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Abstract: Plastic straws are well-known tools to assist human beings in drinking fluid, but most of
them have micro-defects including black spot defects, head problems, pressure tube defects, and
sealing wrinkles. The manual detection of these defects has drawbacks such as low efficiency, a
high false detection rate, and excessive labor. This paper proposed machine vision-based detection
with self-adaption and high-accuracy characteristics. A serial synthesis of algorithms including
homomorphic filtering, Nobuyuki Otsu, and morphological opening operations is proposed to
obtain plastic straws with binary images with good performance, and it was further found that the
convolutional neural network can be designed to realize the real-time recognition of black spot defects,
where the corner detection algorithm demonstrates the linear fitting of the edge point of the straw
with the effective detection of sealing wrinkle defects. We also demonstrated that the multi-threshold
classification algorithm is used to detect defects effectively for head problems and pressure tube
defects. The detection system based on machine vision successfully overcomes shortcomings of
manual inspection, which has high inspection efficiency and adaptively detects multiple defects with
96.85% accuracy. This research can effectively help straw companies achieve high-quality automated
production and promotes the application of machine vision in plastic straw defects with the aid of
machine learning.

Keywords: defect detection; self-adaption; machine vision; image processing; machine learning

1. Introduction

The plastic straw is widely used in dairy products, carbonated drinks, and freshly
made drinking fields, among which the U-shaped plastic straw and telescopic straw are
widely used. In the production process of U-shaped plastic straws, black spot defects,
head problems, and pressure tube defects are three common defects. Black spot defects
are manifested as black spots on the U-shaped plastic straw and are a kind of micro/nano
defect. The head problems are that bending folds connecting long and short phases appear
in the long or short phases. The pressure tube defects are the straws that are connected
and extruded. Sealing wrinkle defects is a common defect of telescopic straws, and the
reason is that the indentation on the neck turns the original arc into a straight line, and
many times, this defect is micro/nanoscale. Traditional plastic straws and telescopic straw
manufacturers use manual vision to detect the products on the assembly line and screen the
defective products. However, traditional manual inspection has some shortcomings, such
as strong subjectivity, low efficiency, and lagging behind the production. It is easy to ignore
the micro/nano-defects such as black spots and sealing wrinkles of the straw and cause
false detection by manual inspection. The straw production speed is fast and the quantity
is large, but the manual inspection efficiency is low. This requires a lot of manpower and
material resources to meet production, resulting in a huge waste of energy. It cannot meet
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the production requirements of large quantities and high standards in modern enterprises.
Therefore, modern advanced methods such as machine vision, machine learning [1,2], deep
learning, and smart sensor [3] must be introduced.

Machine vision is a modern technology which consists of a hardware part and a
software part. The hardware part mainly includes the computer and the camera, and
the software part mainly refers to image processing and analysis software, which often
uses machine learning and deep learning methods. The working line of machine vision
is generally to take photos with the camera and transfer the photos to the computer, and
the software will process and analyze the pictures to conclude. With the development
of technology, machine vision has the advantages of real time, high efficiency, high accu-
racy, adaptability, and non-contact. These advantages make defect and quality inspection
technology based on machine vision with the aid of machine learning widely used in
various fields, mainly including manufacturing [4–6], food [7–9], pharmaceutical [10–12],
and agriculture [13–15]. In addition, image noise reduction [16], image segmentation [17],
feature extraction [18], Principal Component Analysis (PCA) [19], support vector machine
(SVM) [20], and convolutional neural networks (CNN) [21] algorithms are often used in
machine vision to improve the detection effect. Xu et al. [22] proposed a machine learning
method to detect plastic straw defects and used sparse rules and small-scale factors to
optimize the network. Finally, the detection accuracy of straw defects reached 96.19% under
the condition of compressing the network volume. Sun et al. [23] proposed a welding defect
detection and classification algorithm for a thin-walled metal tank based on machine vision.
The algorithm extracts the defect regions by constructing the image sequence background
and then classifies and detects different types of welding defects according to the defect
features. Liu et al. [24] proposed an online learning strategy based on machine vision to
locate the position of railway track fasteners and used a deep convolution neural network
algorithm based on machine vision to detect fastener defects. Harn et al. [25] proposed a
new method based on machine vision and load cells to detect egg density and the real-time
monitoring of egg grading and freshness. The method uses machine vision to measure the
external physical characteristics of the eggs, evaluate the volume of the eggs, measure the
quality of the eggs through the weight sensor, and then calculate the density of the eggs and
evaluate the freshness of the eggs. Hou et al. [26] proposed an algorithm based on machine
vision and machine learning to detect pills’ spherical, abnormal size, and color defects.
Tong et al. [27] designed a machine vision system for estimating the quality of seedlings
based on the leaf area of seedlings and proposed a decision-making method that combines
the center of the cross-border leaf area and an improved watershed segmentation method
of overlapping leaf images to assist the machine vision system in solving the problem of
leaf overlap. Finally, the system successfully identified the quality of tomato, cucumber,
eggplant, and pepper seedlings. From the above literature, machine vision has been widely
used in the field of weld, railway and other metal products surface defect detection, but
there is no research on the surface defects of plastic straw products.

In this paper, we proposed a machine vision-based inspection system with self-
adaption and high accuracy that successfully automatically detects four defects of plastic
straws: black spot defects, head problems, pressure tube defects, and sealing wrinkles. It
overcomes the shortcomings of low efficiency and low accuracy of manual inspection in
the field of straw inspection, and when detecting the same number of straws, it effectively
saves manpower and material resources, realizes energy saving, improves production effi-
ciency and product quality, helps companies reduce labor costs, and realizes the automated
production of plastic straws. At the same time, this research also expands the application
range of machine vision and offers certain reference significance for machine vision in the
field of plastic straw defect detection. The rest of this article is structured as follows. In
Section 2, the machine vision inspection system for straw defects with high accuracy is
built. The image processing and defect detection methods and experimental results are
presented in Section 3. Finally, the paper is concluded in Section 4.
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2. Materials and Methods

Figure 1a depicts a system schematic of defect detection through machine vision. The
camera is used instead of human eyes to observe objects, and the computer is used instead
of human brains to judge whether there are defects. In actual use, it is necessary to adjust
the location, number of cameras and defect discrimination algorithm according to specific
situations. As shown in Figure 1b, a machine vision-based detection system is established
to detect defects of U-shaped plastic straws and telescopic straws. In the straw production
line, the packed straws are driven by a motor and move forward continuously through
multiple rollers. In the production of traditional straws, quality inspectors are required
to test whether each straw meets the quality requirements, which is far from meeting the
requirements of modern production. In the detection system based on machine vision, to
suppress the diffuse reflected light on the surface of the straw, the Chinese OPT-FC series
LED light, which is a coaxial planar LED lamp with both coaxial light and shadowless
light, is selected as the system’s illuminating light source, and the forward photo method
based on reflected light is used in the system. The German Basler’s ACE series model
ACA1300-30gc CCD cameras and the PENTAX C418DX lens are used to replace the human
eyes to take photos, and the Chinese Advantech 610L industrial computer is used to replace
the human brain to analyze photos.
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Figure 1. Machine vision for fast and high-accurate straw detection. (a) Schematic diagram of
detection system. (b) The straw micro-defection detector.

To ensure that both the front and back of each straw are captured, depending on
the type of straw, the shooting range and frequency of the upper and lower cameras are
adjusted to 5 frames per second when it is a U-shaped straw, each containing two complete
U-shaped straws; and 4 frames per second when it is a telescopic straw, each containing
three complete telescopic straws on the assembly line. Then, the taken straw photo is
transferred to the host computer and undergoes a series of image processing, and finally,
the machine vision system software analyzes which type of straw is in the photo and
judges whether it is defective, which type of defect it is, and whether it meets the quality
requirements. Considering that the current straw production process is mature, the defect
rate is low, and the packaged straws are inspected; when a defective straw is detected, the
system alarms and manually removes the defective straw.
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3. Results and Analysis
3.1. Introduction of Straw Defects and Binarization Method

