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Abstract: Abraham model solute descriptors are reported for the first time for 62 additional C10

through C13 methyl- and ethyl-branched alkanes. The numerical values were determined using
published gas chromatographic retention Kováts retention indices for 157 alkane solutes eluted from
a squalane stationary phase column. The 95 alkane solutes that have known descriptor values were
used to construct the Abraham model KRI versus L-solute descriptor correlation needed in our
calculations. The calculated solute descriptors can be used in conjunction with previously published
Abraham model correlations to predict a wide range of important physico-chemical and biological
properties. The predictive computations are illustrated by estimating the air-to-polydimethylsiloxane
partition coefficient for each of the 157 alkane solutes.

Keywords: Abraham model; solute descriptors; kováts retention indices; methylated alkanes;
ethylated alkanes

1. Introduction

Linear free energy relationships (LFERs) and Quantitative Structure Property Rela-
tionships (QSPRs) provide a convenient means to estimate physical and thermodynamic
properties in the absence of direct experimental data. Predictive expressions have been
developed for a wide range of properties including surface tensions, vapor pressures,
boiling point and melting point temperatures, chromatographic retention indices, partition
coefficients and enthalpies of solvation. The more successful methods not only provide
reasonably accurate estimates of the desired property, but also further our understanding
of the molecular interactions and structural features that govern the property of the specific
molecule or specific solute–solvent combination under consideration. It is only by thor-
oughly understanding a process that one obtains the knowledge necessary to hopefully
develop a more comprehensive predictive method.

The particular model that we [1–4] have been promoting during the last 20 years is
commonly referred to as the Abraham solvation parameter method [5–8] that was originally
developed to describe solute transfer between two condensed phases:

Solute Property = eeq 1 × E + seq 1 × S + aeq 1 × A + beq 1 × B + veq 1 × V + ceq 1 (1)

and solute transfer from the gas phase into a condensed phase:

Solute Property = eeq 2 × E + seq 2 × S + aeq 2 × A + beq 2 × B + leq 2 × L + ceq 2 (2)

Logarithms of the water-to-organic solvent, log P, and gas-to-organic solvent partition
coefficients, log K, were among the first properties to be correlated. The model was subse-
quently extended to other solute transfer processes, such as molar solubility ratios [1–4],
blood-to-tissue and gas-to-tissue partition coefficients [9,10], gas–liquid chromatographic
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and high-performance liquid chromatographic retention factors/indices [11–13], and en-
thalpies of solvation [14–16], as well as several important physical and biological response
properties [17–19]. For each of the aforementioned properties the mathematical form of the
predictive expression is retained for transfer processes pertaining to nonionic molecular
compounds. Additional terms are needed on the right-hand side of Equations (1) and (2)
to describe transfer properties for ionic and zwitterionic species which can interact with
surrounding solvent molecules through their ionic moieties. Equations (1) and (2) do not
contain provisions for solvent molecules to interact with ionic moieties on the dissolved solute.

As we just alluded the terms on the right-hand side of Equations (1) and (2) represent
the different types of solute–solvent molecular interactions that are believed to be present
in nonelectrolyte solutions. Each type of interaction is quantified as a product of a solute
property multiplied by the complimentary solvent property. Solute properties (commonly
referred to as solute descriptors) are identified by the uppercase alphabetical characters
and are defined as follows: A and B refer to the respective overall hydrogen-bond donating
and accepting capacities of the dissolved solute; E corresponds to the molar refraction of
the given solute (in units of (cm3 mol−1)/10) in excess of that of a linear alkane having a
comparable molecular size; L is the logarithm of the solute’s gas-to-hexadecane partition
coefficient determined at 298.15 K; S represents a combination of the electrostatic polarity
and polarizability of the solute; and V denotes the McGowan molecular volume of the
solute (in units of (cm3 mol−1)/100) calculated from atomic sizes and chemical bond
numbers. The complimentary solvent properties in Equations (1) and (2) are given by the
lowercase alphabetical characters (ceq 1, eeq 1, seq 1, aeq 1, beq 1, veq 1, ceq 2, eeq 2, seq 2, aeq 2,
beq 2, and leq 2). Numerical values of the solvent properties are determined by regressing
measured data for a series of solutes with known descriptor values in accordance with
Equations (1) and (2). Once determined, the lowercase alphabetical characters allow one to
predict the specified property of additional solutes in the given organic solvent, provided
of course that the solute descriptors are known. The Abraham solvation parameter model
has been described in greater detail in several published papers, book chapters and review
articles [5,20–23].

