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Abstract: Sinapic acid, 3,5-dimethoxyl-4-hydroxycinnamic acid, belonging to the class of hydroxycin-
namic acids, shows antioxidant, anti-inflammatory, anticancer, hepatoprotective, cardioprotective,
renoprotective, neuroprotective, antidiabetic, anxiolytic, and antibacterial activity. The aim of this
work was to incorporate sinapic acid into solid lipid nanoparticles in order to improve its bioavail-
ability. SLNs were prepared using the hot high-speed homogenization method. The pharmaco-
technological properties and thermotropic profile of SLNs encapsulated with sinapic acid, as well
as their interaction with biomembrane models, were evaluated. SLNs showed promising physico-
chemical properties and encapsulation efficiency, as well as a desirable release profile; moreover, they
facilitated the interaction of sinapic acid with a biomembrane model made of multilamellar vesicles.
In conclusion, this formulation can be used in further studies to assess its suitability to improve
sinapic acid activity.
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1. Introduction

Sinapic acid, 3,5-dimethoxyl-4-hydroxycinnamic acid (Figure 1), belongs to the class of
hydroxycinnamic acids (specifically, the subclass of phenolic acids. These compounds have
radical-scavenging activity, represented by the ability to donate an electron to neutralize free
radicals (reported to be responsible for oxidative stress) [1]. Among other hydroxycinnamic
acids, according to in vitro noncellular studies (DPPH assay), caffeic acid and ferulic acid
exhibit similar properties to sinapic acid [2].
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Figure 1. Chemical structure of sinapic acid.

Sinapic acid is abundantly found in different plant species, e.g., strawberries and
cranberries, as well as cereals and vegetables; it is one of the most common compounds in
the Brassicaceae family. Data found in the literature show that sinapic acid possesses antiox-
idant and anti-inflammatory properties [3], as well as anticancer [4], hepatoprotective [5],
cardioprotective [6], renoprotective [6], neuroprotective [7], antidiabetic [8], anxiolytic [9],
and antibacterial activity [10]. A review of the pharmacological and therapeutic applications
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of sinapic acid was recently published by Pandi et al. [11]. Sinapic acid exists in nature in
free form, in ester form, or conjugated with a sugar (glycoside). Some esterified derivatives
of sinapic acid such as sinapine, 4-vinylsyringol, and syringaldehyde have also exhibited
acetylcholinesterase-inhibitory, antimutagenic, and antioxidant activity, respectively [11].
In [12], it was observed that esterification of sinapic acid decreased its bioavailability [13]
and made it a substrate of esterase enzymes, located in the small intestine and colon; its
hydrolysis yields the free form that is subsequently adsorbed. Although esters of sinapic
acid possess lower antioxidant activity than the free molecule, the lipophilicity of these
compounds is increased, ensuring a greater affinity for the lipophilic phase of certain drug
delivery systems and, most importantly, the cell membrane [14].

Solubility can be a parameter that influences drug bioavailability [15]. Phenolic acids
are often poorly soluble [16], and it has been reported that sinapic acid is the least soluble
among hydroxycinnamic acids (caffeic, ferulic, o-coumaric, m-coumaric, and p-coumaric
acids) [17]. Accordingly, it is possible that poor solubility and, thus, low bioavailability
could limit the potential therapeutic effect of sinapic acid. With this in mind, studies
have been conducted to improve the solubility of sinapic acid. Cocrystals of sinapic acid
with nicotinamide were obtained in [18]. The inclusion of sinapic acid in hydroxypropyl-
cyclodextrin improved its solubility [19]. Many phenolic compounds are poorly absorbed
and are metabolized into inactive forms, resulting in low blood concentrations [20]. Thus,
the encapsulation of sinapic acid in solid lipid nanoparticles (SLNs) could solve problems
related to its low solubility and rapid metabolism, thus achieving a better therapeutic
potential as a function of a slow, protected release of the molecule on cellular substrates.
In this study, sinapic acid was encapsulated in SLNs, colloidal carrier systems that find
use not only in the pharmaceutical, but also in the cosmetic field [21]. SLNs are produced
using lipids which are in a solid state at room and body temperature, as well as various
surfactants. SLNs offer different interesting properties such as a small size (50–1000 nm)
and huge surface area [22]. Compared to other drug delivery systems, SLNs possess
advantages such as excellent biocompatibility, thanks to the employment of GRAS lipids,
modulation of drug release over time, drug targeting, and protection of active compounds
from degradation reactions [23,24]. Natural active compounds have been successfully
encapsulated in SLNs [25,26]. Several techniques have been developed for the production
of SLNs, e.g., high-pressure homogenization (HPH) by Muller et al. and the microemulsion
technique by Gasco. The aim of this work was to evaluate the pharmaco-technological
properties and thermotropic profile of SLNs encapsulating sinapic acid, as well as their
interaction with biomembrane models. These results could be useful for subsequent studies
related to the prevention and treatment of many disorders whose development is associated
with oxidative stress.

