Next Issue
Volume 3, December
Previous Issue
Volume 3, June
 
 

Liquids, Volume 3, Issue 3 (September 2023) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
8 pages, 1768 KiB  
Communication
Behavior of C70 Fullerene in a Binary Mixture of Xylene and Tetrahydrofuran
Liquids 2023, 3(3), 385-392; https://doi.org/10.3390/liquids3030023 - 06 Sep 2023
Viewed by 476
Abstract
The self-organization properties of C70 fullerene molecules in a xylene/tetrahydrofuran binary mixture were studied for the first time by optical absorption, refractometry, and dynamic light scattering. A correlation has been established between the change in the refractive index of the C70 [...] Read more.
The self-organization properties of C70 fullerene molecules in a xylene/tetrahydrofuran binary mixture were studied for the first time by optical absorption, refractometry, and dynamic light scattering. A correlation has been established between the change in the refractive index of the C70/xylene/tetrahydrofuran solution and the degree of self-organization of C70 molecules in the medium at various concentrations and storage periods of the solution. It is shown that the features of the optical absorption spectrum of C70/xylene/tetrahydrofuran at a fixed low concentration of fullerene are sensitive to its storage time. It was determined that the beginning time of the formation of C70 nanoclusters and their final size depend on the degree of concentration of fullerene and the time spent keeping the solution. The observed nature of the C70 fullerene solution in a binary mixture may help to elucidate its mechanism of self-organization in the future. Full article
(This article belongs to the Special Issue Nanocarbon–Liquid Systems)
Show Figures

Figure 1

14 pages, 8534 KiB  
Article
Photothermal Imaging of Transient and Steady State Convection Dynamics in Primary Alkanes
Liquids 2023, 3(3), 371-384; https://doi.org/10.3390/liquids3030022 - 01 Sep 2023
Viewed by 421
Abstract
This paper presents a photothermal spectroscopy technique that effectively images convective heat flow in molecular liquids resulting from localized laser-induced heating. The method combines aspects of thermal lensing and photothermal deflection. A high-energy infrared laser is used to induce a thermal lens in [...] Read more.
This paper presents a photothermal spectroscopy technique that effectively images convective heat flow in molecular liquids resulting from localized laser-induced heating. The method combines aspects of thermal lensing and photothermal deflection. A high-energy infrared laser is used to induce a thermal lens in the sample, and a divergent visible laser is used to probe the entire region of the excitation beam within the sample. This approach allows for the observation of the convective flow of the liquid above the excitation beam. The study focuses on the liquid primary alkanes, from n-pentane to n-pentadecane. The paper provides experimental results, including dynamical data for the propagation of the thermal plume, a transient feature, in these alkanes and the exploration of dependence on excitation laser power. Full article
Show Figures