Continued development of the Abraham model requires that: (a) additional measure-
ments be performed so that descriptor values and equation coefficients can be calculated
for more solutes and transfer processes; and (b) that existing experimental data be more
effectively utilized in determining solute descriptors and process coefficients. There is an
enormous quantity of published data that could be used in expanding the applicability of
the Abraham model. Utilization of existing experimental data is not always easy in that
solute descriptors may have to be first calculated in order to obtain a sufficient number of
data points to permit the determination of equation coefficients, and vice versa. As noted
above, the equation coefficients are determined by regressing measured data for a series of
solutes whose descriptor values are known in accordance with Equations (1) and (2).

There are many published papers in the chemical literature that report chromato-
graphic retention data for the compounds found in essential oils [24–26], beverages [27,28],
petroleum and coal-based samples [29,30], insects [31,32] and bee honeys [33]. The pub-
lished datasets contain a large number of pesticides, flavor and fragrance compounds for
which solute descriptors are not available. Unfortunately, many of the published papers do
not contain Abraham model correlations for the different stationary phases and column
temperatures that were used to achieve the reported chemical separations. Descriptor
values are known for too few solutes in several of the datasets for us to obtain a meaningful
Abraham correlation. We are in the process of addressing this problem by determining
solute descriptors for several of the compounds contained in each dataset that we plan
to use in our future studies. The current communication reports Abraham model solute
descriptor values for an additional 62 C10 through C13 methyl- and ethyl-branched alkanes
based on the published chromatographic data contained in the paper by Heinzen and
coworkers [34]. The paper contains retention indices for 157 linear and branched alkanes.
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Abraham model solute descriptors are currently known for all but 62 of the methyl- and
ethyl-branched alkanes given in the paper.

2. Computational Methodology for Calculation of Abraham Model Solute Descriptors

Normally the determination of Abraham model solute descriptors involves construct-
ing a series of mathematical expressions for the measured solute properties of the given
solute in a series of solvents and/or for a series of processes for which the lowercase
equation coefficients are known. The computational procedure is greatly simplified for
the compounds considered in the current study (see Table 1 for the complete list of alkane
solutes) because four of the solute descriptors are equal to zero. In other words, E = 0,
S = 0, A = 0 and B = 0. Methyl- and ethyl-branched alkane solutes possess no excess molar
refraction (E = 0) or polarity/polarizability (S = 0), and are not capable of hydrogen-bond
formation (A = 0 and B = 0) with the surrounding solvent molecules. The V solute de-
scriptor is readily calculated from the solute’s molecular structure, the atomic volumes of
the constituent atoms contained in the solute molecule and the number of chemical bonds
in the solute molecule as described by Abraham and McGowan [35]. The calculated V
solute descriptors for the four molecular formulas are: V = 1.5175 for C10H22; V = 1.6585
for C11H24; V = 1.7994 for C12H26; and V = 1.9403 for C13H28. Only the L solute descriptor
remains to be calculated from the published chromatographic retention data.

Table 1. Kováts Gas Chromatographic Retention Indices, KRI and Abraham Model L-Solute Descrip-
tor Values for Linear Alkanes, and Methyl- and Ethyl-branched Alkanes Eluted from a Squalane
Stationary Phase Liquid Column.

Solute KRI L (Database) L (Calculated)

Ethane 200.0 0.492 0.604
Propane 300.0 1.050 1.112
Butane 400.0 1.615 1.620

2,2-Dimethylpropane 412.6 1.820 1.684
2-Methylbutane 475.5 2.013 2.004

Pentane 500.0 2.162 2.128
2,2-Dimethylbutane 537.6 2.352 2.319
2,3-Dimethylbutane 568.1 2.495 2.474

2-Methylpentane 569.8 2.503 2.483
3-Methylpentane 584.6 2.581 2.558

Hexane 600.0 2.668 2.636
2,2-Dimethylpentane 626.3 2.796 2.770
2,4-Dimethylpentane 630.1 2.809 2.789
2,2,3-Trimethylbutane 641.1 2.918 2.845
3,3-Dimethylpentane 660.2 2.946 2.942

2-Methylhexane 666.8 3.001 2.975
2,3-Dimethylpentane 672.5 3.016 3.004

3-Methylhexane 676.5 3.044 3.025
3-Ethylpentane 686.6 3.091 3.076

2,2,4-Trimethylpentane 690.9 3.106 3.098
Heptane 700.0 3.173 3.144

2,2-Dimethylhexane 719.9 3.261 3.245
2,2,3-Trimethylpentane 738.6 3.325 3.340

2,3-Dimethylhexane 760.8 3.451 3.453
2,3,3-Trimethylpentane 761.4 3.428 3.456

3-Ethyl-2-methylpentane 762.4 3.459 3.461
2-Methylheptane 765.0 3.480 3.474
4-Methylheptane 767.4 3.483 3.486

3,4-Dimethylhexane 771.6 3.559 3.508
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Table 1. Cont.