Two kinds of straws are shown in Figure 2: a U-shaped plastic straw and telescopic
straw. Photographs U-shaped plastic straws taken by mobile phones are shown in Figure 2a,
and there are three defects in U-shaped plastic straws: aside from the no defect image
(Figure 2b), there were also black spot defects (Figure 2c), head problems (Figure 2d), and
pressure tube defects (Figure 2e). One defect was found in telescopic straws: aside from the
no defect image (Figure 2f), there were also sealing wrinkle defects (Figure 2g). The black
spot defects are caused by the appearance of a black spot on the U-shaped plastic straw
that should have no abnormal color; this kind of defect is very small. The analysis shows
that the effective defective pixel amount to detect black spots is low, and the gray-scale
contrast of the defect areas is low. Few pixels in the black spot region make it difficult to
identify defects effectively. The head problem of the U-shaped plastic straw is manifested
in bending folds connecting long and short phases in the long or short phases and can
be in any position. The defects of pressure tube defects are that the straws are connected
and squeezed, which should not be connected. The geometric characteristics of head
problems and pressure tube defects are more obvious, but it is difficult to characterize due
to the changeable geometric shape, which makes it difficult to effectively detect the defects.
According to the sealing wrinkle defects image, the defect is that the indentation on the
neck turns the original arc into a straight line. Although the outline of the image can be
outlined by edge detection, it is difficult to define and detect defects. It can be concluded
from the figure that due to the limitation of human visual ability, some straw defects such as
Figure 2c are not directly detectable by humans, so the use of a computer vision recognition
method can improve the recognition efficiency and increase the recognition accuracy.
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Figure 2. (a) U-shaped plastic straws taken by mobile phone; (b) No defect image of U-shaped
plastic straw; (c) Black spot defects image of U-shaped plastic straw; (d) Head problems image of
U-shaped plastic straw; (e) Pressure tube defects image of U-shaped plastic straw; (f) No defect image
of telescopic straw; (g) Sealing wrinkle image of telescopic straw; (h) The gray value distribution map
of the telescopic straw; (i) Sealing wrinkle image of telescopic straw after homomorphic filtering;
(j) The gray value distribution map of the telescopic straw after homomorphic filtering.
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Although the detection system of the straw uses a coaxial light source to suppress
diffuse emission, the image of the telescopic straw still has uneven illumination due to the
reflective characteristics of the plastic straw material. This makes the image gray value
range wider, as shown in Figure 2h, and there is no obvious double-peak area. Therefore,
it is necessary to preprocess the straw image first to obtain the high-quality binary image
of the straw. The OTSU algorithm is also called the maximum between-class variance
method [28], which divides the data into two parts through a constant threshold so that
the data variance between two parts is the largest and the data value variance between
each part is the smallest. In addition, the segmentation threshold t∗ is calculated as the
following Equation (1), and the calculation of each part is shown in Equations (2)–(6).

t∗ = Argmax(w1(t)u2
1(t) + w2(t)u2

2(t)) (1)

w1(t) = ∑t
i=0 pi (2)

w2(t) = ∑L−1
i=t+1 pi (3)

u1(t) = ∑t
i=0 ipi/w1(t) (4)

u2(t) = ∑L−1
i=t+1 ipi/w2(t) (5)

pi =
ni
n

(6)

In these equations, t∗ represents the value of t when traversing all t to obtain the
maximum value for Equation (1), where 0 ≤ t < L, L is the maximum value of image
gray, n is the number of image pixels, ni is the number of pixels whose gray value is i, and
then pi is the probability of the occurrence of pixels with a gray value of i in the image.
According to the calculation equation, w1(t) is the probability of pixels with gray values
between 0 and t in the image, w2(t) is the probability of pixels with gray values between
(t + 1) and (L − 1) in the image, u1(t) is the average gray value of pixels with gray values
between 0 and t, and u2(t) is the average gray value of pixels with gray values between
(t + 1) and (L − 1). An image with obvious double peaks in the gray value distribution
can obtain a better binary image through the OTSU algorithm, but it cannot segment the
image well under uneven lighting conditions, and it is also sensitive to noise [29]. To solve
these two problems, homomorphic filtering and morphological opening operations are
introduced into the OTSU algorithm. The homomorphic filtering algorithm converts the
image to the logarithmic domain for operation, which can effectively improve the contrast
of the low gray value area. [30] The homomorphic filtering algorithm can eliminate the
uneven illumination of the image [31] and form an effective dual-peak gray distribution.
The homomorphic filtering algorithm involves logarithmic transform and Discrete Fourier
Transform (DFT), where H(u, v) represents the filtering type, as well as Inverse Discrete
Fourier Transform (IDFT) and exponential transform, which is denoted in Formula (7).

f (x, y)→ ln f → DFT → H(u, v)→ (DFT)−1 → exp→ g(x, y) (7)

The homomorphic filtering was performed on the image. The processed image is
shown in Figure 2i, and the gray-scale distribution is shown in Figure 2j. The morphological
opening operation [32,33] can remove isolated dots, burrs, and bridges, while the overall
position and shape remain unchanged; the principle is to corrode the binary image first and
then expand it [34]. When the binary image of a straw is obtained from the grayscale image
of the straw, the above three algorithms have a good complementary effect. So, a serial
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synthesis algorithm of homomorphic filtering, OTSU, and morphological open operation is
proposed to suppress diffuse reflection and obtain high-quality binary images of the straw.