2. Materials and Methods
2.1. Materials

Cetyl palmitate was obtained from A.C.E.F S.p.a (Piacenza, Italy). Sinapic acid (SA,
purity up to 98%) and Tween®-80 were obtained from Sigma-Aldrich (Milan, Italy). Dimyris-
toylphosphatidylcholine (DMPC) was purchased from Genzyme (Liestal, Switzerland).

2.2. Preparation of SLNs

SLNs were formulated using the hot high-speed homogenization (HSH) method [27].
The lipid phase containing cetyl palmitate (166.8 mg) was warmed at 80 ◦C; the same
temperature was used to heat the aqueous phase consisting of water (up to 20 mL) and
Tween-80 (66.8 mg), whereby the latter was slowly added to the lipid phase under agitation.
The obtained emulsion was subjected to homogenization using a high-pressure homog-
enizer (UltraTURRAX-IKA-T18-basic, IKA-Werke, Staufen, Germany) at 12,300 rpm for
10 min at 80 ◦C. SLNs were prepared as empty (SLN) or loaded with 10% w/w sinapic acid
(SLN-SA) with respect to cetyl palmitate.
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2.3. Characterization of SLNs

The particle size, polydispersity index (PDI), and zeta potential (ZP) of the nanopar-
ticles were determined at room temperature through dynamic light scattering (DLS) and
electrophoretic light scattering using a Zeta Sizer Nano-ZS90 (Malvern Instrument Ltd.,
Worcs, UK), equipped with a laser with a nominal power of 4.5 mW and a maximum
power of 5 mW at 670 nm. The analyses were performed using a 90◦ scattering angle at
20 ± 0.2 ◦C. The analyses were carried out for 2 months. The morphologies were investi-
gated using field-emission scanning electron microscopy (FE-SEM; ZEISS SUPRA 55 VP;
White Plains, NY, USA). All FE-SEM images were recorded at an operating voltage of 10 kV
with a working distance of 5.5 mm, using the in-lens secondary electron detector.

2.4. Encapsulation Efficiency

Two different methods were used to calculate the encapsulation efficiency.
Method 1.
A dialysis membrane (Spectra/Por Dialysis Membrane MWCO: 2.000, wet in 0.1%

sodium azide) containing 2 mL of pure water was placed inside an exact amount of sinapic
acid-loaded SLNs (SLN-SA) at 25 ◦C under stirring for 24 h. The amount of sinapic acid
that diffused through the membrane was determined spectrophotometrically (UV/Vis
Lambda 25, PerkinElmer, Frankfurt/Main, Germany) using a previously made calibration
line. The amount of sinapic acid encapsulated in the SLN was calculated as the difference
between the total amount of sinapic acid in the preparation and in the solvent [28].

Method 2.
The entrapment efficiency was determined by measuring the concentration of free

drug in aqueous medium as reported previously [29]. The aqueous medium was separated
using Vivaspin 2 Centrifugal Concentrators (Sartorius, UK) possessing a filter membrane
(MWCO 2000 Da). An exact amount of SLN-SA (whole formulation) was placed inside the
test tube and submitted to centrifugation at 5000 rpm for 30 min (Centrifuge 5804/5804
R Beckman; A-4-44). The amount of SA in the aqueous phase was determined using
a spectrophotometer (UV/Vis Lambda 25, PerkinElmer). The amount of sinapic acid
encapsulated in the SLN was determined by the difference between the total amount of
sinapic acid used and that present in the solvent [30].