Solute KRI L (Database) L (Calculated)

3-Methylheptane 772.6 3.510 3.513
2,2,4,4-Tetramethylpentane 774.6 3.512 3.523

3,3-Dimethylhexane 775.7 3.359 3.529
2,2,4-Trimethylhexane 777.3 3.605 3.537
2,2,5-Trimethylhexane 790.7 3.567 3.605

Octane 800.0 3.677 3.652
2,4,4-Trimethylhexane 809.7 3.683 3.701
2,3,5-Trimethylhexane 813.2 3.724 3.719
2,2-Dimethylheptane 816.2 3.739 3.734

2,2,5,5-Tetramethylhexane 820.1 3.754
2,4-Dimethylheptane 821.2 3.758 3.760

2,2,3,4-Tetramethylpentane 821.9 3.738 3.763
2,2,3-Trimethylhexane 823.3 3.762 3.770

2,2-Diemthyl-3-ethylpentane 824.4 3.740 3.776
4-Ethyl-2-methylhexane 824.9 3.760 3.778

2,6-Dimethylheptane 827.5 3.780 3.792
4,4-Dimethylheptane 828.6 3.770 3.797
2,5-Dimethylheptane 833.7 3.822 3.823
3,5-Dimethylheptane 834.4 3.826 3.827
3,3-Dimethylheptane 837.5 3.833 3.843

2,4-Dimethyl-3-ethylpentane 838.4 3.828 3.847
2,3,3-Trimethylhexane 841.7 3.832 3.864

3-Ethyl-2-methylhexane 844.4 3.850 3.878
2,3,4-Trimethylhexane 849.7 3.882 3.904
3,3,4-Trimethylhexane 855.1 3.891 3.932
2,3-Dimethylheptane 855.5 3.925 3.934

3-Ethyl-4-methylhexane 855.6 3.900 3.934
2,2,3,3-Tetramethylpentane 855.8 3.880 3.935

3-Ethyl-3-methylhexane 856.0 3.890 3.936
3,4-Dimethylheptane 858.0 3.935 3.947

4-Ethylheptane 858.2 3.944 3.948
2,3,3,4-Tetramethylpentane 861.1 3.910 3.962

4-Methyloctane 863.3 3.961 3.974
2-Methyloctane 864.8 3.966 3.981
3-Ethylheptane 867.4 3.992 3.994

2,4,6-Trimethylheptane 870.1 4.008
3-Methyloctane 870.8 3.998 4.012

2,2,4,5-Tetramethylhexane 872.1 4.018
2,2,6-Trimethylheptane 873.0 4.023

2,2,3,5-Tetramethylhexane 873.3 4.024
2,3-Dimethyl-3-ethylpentane 875.0 4.033

2,2,4-Trimethylheptane 875.7 4.037
2,2,5-Trimethylheptane 878.1 4.049

3,3-Diethylpentane 880.2 4.065 4.059
2,2-Dimethyl-4-ethylhexane 881.3 4.065
2,2,4,4-Tetramethylhexane 886.6 4.092

2,4,4-Trimethylheptane 899.4 4.157
2,5-Dimethyl-3-ethylhexane 891.4 4.116

2,5,5-Trimethylheptane 891.7 4.118
Nonane 900.0 4.182 4.160

2,2-Dimethyl-3-ethylhexane 902.1 4.171
2,3,3,5-Tetramethylhexane 903.3 4.177

3-Ethyl-2,2,4-trimethylpentane 903.9 4.180
2,4,5-Trimethylheptane 906.7 4.194

4-Ethyl-2-methylheptane 907.4 4.198
3,3,5-Trimethylheptane 907.7 4.199

2,2,3,4-Tetramethylhexane 908.8 4.205
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Table 1. Cont.

Solute KRI L (Database) L (Calculated)

2,3,5-Trimethylheptane 912.9 4.226
2,2,3-Trimethylheptane 914.4 4.233

2,2-Dimethyloctane 914.9 4.225 4.236
2,4-Dimethyl-3-isopropylpentane 915.1 4.237

3-lsopropyl-2-methylhexane 915.5 4.239
2,4-Dimethyloctane 915.8 4.265 4.240
4,4-Dimethyloctane 918.0 4.236 4.251

2,3,6-Trimethylheptane 919.0 4.257
2,4-Dimethyl-4-ethylhexane 920.7 4.265

2,2,3,4,4-Pentamethylpentane 921.7 4.270
3,5-Dimethyloctane 921.8 4.259 4.271
2,5-Dimethyloctane 921.8 4.300 4.271