3.2. Defect Detection for Sealing Wrinkles, Head Problems, and Pressure Tube Defects

The left edge of the straw is formed by a straight line and a circular arc, and the right
edge is a straight line due to the sealing wrinkle. Therefore, the left and right contours of
the straw can be fitted with a straight line, the size of the loss function can be compared to
determine whether there is a defect, and the sealing wrinkle defects detection flow chart
is summarized as shown in Figure 3a. The serial synthesis algorithm of homomorphic
filtering, OTSU, and morphological open operation was used to process the straw and
obtain a high-quality binary image. Then, four corners need to be extracted to determine
the range of the edge points on the left and right sides of the straw. This paper proposes a
corner detection algorithm based on the Susan operator. The idea of the algorithm is as
follows: set a circular sliding window with a radius of r and an area of S, and traverse all
the points on the edge contour with the center of the circle. Count the number of pixels
with a pixel value of 1 in the sliding window, which is denoted as N1. Set a threshold
σ; when N1/S ≤ σ, it is judged as a suspected corner. All the suspected corner points
obtained are divided into two categories according to the size in the y-direction, while
the maximum and minimum values are screened in the x-direction, respectively, and the
two largest and smallest pixels in the x-direction in each category are selected to obtain
coordinates of the four corners. In this paper, r = 30, σ = 0.35, and the corner obtained
are shown in the corner position. As shown in Figure 3b,c, compared with the effect of the
Harris operator [35] and Susan operator [36], this algorithm reduces the influence of noise
through the binary image input and ensures the detection of four corner points through
non-maximum and non-minimum value suppression, which meets the requirements of
this research. The least-square method is a commonly used method of fitting [37], which
was used to fit the straight line between the detected corner points on the left and right
edge contour points in this research. The root means square error (RMSE) was calculated
to determine if the straw has a sealing wrinkle defect. The RMSE of a straight line on the
left is 50, and the RMSE of a straight line on the right is 10, so the threshold γ = 30 was set
in this paper. If the RMSE is less than this threshold, it is considered that there is a sealing
wrinkle, and the accuracy reaches 96%.

The inspection process of head problems and pressure tube defects of U-shaped plastic
straws is shown in Figure 3d. Because the picture taken by the camera contains multiple
U-shaped straws, the area where a single complete straw is located needs to be separated
first. The pixel values of the image background area are quite different from those of the
U-shaped plastic straw area. The serial synthesis algorithm of homomorphic filtering,
OTSU, and morphological open operation was used to process the U-shaped plastic straw
with head problem and pressure tube defects, and then, a high-quality binary image was
obtained as shown in Figure 3e,f. Binary connected regions labeling algorithms have two
types: four-domain region labeling and eight-domain region labeling [38]. An eight-domain
area marking algorithm was used to label binary connected regions, which considers four
diagonal domains with higher accuracy rates. The red area displays the connected regions
of the background area, and the other color area of the image represents the connected
regions of the straw foreground area. The area between a complete straw and a part of the
straw is different, so the connected area of the complete straw is extracted from the areas of
each connected area. Geometric features of the connected domain from the complete straw
can be extracted to construct the pattern vector, because the geometric difference among
the straw head problem, the pressure tube defect, and the perfect straw is significant. The
multi-threshold classification algorithm which is presented in Figure 3g is used for defect
detection; three features are extracted from three areas. The area A is obtained by counting
the pixels of the defect-connected domain area; the area R is found through counting the
pixels of the circumscribed rectangle of the connected domain of the defect area; and the
ellipse minor axis length C is detected by ellipse fitting of the defect area. To construct