2.5. In Vitro Drug Release

The in vitro drug release was studied using the dialysis tube method [31]. Briefly,
1 mL of SLN-SA (whole formulation) [32] was placed inside a dialysis tube (Spectra/Por
Dialysis Membrane MWCO: 2.000, wet in 0.1% sodium azide). The latter was put into a
glass beaker containing water at 25 ◦C under stirring. At predetermined intervals (from
30 min to 10 h), a 1 mL aliquot was withdrawn from the beaker and replaced with fresh
media. The amount of sinapic acid was determined spectrophotometrically.

2.6. Preparation of MLV

MLV were prepared both in absence and in presence of Sinapic Acid. The first were
used as biological membrane models to evaluate their interaction with Sinapic Acid loaded-
SLN, while the second were prepared to evaluate the effect of the compound on the
MLV’s thermotropic behavior. Solutions of 1,2-Dimyristoyl-Glycerol-3-phosphatidylcholine
(DMPC) and Sinapic Acid in chloroform/methanol (1:1, v:v) were prepared. Aliquots of
the DMPC solution as to have 7 mg of DMPC in each tube were delivered in glass tubes.
Aliquot of the Sinapic Acid solution was added to the glass tubes as to have the same
stoichiometric ratio of Sinapic Acid contained in the SLN to study the interaction between
the biomembrane model and SLN. The solvents were evaporated under nitrogen flow (in a
water bath at 37 ◦C) to obtain lipid films. Then, the samples were subjected to freeze-drying
for 3 h to remove any solvent residues. 168 µL of 50 mM TRIS solution (pH = 7.4), was
added. The samples were heated in a water bath at 37 ◦C for 1 min and vortexed for 1 min
(the procedure was repeated three times) and then kept at 37 ◦C for 1 h [33].
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2.7. DSC Analysis

Calorimetric analysis was performed using a Mettler Toledo STARe system (Switzer-
land) equipped with a DSC1 calorimetric cell. Mettler TA-STARe software (version 16.00)
was used to obtain and analyze data. The sensitivity was automatically chosen as the maxi-
mum possible by the calorimetric system. The calorimeter was calibrated using Indium
(99.95% of purity), based on the setting of the instrument. 160 µL aluminum calorimetric
pans were used. The reference pan was filled with 120 µL of deionized water.

2.7.1. Calorimetric Analysis of SLNs and MLVs

Aliquots of 120 µL of the samples were transferred into 160 µL DSC aluminum pans
hermetically sealed and subjected to calorimetric analysis under Nitrogen flow (60 mL/min)
as follows:

• Heating from 5 ◦C to 70 ◦C, at 2 ◦C/min.
• Cooling from 70 ◦C to 5 ◦C, at 4 ◦C/min.

The samples were cooled and heated three times to check the reproducibility of results.

2.7.2. SLN/MLV Interaction

First, 60 µL of MLVs and 60 µL of SLNs (loaded with SA 10% w/w) were placed into a
160 µL crucible which was hermetically sealed and subjected to calorimetric analysis as
follows: a heating scan from 5 to 70 ◦C (heating rate 2 ◦C/min), a cooling scan from 70 to
37 ◦C (cooling rate 4 ◦C/min), an isothermal period (1 h) at 37 ◦C, and a cooling scan from
37 to 5 ◦C (cooling rate 4◦C/min). This procedure was repeated seven times to evaluate the
interaction between SLNs and MLVs over time.

2.8. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9.0.0 software (Boston,
MA, USA); the algorithm employed was ordinary two-way ANOVA with multiple group
comparisons corrected by the Sìdak test.

3. Results
3.1. SLN Characterization

SLNs (empty or loaded with SA) had particle sizes around 200 nm, with a mild
growth trend over time. PDI values were around 0.300, suggesting the presence of a rather
homogeneous population of nanoparticles in the investigated samples. ZP proved to be
on the order of the −30 mV, indicating an optimal electric potential that prevents particle
aggregation. The measurements remained almost unchanged in the chosen time period
(up to 2 months), indicating that the formulations were stable (Figure 2). No significant
difference between SLN and SLN-SA was noted from the statistical analysis, although
SLN-SA was demonstrated to be slightly bigger, hinting at the fact that 10% w/w SA was
insufficient to alter the pharmaco-technological parameters of SLN.

SEM analyses (Figure S1, Supplementary Materials) confirmed the PCS data, un-
derlining the correct dimensions and the overall good morphologies of the formulated
samples.