2,3,4,5-Tetramethylhexane 923.1 4.277
5-Ethyl-2-methylheptane 924.8 4.286

4-lsopropylheptane 925.0 4.287
2,7-Dimethyloctane 928.5 4.282 4.305

2,2,3,3-Tetramethylhexane 928.8 4.306
3,6-Dimethyloctane 929.0 4.331 4.307

2,4-Dimethyl-3-ethylhexane 929.8 4.311
2,6-Dimethyloctane 931.5 4.304 4.320

2,3,3-Trimethylheptane 931.7 4.321
3,3-Dimethyloctane 932.0 4.307 4.323

3,4,4-Trimethylheptane 932.2 4.324
2,3,4-Trimethylheptane 933.4 4.330

2,3,4,4-Tetramethylhexane 935.0 4.338
4-Ethyl-3-methylheptane 935.7 4.341

3,4-Dimethyloctane 936.0 4.324 4.343
3,3,4-Trimethylheptane 936.6 4.346

4-Ethyl-4-methylheptane 937.6 4.351
3,3-Dimethyl-4-ethylhexane 937.8 4.352

3-Ethyl-4-methylheptane 940.5 4.366
3-Ethyl-2-methylheptane 941.0 4.337 4.368

4,5-Dimethyloctane 943.1 4.407 4.379
3,4,5-Trimethylheptane 945.0 4.361 4.389

3,4-Diethylhexane 945.8 4.393
2,3,3,4-Tetramethylhexane 949.1 4.409

2,3-Dimethyl-4-ethylhexane 949.4 4.411
4-Ethyloctane 951.5 4.409 4.422

2,3-Dimethyloctane 952.1 4.401 4.425
2-Ethyl-2-methylheptane 953.0 4.429

2,2,3,3,4-Pentamethylpentane 953.4 4.431
3,3-Diethylhexane 954.1 4.435
5-Methylnonane 957.4 4.432 4.452
4-Methylnonane 960.0 4.441 4.465
2-Methylnonane 963.9 4.453 4.485

3-Ethyloctane 964.0 4.467 4.485
3,4-Dimethyl-3-ethylhexane 964.6 4.488

3-Ethyl-2,2,3-trimethylpentane 965.7 4.494
3-Ethyl-2,3,4-trimethylpentane 969.4 4.513

3-Methylnonane 969.6 4.486 4.514
3,3,4,4-Tetramethylhexane 983.7 4.585

Decane 1000.0 4.686 4.668
Undecane 1100.0 5.191 5.176

6-Methylundecane 1151.8 5.469 5.439
4-Methylundecane 1158.6 5.495 5.474
2-Methylundecane 1164.0 5.516 5.501
3-Methylundecane 1169.6 5.550 5.530



Liquids 2023, 3 123

Table 1. Cont.

Solute KRI L (Database) L (Calculated)

Dodecane 1200.0 5.696 5.684
5,7-Dimethylundecane 1190.4 5.635
4,6-Dimethylundecane 1193.0 5.648
3,5-Dimethylundecane 1207.2 5.721
2,4-Dimethylundecane 1208.2 5.726
2,5-Dimethylundecane 1210.4 5.737
2,6-Dimethylundecane 1210.4 5.771 5.737
2,7-Dimethylundecane 1215.8 5.764
5,6-Dimethylundecane 1223.4 5.803
4,5-Dimethylundecane 1230.4 5.838
2,9-Dimethylundecane 1232.6 5.850
3,4-Dimethylundecane 1247.0 5.923
2,3-Dimethylundecane 1251.4 5.945

Tridecane 1300.0 6.200 6.192

Isothermal chromatographic retention is often described in terms of either the retention
factor [11,36]:

k(A) = (tr(A) − tm)/tm (3)

or the Kováts retention index, KRI [37]:

KRI(A) = 100 z1 + 100 (z2 − z1)

 log
(

tr(A) − tm

)
− log

(
tr(z1) − tm

)
log

(
tr(z2) − tm

)
− log (tr(z1) − tm)

 (4)

where tr(A) denotes the retention time of analyte A, tm refers to the so-called “hold-up” time
measured by an unretained compound on the column and tr(z2) and tr(z1) are the retention
times of two linear alkanes having z2 and z1 carbon atoms, respectively. Poole and cowork-
ers [12,13,38–40] have reported Abraham model correlations for describing the elution
behavior of organic solutes, in terms of log k(A), on a wide range of gas chromatographic
stationary phase liquids, and for a wide range of HPLC stationary–mobile combinations, at
different temperatures. While the published correlations are extremely useful if one wishes
to predict and/or analyze retention factor values, the published gas chromatographic data
that we wish to analyze is given in terms of KRI values.