Figure 1

57 pages, 15000 KiB  
Review
Solvatochromic and Acid–Base Molecular Probes in Surfactant Micelles: Comparison of Molecular Dynamics Simulation with the Experiment
Liquids 2023, 3(3), 314-370; https://doi.org/10.3390/liquids3030021 - 16 Aug 2023
Viewed by 750
Abstract
This article summarizes a series of seventeen publications by the authors devoted to molecular dynamics modeling of various indicator dyes (molecular probes) enclosed in surfactant micelles. These dyes serve as generally recognized tools for studying various types of organized solutions, among which surfactant [...] Read more.
This article summarizes a series of seventeen publications by the authors devoted to molecular dynamics modeling of various indicator dyes (molecular probes) enclosed in surfactant micelles. These dyes serve as generally recognized tools for studying various types of organized solutions, among which surfactant micelles in water are the simplest and most explored. The modeling procedure involves altogether 50 to 95 surfactant molecules, 16 to 28 thousand water molecules, and a single dye molecule. The presentation of the simulation results was preceded by a brief review of the state of experimental studies. This article consists of three parts. First, despite numerous literature data devoted to modeling the micelles itself, we decided to revisit this issue. The structure and hydration of the surface of micelles of surfactants, first of all of sodium n-dodecylsulfate, SDS, and cetyltrimethylammonium bromide, CTAB, were studied. The values of the electrical potential, Ψ, were estimated as functions of the ionic strength and distance from the surface. The decrease in the Ψ value with distance is gradual. Attempts to consider both DS and CTA+ micelles in water without counterions result in a decay into two smaller aggregates. Obviously, the hydrophobic interaction (association) of the hydrocarbon tails balances the repulsion of the charged headgroups of these small “bare” micelles. The second part is devoted to the study of seven pyridinium N-phenolates, known as Reichardt’s dyes, in ionic micelles. These most powerful solvatochromic indicators are now used for examining various colloidal systems. The localization and orientation of both zwitterionic and (colorless) cationic forms are generally consistent with intuitive ideas about the hydrophobicity of substituents. Hydration has been quantitatively described for both the dye molecule as a whole and the oxygen atom. A number of markers, including the visible absorption spectra of Reichardt’s dyes, enable assuming a better hydration of the micellar surface of SDS than that of CTAB. However, our data show that it is more correct to speak about the more pronounced hydrogen-bonding ability of water molecules in anionic micelles than about better hydration of the SDS micelles as compared to CTAB ones. Finally, a set of acid–base indicators firmly fixed in the micellar pseudophase were studied by molecular dynamics. They are instruments for estimating electrostatic potentials of micelles and related aggregates as Ψ=2.303RTF1(pKaipKaapp), where pKai and pKaapp are indices of so-called intrinsic and apparent dissociation constants. In this case, in addition to the location, orientation, and hydration, the differences between values of pKaapp and indices of the dissociation constants in water were estimated. Only a semi-quantitative agreement with the experimental data was obtained. However, the differences between pKaapp of a given indicator in two micellar solutions do much better agree with the experimental data. Accordingly, the experimental Ψ values of ionic micelles, as determined using the pKaapp in nonionic micelles as pKai, are reproduced with reasonable accuracy for the corresponding indicator. However, following the experimental data, a scatter of the Ψ values obtained with different indicators for given micelles is observed. This problem may be the subject of further research. Full article
Show Figures

Graphical abstract

11 pages, 1356 KiB  
Article
Reichardt’s Dye-Based Solvent Polarity and Abraham Solvent Parameters: Examining Correlations and Predictive Modeling
Liquids 2023, 3(3), 303-313; https://doi.org/10.3390/liquids3030020 - 02 Aug 2023
Viewed by 684
Abstract
The concept of “solvent polarity” is widely used to explain the effects of using different solvents in various scientific applications. However, a consensus regarding its definition and quantitative measure is still lacking, hindering progress in solvent-based research. This study hopes to add to [...] Read more.
The concept of “solvent polarity” is widely used to explain the effects of using different solvents in various scientific applications. However, a consensus regarding its definition and quantitative measure is still lacking, hindering progress in solvent-based research. This study hopes to add to the conversation by presenting the development of two linear regression models for solvent polarity, based on Reichardt’s ET(30) solvent polarity scale, using Abraham solvent parameters and a transformer-based model for predicting solvent polarity directly from molecular structure. The first linear model incorporates the standard Abraham solvent descriptors s, a, b, and the extended model ionic descriptors j+ and j, achieving impressive test-set statistics of R2 = 0.940 (coefficient of determination), MAE = 0.037 (mean absolute error), and RMSE = 0.050 (Root-Mean-Square Error). The second model, covering a more extensive chemical space but only using the descriptors s, a, and b, achieves test-set statistics of R2 = 0.842, MAE = 0.085, and RMSE = 0.104. The transformer-based model, applicable to any solvent with an associated SMILES string, achieves test-set statistics of R2 = 0.824, MAE = 0.066, and RMSE = 0.095. Our findings highlight the significance of Abraham solvent parameters, especially the dipolarity/polarizability, hydrogen-bond acidity/basicity, and ionic descriptors, in predicting solvent polarity. These models offer valuable insights for researchers interested in Reichardt’s ET(30) solvent polarity parameter and solvent polarity in general. Full article
Show Figures