3.2. Entrapment Efficiency

The entrapment efficiencies of SLN-SA were obtained using two different methods
(described in Section 2.4). The entrapment efficiencies obtained were quite comparable;
in fact, using Method 1, an entrapment efficiency of 74.4% was obtained, whereas, using
Method 2, an entrapment efficiency of 73.5% was obtained. The formulation permits
encapsulating an important fraction of SA.



Micro 2023, 3 514
Micro 2023, 3, FOR PEER REVIEW 5 
 

 

 

 

Figure 2. Mean dimensions, PDI, and ZP of SLNs and SLN-SA over 2 months. Figure 2. Mean dimensions, PDI, and ZP of SLNs and SLN-SA over 2 months.



Micro 2023, 3 515

3.3. In Vitro Release Study

The dialysis bag method described in Section 2.5 was used to evaluate the release of
sinapic acid from SLN-SA. The percentage of sinapic acid released in water is shown in
Figure 1. After 30 min, 26% of the total sinapic acid was released, reaching a theoretical
plateau of 33.5% after 150 min. A slow release was noted up to 650 min (Figure 3). These
data could be fitted to a hyperbolic curve, with a burst release at 30 min, and a slow,
long-lasting release after this timepoint, attributed to the liberation of encapsulated sinapic
acid from SLNs.
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3.4. DSC Analysis
3.4.1. SLN Calorimetric Analysis

The curves of SLNs and SLN-SA are shown in Figure 4. The curve of unloaded SLNs
showed a main peak at 55 ◦C and a broad shoulder below the main transition point. The
thermotropic behavior of SLN-SA was similar to that of unloaded SLNs (slightly higher
Tm, no shoulder), with little but distinct variations in temperature and shape. These
results could be attributed to the formation of clusters of sinapic acid within the SLN
structure, with moderate influences on the thermotropic behavior and crystallinity of the
lipid components.
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3.4.2. Calorimetric Analysis of MLVs

In the MLV calorimetric thermogram, two peaks associated with phase transitions
were present: the pre-transition peak, at about 17 ◦C, due to the transition from the gel
ordered phase to the ripple phase; the main transition peak, at about 25 ◦C, caused by
the transition from the ripple phase to the gel liquid crystalline disordered phase [34].
In the MLVs prepared with SA at the same stoichiometric ratio as SLN-SA, significant
variations were present; while the main transition temperature did not change much (0.5 ◦C
lower), enthalpic energy decreased by around 23%, and the pre-transition peak disappeared
entirely (Figure 5). It has been proposed that the pre-transition is due to the rotation of
the polar headgroups of the phospholipid molecules [35], with head group hydration also
playing an important role in rippled phase formation [36]. Then, the pre-transition is
affected by the presence of foreign molecules on the bilayer surface [37]. The suppression
of the pre-transition suggests a direct interaction of sinapic acid with the DMPC head
group [38]. In the presence of sinapic acid, a unique main transition peak of MLV was
present. The presence of a unique peak or the appearance of shoulders allows obtaining
information on the distribution of a molecule in the MLV; the shoulders are attributed to a
nonideal mixing behavior, which creates a nonhomogeneous distribution of the molecule
within the membrane, whereas the absence of shoulders hints at a uniform distribution of
SA inside the MLV [39,40]. Taken together, these results prove that sinapic acid did affect
the acyl chain packing of the bilayer, suggesting (given the logP of SA = 1.6) a localization
between the aqueous and lipid compartments of MLV [41].
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3.4.3. SLN/MLV Interaction

An experiment was carried out to evaluate the ability of SLN to act as carrier for sinapic
acid and allow cell penetration; for this reason, the interaction of SLN-SA with MLVs was
studied, with the latter being used as a biomembrane model [42]. MLVs and SLN-SA
came into contact following the methodology described in Section 2.7.2, and the samples
were analyzed immediately and at regular intervals after being mixed. The interaction
between SLN-SA and MLVs was assessed through the changes in their thermograms
(Figure 6). MLVs lost the pre-transition peak upon contact with SLNs; the main transition
peak shifted to slightly lower temperatures and, as time increased, its enthalpy decreased
until reaching, at the last scan, a value similar to that achieved when preparing MLVs
with 0.22 of sinapic acid. The presence of a unique peak all along the measurements could
indicate a uniform distribution of sinapic acid in the MLV structure. The calorimetric
peak related to SLNs moved to lower temperatures, and its enthalpy decreased over time.
Therefore, SLN interactions with biomembranes could account for their ability to allow
sinapic acid penetration into the cell membrane, permitting its uptake by the cells while
protecting it from metabolic reactions.
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Figure 6. Calorimetric curves, in heating mode, of MLVs and SLN-SA put in contact and mixed, at
increasing times of incubation. Curves at 0 min refer to MLVs and SLN-SA before the contact. The
time of contact is reported on the right side of the curves.