We provide the basis for using the Abraham model to describe KRI values through the
following mathematical manipulations. First, we substitute into Equation (2) the numerical
descriptor values of the solutes:

log ksolute = eeq 2 × Esolute + seq 2 × Ssolute + aeq 2 × Asolute + beq 2 × Bsolute + leq 2 × Lsolute + ceq 2 (5)

and the numerical values of the two reference linear alkanes:

log kz1 = leq 2 × Lz1 + ceq 2 (6)

log kz2 = leq 2 × Lz2 + ceq 2 (7)

Remember that the E, S, A and B solute descriptors of the reference linear alka-
nes are equal to zero, so only the ceq 2 and leq 2 terms contribute. A combination of the
Equations (4)–(7) yields the following expression:

KRI = 100 z1 + 100
(

z2 − z1

leq2(Lz2 − Lz1)

)(
eeq 2E + seq 2S + aeq 2A + beq 2B + leq 2L − leq 2Lz1

)
(8)

which upon suitable algebraic rearrangement will give a mathematical form:

KRI = eeq 9 × E + seq 9 × S + aeq 9 × A + beq 9 × B + leq 9 × L + ceq 9 (9)
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that is consistent with the Abraham model. We have changed the subscripting so as not
imply that the numerical values of equation coefficients in Equation (9) are the same as
those in Equation (2).

Equation (9) provides the basis for the mathematical relationship between KRI and
the L-solute descriptor. In Table 1 we have assembled the Kováts retention indices for the
157 linear and branched alkanes from the published paper by Heinzen and coworkers [34],
along with the known descriptor values from our private database. In total we have 95
experimental values to use in developing our Abraham model KRI versus the L-solute
descriptor correlation. The analysis of the numerical values in the second and third columns
of Table 1 yielded the following mathematical expression:

L = 0.508(0.017) × (KRI/100) − 0.412(0.002)(
N = 95; SD = 0.036; R2 = 0.999; R2

adjusted = 0.999; and F = 65, 101
)

(10)

where N represents the number of experimental data points used in obtaining the linear
relationship, SD gives the standard deviation of the residuals, R2 and R2

adjusted refer to the
squared and adjusted squared correlation coefficient, respectively, and F is the Fisher F-
statistic. The calculated standard errors in the slope and intercept are given in parentheses
immediately following the numerical value of the corresponding equation coefficient.
Equation (10) was found to back-calculate the L-descriptor values used in the least-squares
analysis to within an average absolute deviation of AAE = 0.025 and an average error
of AE = 0.003. Figure 1 depicts the linear plot of the L descriptor values versus KRI/100
values for the 95 data points used in deriving Equation (10). The derived mathematical
relationship then allows the calculation of the L solute descriptors of the remaining 62
methyl- and ethyl-branched alkanes for which solute descriptors are not currently available.
These calculations are summarized in the last column of Table 1. Solute descriptors for these
62 additional alkanes will now be added to our private database, and will be available to
us in future planned studies directed towards determining descriptor values for additional
compounds from published chromatographic retention data.
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3. Calculation of Air-to-Polydimethylsiloxane Partition Coefficients

In earlier publications [41–43], we illustrated the prediction of the standard molar
enthalpies of vaporization and the standard molar enthalpies of sublimations at 298 K
of more than 100 different large mono-methylated and large poly-methylated alkanes
using the newly calculated solute descriptor values. Instead of simply repeating the
computational procedure using a different set of alkane molecules, we wish to calculate the
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logarithm of the air-to-polydimethylsiloxane partition coefficient, log KPDMS-air, using our
updated Abraham model correlation:

log KPDMS-air = −0.088 × Esolute + 0.493 × Ssolute + 1.056 × Asolute + 0.487 × Bsolute + 0.829 × Lsolute − 0.027 (11)

based on the experimental values for 227 different organic compounds and inert gases.
Equation (11) back-calculates the observed 227 data points to within a standard deviation of
the residuals of SD = 0.177 log units, which is comparable to the experimental uncertainty
associated with many of the data points used in the regression analysis. The equation
coefficients differ slightly from an earlier correlation reported by Sprunger and cowork-
ers [44] based on a much smaller number of 142 solute molecules. Polydimethylsiloxane,
PDMS, is a coating often found in microextraction devices used to sample and analyze
total hydrocarbons present in unknown air samples. Martos and coworkers [45] reported
experimental log KPDMS-air for 29 smaller C6–C10 branched alkanes. The authors did not
determine the experimental values for the larger C11–C13 alkane molecules considered in
the current study.