Figure 1

15 pages, 4535 KiB  
Article
An X-ray and Neutron Scattering Study of Aqueous MgCl2 Solution in the Gigapascal Pressure Range
Liquids 2023, 3(3), 288-302; https://doi.org/10.3390/liquids3030019 - 04 Jul 2023
Viewed by 785
Abstract
The structure of electrolyte solutions under pressure at a molecular level is a crucial issue in the fundamental science of understanding the nature of ion solvation and association and application fields, such as geological processes on the Earth, pressure-induced protein denaturation, and supercritical [...] Read more.
The structure of electrolyte solutions under pressure at a molecular level is a crucial issue in the fundamental science of understanding the nature of ion solvation and association and application fields, such as geological processes on the Earth, pressure-induced protein denaturation, and supercritical water technology. We report the structure of an aqueous 2 m (=mol kg−1) MgCl2 solution at pressures from 0.1 MPa to 4 GPa and temperatures from 300 to 500 K revealed by X-ray- and neutron-scattering measurements. The scattering data are analyzed by empirical potential structure refinement (EPSR) modeling to derive the pair distribution functions, coordination number distributions, angle distributions, and spatial density functions (3D structure) as a function of pressure and temperature. Mg2+ forms rigid solvation shells extended to the third shell; the first solvation shell of six-fold octahedral coordination with about six water molecules at 0 GPa transforms into about five water molecules and one Cl due to the formation of the contact ion pairs in the GPa pressure range. The Cl solvation shows a substantial pressure dependence; the coordination number of a water oxygen atom around Cl increases from 8 at 0.1 MPa/300 K to 10 at 4 GPa/500 K. The solvent water transforms the tetrahedral network structure at 0.1 MPa/300 K to a densely packed structure in the GPa pressure range; the number of water oxygen atoms around a central water molecule gradually increases from 4.6 at 0.1 MPa/298 K to 8.4 at 4 GPa/500 K. Full article
(This article belongs to the Special Issue Hydration of Ions in Aqueous Solution)
Show Figures

Figure 1

10 pages, 1770 KiB  
Article
Hydration of Phosphate Ion in Polarizable Water: Effect of Temperature and Concentration
Liquids 2023, 3(3), 278-287; https://doi.org/10.3390/liquids3030018 - 21 Jun 2023
Viewed by 823
Abstract
The hydration of phosphate ions, an essential component of many biological molecules, is studied using all-atom molecular dynamics (MD) simulation and quantum chemical methods. MD simulations are carried out by employing a mean-field polarizable water model. A good linear correlation between the self-diffusion [...] Read more.
The hydration of phosphate ions, an essential component of many biological molecules, is studied using all-atom molecular dynamics (MD) simulation and quantum chemical methods. MD simulations are carried out by employing a mean-field polarizable water model. A good linear correlation between the self-diffusion coefficient and phosphate anion concentration is ascertained from the computed mean-square displacement (MSD) profiles. The HB dynamics of the hydration of the phosphate anion is evaluated from the time-dependent autocorrelation function CHB(t) and is determined to be slightly faster for the phosphate–anion system as compared to that of the water–water system at room temperature. The coordination number (CN) of the phosphate ion is found to be 15.9 at 298 K with 0.05 M phosphate ion concentration. The average CN is also calculated to be 15.6 for the same system by employing non-equilibrium MD simulation, namely, the well-tempered meta-dynamics method. A full geometry optimization of the PO43−·16H2O cluster is investigated at the ωB97X-D/aug-cc-pVTZ level of theory, and the hydration of the phosphate anion is observed to have both singly and doubly bonded anion–water hydrogen bonds and inter-water hydrogen bonds in a range between 0.169–0.201 nm and 0.192–0.215 nm, respectively. Modified Stokes–Einstein relation is used to calculate the conductivity of the phosphate ion and is found to be in good agreement with the experimentally observed value. Full article
(This article belongs to the Special Issue Hydration of Ions in Aqueous Solution)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop