in [51]. Later, superlattices in CNTs were experimentally observed by SEM in [61]
and also in the works by the same group of authors [62–64]. The authors of [61–64] associate
such superlattices with ordered associates of CNTs. According to the authors of [61–64],
this can lead to a significant change in the electronic structure of weakly interacting CNTs
that form a regular associate. According to these works, such effects can be understood if
we take into account that all electronic states in an ensemble of parallel interacting CNTs are
collectivized. With respect to different tubes, the electronic wave functions have the form of
standing waves, whose distributions of nodes and antinodes correspond to the brightness
distributions of images of individual CNTs. Hence, it follows that even in the case of
sufficiently weak exchange bonds between individual CNTs, their electronic structure can
undergo qualitative changes. For example, in an ensemble of metallic CNTs, some of them
can acquire semiconductor properties [63]. Also, the appearance of superlattices in CNTs
was theoretically considered in [51,52,58].

The experimental results of the present work confirm the observation of superlattices
in CNTs. It should be noted that the data on superlattices obtained here were performed
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for a nanodiode structure with CNTs consisting of a cathode with CNTs, an anode, and a
vacuum gap: that is, in a different scheme than in the works cited above. This may indicate
the possible universality of superlattices in CNTs.

The appearance of peaks in the I-V characteristics in cold field emission mode with
CNTs as emitters was also found in [48,49] at small distances between a CNT and cathode
in [23,48,49] and in [64,65] at larger distances between a CNT and cathode.

5. Conclusions

The experimental data obtained testify to the observation of anomalies in the form of
peaks on the I-V characteristic of cold field emission in closed CNTs with the appearance
of negative differential conductivity at low and high currents and a significant deviation
both from the linearity of the I-V characteristic and from the Fowler–Nordheim law. Also,
it is found that there is no current saturation. The observed peaks, as the authors suggest,
are associated singularities in the density of electronic states of CNTs near the Van Hove
energies of CNTs. Negative differential conductivity near these peaks can be a promising
basis for creating microwave generators based on cold field emission from CNTs. On the
basis of cold field emission from CNTs, it is possible to create microdevices, such as vacuum
microtube sources, microtriodes and many other microdevices for the components for new
generations of quantum vacuum microelectronics [66,67]. On the other hand, cold field
emission from single CNTs can make it possible to create single nanodevices, for example,
individual nanodevices for single electronics, sub-10 nm electron beam lithography, and
atomic resolution electron microscopy [23].

Finally, two types of superlattices were found in closed CNTs under conditions of
cold field emission. First, there is a large-scale one, which occurs when current flows along
the axis of the CNT; this superlattice is presumably caused by the periodic deformation of
CNT walls and has a characteristic period of approximately 30–40 nm. Second, there is a
small-scale superlattice with a characteristic period on the order of 2–3 nm, which appears
when the field is applied perpendicular to the CNT axis. The discovered superlattices can
influence the mechanisms of cold field emission in closed CNTs and the deviations from
the Fowler–Nordheim law in closed CNTs. Further studies are needed to fully understand
the mechanisms of the emerging structural inhomogeneities.
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