In the third column of Table 2 we have given the values predicted by Equation (11) us-
ing either our existing solute descriptors or the values determined in the current study. The
numerical values that are tabulated in the last column were retrieved from the published
chemical literature [44,45]. For several of the compounds there were multiple experimental
values that were determined by independent research groups. Sometimes the indepen-
dently determined experimental values differed significantly as was the case for: decane,
log KPDMS-air = 3.87 [46] versus log KPDMS-air = 3.50 [44]; undecane, log KPDMS-air = 4.40 [47]
versus log KPDMS-air = 3.89 [44]; and 3,3-dimethylpentane, log KPDMS-air = 3.42 [45] ver-
sus log KPDMS-air = 3.70 [48]. No attempt was made to select the experimental values
that came closest to the calculated values based on Equation (11) as we wished to illus-
trate that predictive expressions can be used to identify possible outlier values in need
of redetermination.

Table 2. Comparison of the Abraham Model Calculated versus Experimental Logarithms of the
Air-to-Polydimethylsiloxane Partition Coefficients, log KPDMS-air, for the Linear Alkanes, and Methyl-
and Ethyl-branched Alkanes Considered in the Current Study.

Solute L Value Log KPDMS-air
calc Log KPDMS-air

exp

Ethane 0.492 0.380 0.370
Propane 1.050 0.842 0.880
Butane 1.615 1.310 1.410

2,2-Dimethylpropane 1.820 1.480 1.390
2-Methylbutane 2.013 1.640

Pentane 2.162 1.763 1.770
2,2-Dimethylbutane 2.352 1.920
2,3-Dimethylbutane 2.495 2.039

2-Methylpentane 2.503 2.045
3-Methylpentane 2.581 2.110 2.200

Hexane 2.668 2.182 2.200
2,2-Dimethylpentane 2.796 2.288
2,4-Dimethylpentane 2.809 2.299 2.420
2,2,3-Trimethylbutane 2.918 2.389 2.450
3,3-Dimethylpentane 2.946 2.412

2-Methylhexane 3.001 2.458 2.590
2,3-Dimethylpentane 3.016 2.470 2.610

3-Methylhexane 3.044 2.493
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Table 2. Cont.

Solute L Value Log KPDMS-air
calc Log KPDMS-air

exp

3-Ethylpentane 3.091 2.532
2,2,4-Trimethylpentane 3.106 2.545

Heptane 3.173 2.600 2.650
2,2-Dimethylhexane 3.261 2.673

2,2,3-Trimethylpentane 3.325 2.726 2.760
2,3-Dimethylhexane 3.451 2.830 2.990

2,3,3-Trimethylpentane 3.428 2.811
3-Ethyl-2-methylpentane 3.459 2.837

2-Methylheptane 3.480 2.854 3.000
4-Methylheptane 3.483 2.857 3.030

3,4-Dimethylhexane 3.559 2.920
3-Methylheptane 3.510 2.879 3.040

2,2,4,4-Tetramethylpentane 3.512 2.881
3,3-Dimethylhexane 3.359 2.754

2,2,4-Trimethylhexane 3.605 2.958
2,2,5-Trimethylhexane 3.567 2.926

Octane 3.677 3.018 3.170
2,4,4-Trimethylhexane 3.683 3.023
2,3,5-Trimethylhexane 3.724 3.056
2,2-Dimethylheptane 3.739 3.069

2,2,5,5-Tetramethylhexane 3.754 3.081
2,4-Dimethylheptane 3.758 3.085

2,2,3,4-Tetramethylpentane 3.738 3.068
2,2,3-Trimethylhexane 3.762 3.088

2,2-Diemthyl-3-ethylpentane 3.740 3.070
4-Ethyl-2-methylhexane 3.760 3.086

2,6-Dimethylheptane 3.780 3.103
4,4-Dimethylheptane 3.770 3.095
2,5-Dimethylheptane 3.822 3.138
3,5-Dimethylheptane 3.826 3.141 3.290
3,3-Dimethylheptane 3.833 3.147

2,4-Dimethyl-3-ethylpentane 3.828 3.143
2,3,3-Trimethylhexane 3.832 3.146

3-Ethyl-2-methylhexane 3.850 3.161
2,3,4-Trimethylhexane 3.882 3.187
3,3,4-Trimethylhexane 3.891 3.195
2,3-Dimethylheptane 3.925 3.223 3.380