Micro 2023, 3 490

feature vectors, suppose the pattern vector is X; then, X = [A R C]T. The two pattern
classes, w1 and w2, represent the head problems and pressure tube defects, respectively.
Three geometric features of A, R, and C are employed as computer templates. Then, we
construct the threshold vector T = [AT RT CT]T, which is set as T1 = [26, 000 80, 000 100]T,
T2 = [26, 000 90, 000 135]T. In the test section, the pattern vector component is compared
with the threshold vector component sequentially to identify the type of defect. As shown
in Table 1, the multi-threshold classification algorithm can detect these two types of defects
based on the above statistical geometric features, and its accuracy is more than 98%. Due
to the diverse head problems, their geometric features are not obvious compared with the
pressure tube defects, which cause a slightly lower accuracy rate.
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Figure 3. (a) Flowchart for the detection of sealing wrinkle defects of telescopic straws; (b) Corner
detection effect diagram with Harris operator; (c) Corner detection effect diagram with Susan operator;
(d) Head problem and pressure tube defect detection flowchart; (e) Binary image of straw with head
problems and its connected domain labeled effect image; (f) Binary image of straw with pressure tube
defects and its connected domain labeled effect image; (g) Multi-threshold classification flowchart.

Table 1. Recognition result of the multi-threshold method.

Defect Number of Samples Correct Number of Samples Recognition Rate (%)

Head problems 100 98 98
Pressure tube defects 100 100 100

3.3. Defect Detection for Black Spot Defects

After judging that the connected domain of the complete straw matches the threshold
vector of the perfect straw, the black spot defect of the straw is further determined. The
black spot defects have little effect on the geometric characteristics of the connected area
of the straw. Therefore, unlike the detection of head problems and pressure tube defects,
it is difficult to effectively detect the black spot defect of the straw through the geometric
characteristics of the connected area of the straw. The mask algorithm is used to obtain the
grayscale image of a single straw through the rectangle containing the connected area of
the straw, and the effect is shown in the image of the straw. The serial synthesis algorithm
of homomorphic filtering, OTSU, and morphological open operation was used to process
the U-shaped plastic straw with a black spot defect, and then, a high-quality binary image
was obtained. The binary image and the single-straw grayscale image are image-fused to
obtain a grayscale image of a single straw with black background, and the effect is shown



Micro 2023, 3 491

in the gray image on black background of Figure 4a. Considering that the black spot defects
area is small and inside the straw area, and the grayscale image of the straw is not the same
as the normal part of the inside of the straw, the image should be enhanced first. After
comparing the noise reduction effects of mean filtering [39], no filtering, and Gaussian
filtering [33] operations, mean filtering is selected as the noise reduction method in this
research, and the straw after means filtering is shown in the gray image after mean filtering.
By the mean filtering processing, the pixels of the black spot defect areas will increase,
and the color of the normal area of the straw will be smoother and more uniform. These
effects make the edge between the black spot and the straw increase, and the false edge
reduces, which is caused by the uneven grayscale inside the straw. The adaptive threshold
segmentation algorithm was used to extract the edge contours that exist in the image and
then filter the possible black spot edge contours based on the contour area without losing
the true black spot edge contour. The noise inside of the straw is likely to be misjudged as
the contour of the black spot edge. The mask algorithm is used to obtain the possible black
spot positions through the obtained possible black spot contours on the grayscale image of
a single straw, as shown in possible black spot positions on the straw. Comparing the black
spot defect images obtained by Gaussian filtering and no filtering as shown in Figure 4b,c,
the effect of mean filtering is better. The position of the black spot defects is located; there
are not only defective areas in the image but also pseudo-black spot defects areas due to
noise. The real black spot defects in the image after adaptive threshold segmentation will
be detected.
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The black spot defects are very small in the image straw area, and the accuracy of
the defect detection using the classifier after the feature extraction of the original image is
not good, so these possible black spot defects are segmented to detect black spot defects.
The self-attention mechanism [40] is improved from the attention mechanism, which can
capture the global information to obtain a larger sense space, calculate the response of
a certain position in the image as the weighted sum of all global position features, and
strengthen the capture of the long-term dependence across regions in the image [41,42].
The working principle of the self-attention mechanism is shown in Figure 4d. Using the self-
attention mechanism can highlight the black spot defect features in the global image, which
is conducive to further defect feature extraction. As an excellent classifier, CNN [21] has a
good application in classification and recognition. Different from the traditional method of
manually extracting features and then classifying, CNN has a strong ability to automatically
extract features and could find the feature rules in samples. CNN is widely used in image
classification and target recognition. As shown in Figure 4e, a CNN usually consists of the
convolutional layers, the pooling layers, and the fully connected layers. The convolution
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unit in CNN just pays attention to the neighborhood area each time and performs local
area operations while ignoring the influence of other areas in the global image on the
current area. To highlight the global black spot defects, the self-attention mechanism is
introduced before the CNN input as a supplement to the framework. The self-attention
module calculates the response of a certain position in the picture and strengthens the black
spot defects in the global image capture, effectively compensating for the characteristics of
local convolution operation in CNN.