4. Discussion

Sinapic acid exhibits similar pharmacological proprieties to active compounds within
the same class of hydroxycinnamic acids, such as ferulic or caffeic acid. Sinapic acid has
been demonstrated to play an important biomedical role, as underlined by the great number
of experiments performed both in vitro and in rats and mice [9]; these studies highlighted
the anxiolytic-like effects of sinapic acid due to its interaction with GABAA receptors.
Other studies revealed the effect of SA on glucose metabolism, whereby it reduced the
hyperglycemia of diabetic rats and attenuated the postprandial plasma glucose without
changing plasma insulin in rats [43]. It was reported that sinapic acid has remarkable
antioxidant properties and could alleviate oxidative stress and intestinal dysbiosis induced
in rats [44].

However, the drawback of sinapic acid is its rapid metabolization and excretion in a
free and glucoronate form; thus, a way to improve these pharmacokinetic properties is its
encapsulation in solid lipid nanoparticles.

The aim of this study was to encapsulate sinapic acid into SLNs (to protect the active
compound from metabolic reactions) and to assess the pharmaco-technological parameters
of the nanoparticles. The analyses yielded promising results. The particle sizes were
around 200 nm, and the tests did not reveal particular differences in size between SLNs and
SLN-SA. The PDI was about 0.300 and remained constant over the 2 months. The encapsu-
lation efficiency and the release study showed the optimal capacity of the nanoparticles
to incorporate sinapic acid, with a release profile characterized by an initial burst effect
(due to the free fraction of SA) followed by a long-lasting liberation from SLN. Calorimetric
studies were conducted on empty MLVs of DMPC and MLVs of DMPC incorporating a
molar fraction of SA equal to the percentage found in SLNs, as well as on empty SLNs and
SLNs loaded with SA. The results showed that the effect of SA on MLVs was significant,
particularly in terms of enthalpy reduction; the presence of a unique main transition peak
hinted at a uniform distribution of SA inside the MLVs [39,40]; on the other hand, SLNs
and SLN-SA demonstrated a similar calorimetric profile.

To assess the capacity of SLN-SA to permit the interaction of SA with the biomembrane
model made of DMPC over time, the SLN-SA/MLV interaction was investigated, which
thoroughly confirmed the ability of the carrier to permit said interaction. The MLV signal of
the last scan of the calorimetric kinetics experiment was indeed similar to the thermal peak
obtained following the direct incorporation of sinapic acid inside MLVs; however, the effect
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of SLNs on the MLVs should be accounted for, explaining the thermotropic differences
(Figure 7).
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Figure 7. Calorimetric curves, in heating mode, of MLVs from the last scan of the calorimetric kinetics
experiment (dotted line) and of MLVs obtained following the direct incorporation of sinapic acid
(continuous line).

5. Conclusions

In conclusion, SLN-SA was found to be efficient as a potential carrier for the delivery
of sinapic acid, possibly allowing its action while protecting it from metabolization and
excretion processes. To further confirm these data, this nanoparticle-based formulation
can be tested, in comparison to free sinapic acid, in future biological and biochemical
experiments. Experiments should, firstly, be conducted in vitro to assess its capacity
to reduce both mitochondrial and nonmitochondrial oxidative stress, as well as other
problems related to inflammation and oxidative damage. Other studies have pointed
out the importance of lipid base systems as carriers for other phenolic compounds, such
as ferulic acid and caffeic acid [45,46]. The preparation of sinapic acid-loaded SLNs can
enable the flexible use of this formulation in clinical settings. SLNs, depending on their
dimensions, can be administered orally or parenterally. In addition, SLNs are suitable
for cutaneous application, due to the affinity of their matrix to intercellular lipids in the
stratum corneum.
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