3-Ethyl-4-methylhexane 3.900 3.202
2,2,3,3-Tetramethylpentane 3.880 3.186

3-Ethyl-3-methylhexane 3.890 3.194
3,4-Dimethylheptane 3.935 3.231 3.380

4-Ethylheptane 3.944 3.239
2,3,3,4-Tetramethylpentane 3.910 3.210

4-Methyloctane 3.961 3.253
2-Methyloctane 3.966 3.257
3-Ethylheptane 3.992 3.278

2,4,6-Trimethylheptane 4.008 3.292
3-Methyloctane 3.998 3.283

2,2,4,5-Tetramethylhexane 4.018 3.300
2,2,6-Trimethylheptane 4.023 3.304

2,2,3,5-Tetramethylhexane 4.024 3.305
2,3-Dimethyl-3-ethylpentane 4.033 3.312

2,2,4-Trimethylheptane 4.037 3.315
2,2,5-Trimethylheptane 4.049 3.325

3,3-Diethylpentane 4.065 3.339 3.420
2,2-Dimethyl-4-ethylhexane 4.065 3.339
2,2,4,4-Tetramethylhexane 4.092 3.361

2,4,4-Trimethylheptane 4.157 3.415
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Table 2. Cont.

Solute L Value Log KPDMS-air
calc Log KPDMS-air

exp

2,5-Dimethyl-3-ethylhexane 4.116 3.381
2,5,5-Trimethylheptane 4.118 3.383

Nonane 4.182 3.436 3.250
2,2-Dimethyl-3-ethylhexane 4.171 3.426
2,3,3,5-Tetramethylhexane 4.177 3.431

3-Ethyl-2,2,4-trimethylpentane 4.180 3.434
2,4,5-Trimethylheptane 4.194 3.446

4-Ethyl-2-methylheptane 4.198 3.449
3,3,5-Trimethylheptane 4.199 3.450

2,2,3,4-Tetramethylhexane 4.205 3.454
2,3,5-Trimethylheptane 4.226 3.472
2,2,3-Trimethylheptane 4.233 3.478

2,2-Dimethyloctane 4.225 3.471 3.640
2,4-Dimethyl-3-isopropylpentane 4.237 3.481

3-lsopropyl-2-methylhexane 4.239 3.483
2,4-Dimethyloctane 4.265 3.504
4,4-Dimethyloctane 4.236 3.480

2,3,6-Trimethylheptane 4.257 3.497
2,4-Dimethyl-4-ethylhexane 4.265 3.505

2,2,3,4,4-Pentamethylpentane 4.270 3.509
3,5-Dimethyloctane 4.259 3.499
2,5-Dimethyloctane 4.300 3.533

2,3,4,5-Tetramethylhexane 4.277 3.515
5-Ethyl-2-methylheptane 4.286 3.522

4-lsopropylheptane 4.287 3.523
2,7-Dimethyloctane 4.282 3.518

2,2,3,3-Tetramethylhexane 4.306 3.539
3,6-Dimethyloctane 4.331 3.559

2,4-Dimethyl-3-ethylhexane 4.311 3.543
2,6-Dimethyloctane 4.304 3.537

2,3,3-Trimethylheptane 4.321 3.551
3,3-Dimethyloctane 4.307 3.539 3.700

3,4,4-Trimethylheptane 4.324 3.553
2,3,4-Trimethylheptane 4.330 3.558

2,3,4,4-Tetramethylhexane 4.338 3.565
4-Ethyl-3-methylheptane 4.341 3.568

3,4-Dimethyloctane 4.324 3.553
3,3,4-Trimethylheptane 4.346 3.571

4-Ethyl-4-methylheptane 4.351 3.576
3,3-Dimethyl-4-ethylhexane 4.352 3.576

3-Ethyl-4-methylheptane 4.366 3.588
3-Ethyl-2-methylheptane 4.337 3.564

4,5-Dimethyloctane 4.407 3.622
3,4,5-Trimethylheptane 4.361 3.584

3,4-Diethylhexane 4.393 3.610
2,3,3,4-Tetramethylhexane 4.409 3.624

2,3-Dimethyl-4-ethylhexane 4.411 3.625
4-Ethyloctane 4.409 3.624

2,3-Dimethyloctane 4.401 3.617
2-Ethyl-2-methylheptane 4.429 3.640

2,2,3,3,4-Pentamethylpentane 4.431 3.642
3,3-Diethylhexane 4.435 3.645
5-Methylnonane 4.432 3.643
4-Methylnonane 4.441 3.650
2-Methylnonane 4.453 3.660

3-Ethyloctane 4.467 3.672 3.840
3,4-Dimethyl-3-ethylhexane 4.488 3.689

3-Ethyl-2,2,3-trimethylpentane 4.494 3.694



Liquids 2023, 3 128

Table 2. Cont.