The Relu activation function is used in traditional CNN, and its formula is f (x) = max(0, x).
It is known that when the input is negative, the gradient of the Relu function is zero, which
causes its weight to be unable to be updated, and it will remain silent during the rest of
the training process. In this case, the learning speed of the network may become very slow
and even make the network directly invalid input. The gradient of the Relu function is
discontinuous, which may cause uncertainty in the training result [43]. To overcome the
above shortcomings of the Relu function, the Mish activation function [44] was used, and
the formula is as shown in Equations (8) and (9).

f (x) = x ∗ tanh(ln(1 + ex)) (8)

tanh(x) =
ex − e−x

ex + e−x (9)

Compared with the Relu function, the Mish function guarantees the smoothness of
each point, which makes the gradient descent effect better than Relu. When the value is
negative, a smaller negative gradient is allowed to flow in to ensure that the information
will not be interrupted, so that the network has better accuracy and generalization ability. In
addition, the lower bound can also improve the regularization effect of the network. Based
on the above analysis, the self-attention mechanism and Mish function can well make up for
some of the shortcomings of traditional CNN. The CNN with the self-attention mechanism
and Mish function is proposed to detect real black spot defects. Overall, 557 samples were
collected from U-shaped plastic straws, the number of samples with black spot defects was
274, and the number of samples with fake black spot defects was 283. The samples are not
large enough for CNN. To avoid over-fitting, the 10-fold cross-validation method [45] was
adopted. The termination condition of CNN iteration is set to 2500 times, and the learning
rate is 0.005. After 2500 iterations of training, the cost is reduced to 0.243, the accuracy of
the model’s training set reaches 96.74%, and the test set accuracy reaches 96.85%, as shown
in Figure 5. The train accuracy and test accuracy, the CNN with the Mish function, and the
self-attention mechanism are higher than the detection results using classical CNN.
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4. Conclusions

In summary, straw defect detection mainly relies on manual inspection in industrial
areas. Since the defects are micro-sized and thus unrecognized by human vision and
human fatigue, manual detection is unable to meet the high precision and demanding work
requirements of the manufacturing industry. In this regard, the machine vision-based straw
defect detection system proposed in the article can improve the recognition accuracy and
rate. It is mainly reflected in the following three aspects. Firstly, a suitable lighting scheme
for straw detection is proposed to achieve image acquisition and analysis of different straw
defects; secondly, a homomorphic filtering algorithm is used to reconstruct images and
improve image recognizability for problems such as low contrast and uneven illumination
of images acquired by the image acquisition system. Lastly, for the different types of defects
of telescopic straws and U-shaped straws, various defect detection methods are adopted to
further improve the detection accuracy.

Specific experimental results are shown as follows: compared to manual detection, the
machine vision-based straw defects detection system with self-adaption and high accuracy
is tried to detect black spot defects, head problems, pressure tube defects, and sealing
wrinkle defects in the production process of plastic straws in an energy-saving manner.
The serial synthesis algorithm of homomorphic filtering and morphological open operation
is proposed to assist in suppressing diffuse reflection and obtaining high-quality binary
images. The CNN with a self-attention mechanism and Mish function is proposed to detect
the black spot defects of plastic straws, and the accuracy is over 96.74%, which is higher
than the accuracy rate of the classic CNN algorithm. The multi-threshold classification
algorithm is used to detect the head problems and pressure tube defects of plastic straws
with an accuracy rate of over 98%. A corner detection algorithm is proposed to assist
linear fitting, which is used to detect sealing wrinkle defects with an accuracy rate of 96%.
The detection system based on machine vision adaptively detects multiple defects in a
variety of straws, and its accuracy and detection speed exceed manual detection; these
advantages make it save a lot of manpower and material resources for the enterprise and
realize energy savings. This can effectively help straw companies achieve high-quality
automated production. This research promotes the application of machine vision in the
field of plastic straw defect detection.
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