Solute L Value Log KPDMS-air
calc Log KPDMS-air

exp

3-Ethyl-2,3,4-trimethylpentane 4.513 3.709
3-Methylnonane 4.486 3.687 3.850

3.3.4.4-Tetramethylhexane 4.585 3.770
Decane 4.686 3.853 3.500

Undecane 5.191 4.271 3.890
6-Methylundecane 5.469 4.501
4-Methylundecane 5.495 4.523
2-Methylundecane 5.516 4.540
3-Methylundecane 5.550 4.568

Dodecane 5.696 4.689 4.290
5,7-Dimethylundecane 5.635 4.639
4,6-Dimethylundecane 5.648 4.650
3,5-Dimethylundecane 5.721 4.710
2,4-Dimethylundecane 5.726 4.714
2,5-Dimethylundecane 5.737 4.723
2,6-Dimethylundecane 5.771 4.751
2,7-Dimethylundecane 5.764 4.746
5,6-Dimethylundecane 5.803 4.778
4,5-Dimethylundecane 5.838 4.807
2,9-Dimethylundecane 5.850 4.816
3,4-Dimethylundecane 5.923 4.877
2,3-Dimethylundecane 5.945 4.896

Tridecane 6.200

4. Summary

The current study represents a continuation of our ongoing efforts to determine
experimental-based solute descriptors from measured solubility, partition coefficient and/or
chromatographic retention data. Abraham model solute descriptors are reported for the
first time for 62 additional C10 through C13 methyl- and ethyl-branched alkanes. The
numerical values were determined using published gas chromatographic retention Kováts
retention indices for 157 alkane solutes eluted from a squalane stationary phase column. The
95 alkane solutes that have known descriptor values were used to construct the Abraham
model KRI versus L-solute descriptor correlation needed in our calculations. The calculated
solute descriptors can be used in conjunction with previously published Abraham model
correlations to predict a wide range of important physico-chemical and biological prop-
erties, including partition coefficients, vapor pressures, the standard molar enthalpies of
vaporization and sublimation, chromatographic retention factors and retention times, nasal
pungencies and eye irritation thresholds. Of the aforementioned properties, the chromato-
graphic retention times will likely be the most useful as this can aid in the identification of
compounds present in unknown chemical samples. The predictive computations are illus-
trated by calculating the air-to-polydimethylsiloxane partition coefficients of the 157 alkane
solutes. Polydimethylsiloxane, PDMS, is a coating often found in microextraction devices
used to sample and analyze total hydrocarbons present in unknown air samples.

As part of the current study, an expression was derived which shows the mathematical
relationship between the equation coefficients given in the Abraham model log k expression
versus those used in the KRI correlation. The derived relationship, Equation (8), provides a
possible means to conveniently obtain the Abraham model KRI expression from existing
log k correlations. All that is needed in the conversion is the L-solute descriptor values of
the linear alkanes used in the calculation of Kováts retention indices.

We note at this time that the popularity of the Abraham solvation parameter model
has recently prompted several researcher groups [49–52] to develop either group contri-
bution, quantum chemical or machine learning models to estimate the numerical values
of solute descriptors. Our experience in using the different estimation software programs
is that the methods do provide fairly good estimates of the descriptor values for simple
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compounds; however, as the structural complexity of the solute increases, the “quality”
of the estimations decreases. For example, we have previously shown that two soft-
ware programs overestimate the hydrogen-bond acidity (e.g., A solute descriptor) for
4,5-dihydroxyanthraquinone-2-carboxylic acid [4], 1,4-dihydroxyanthraquinone [53] and
1,8-dihydroxyanthraquinone [53] when compared with values based on measured solu-
bility data. The experimental-based A solute descriptor values were much smaller, and
suggested the formation of strong intramolecular hydrogen bonds between the hydrogen
of the –OH functional groups and the oxygen atom of the neighboring aromatic carbonyl
group. The estimation methods do not appear to incorporate this structural feature and
possible intramolecular hydrogen-bond formation in their calculation approach. We have
further suggested that poor estimations might also result from the inadequate represen-
tation of select functional groups in the datasets used in developing/training the various
group contribution, machine learning and quantum chemical methods [54,55]. This is not
intended as a criticism of the estimation methods, but rather a statement that the methods
are only as “good” as the datasets used in their development. Experimental-based solute
descriptors need to be determined for molecules that have a greater chemical diversity and
structural complexity. To paraphrase the recent comments of Poole and Atapattu [23]—the
expansion of the Abraham model capabilities will stall without other researchers’ participa-
tion in the determination of solute descriptors. The calculation of the solute descriptors for
the 62 additional branched alkanes considered in the current communication is the first
step in this endeavor.
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