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Abstract: We establish a direct route for the accurate determination of the solvent effect on the
Krichevskii parameter of a solute, based solely on the contrasting solvation behavior of the solute in
the desired solvent relative to that of the reference solvent, i.e., in terms of the distinct solvationGibbs
free energies of the solute and the corresponding Krichevskii parameters of an ideal gas solute in the
pair of solvents. First, we illustrate the proposed approach in the determination of the H/D−solvent
effect on the Krichevskii parameter of gaseous solutes in aqueous solutions, when the solvents are
different isotopic forms (isotopomers) of water, and then, by generalizing the approach to any pair
of solvents. For that purpose, we (a) identify the links between the standard solvation Gibbs free
energy of the i−solute in the two involved solvent environments and the resulting Krichevskii pa‑
rameters, (b) discuss the fundamentally based linear behavior between the Krichevskii parameter
and the standard solvation Gibbs free energy of the i−solute in an α−solvent, and interpret two em‑
blematic cases of solutions involving either an ideal gas solute or an i−solute behaving identically
as the solvating species, as well as (c) provide a novel microstructural interpretation of the solvent
effect on the Krichevskii parameter according to a rigorous characterization of the critical solvation
as described by a finite unambiguous structure making/breaking parameter S∞

iα (SR) of the i−solute
in the pair of α−solvents.

Keywords: H/D solvation effects; water isotopomers; Krichevskii parameter; molecular‑based
solvation thermodynamics; Kirkwood‑Buff fluctuation theory; solute–solvent intermolecular
interaction asymmetries; local density perturbation; structure making/breaking parameter; short‑
and long‑range correlations; Gibbs free energy of transfer

1. Introduction
The Krichevskii parameter defines a finite‑size quantity as the limiting critical value

of the isothermal‑isochoric rate of change of the system’s pressure caused by the muta‑
tion (aka alchemical transformation) of an α−solvent particle into an i−solute species,
in an otherwise pure solvent, i.e., lim

T,ρo
α→critical

(∂P/∂xi)
∞
Tρ ≡ AKr [1]. Even though AKr is

a finite quantity, its magnitude and sign are the result of the underlying solute‑solvent
intermolecular interaction asymmetry [2–4], where the developing pressure perturbation
propagates across the entire system given that the solvent’s correlation length diverges at
criticality [5,6].

The interest on the Krichevskii parameter has grown immensely since its inception [2],
in part, because it has become a key quantity in the description and/or correlation of the
thermodynamic behavior of dilute solutions, especially for non‑electrolyte aqueous sys‑
tems [7–13]. Its relevance has generated the urgency for experimental approaches to its
determination, involving a variety of methodologies as discussed elsewhere [14–16]. Un‑
fortunately, the accumulated tabulations of Krichevskii parameters, especially involving
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light and heavy water as well as carbon dioxide as solvents [15–21], involve significantly
large uncertainties [4,14,22], a condition that hinders our ability to make accurate interpre‑
tations [23].

On the one hand, this (uncertainty) issue becomes exacerbated when studying the
solvation of gases in isotopomers of a solvent such as light and heavy water, where the
isotopic effect on the Krichevskii parameters given by their “brute‑force” difference(
Ai,D2O

Kr −Ai,H2O
Kr

)
, is typicallymore than an order ofmagnitude smaller than the observed

uncertainties ofAi,α
Kr for the individual α−isotopic form of the solvent [24]. In other words,

this is the undesirable situation involving typically small differences between two large
quantities exhibiting significant uncertainties whose outcome is substantially smaller than
its combined uncertainty.

On the other hand, it appears appealing to have a direct route for the assessment of
the effect of the type of solvent on the resulting Krichevskii parameter based solely on
the contrasting solvation characteristic of the i−solute in the desired k−solvent, relative
to that of a reference j−solvent, i.e., in terms of the distinctive standard solvation Gibbs
free energies of the solute and the Krichevskii parameters of an ideal gas solute in the
pair of solvents. Indeed, the matter we would like to address here can be encapsulated in
the following two questions: (a) how could we determine the Krichevskii parameter of an
i−solute in a k−solvent, Ai,k

Kr, when we accurately know not only the solvation behavior
of the i−solute in a j−solvent at ambient conditions but also, its Krichevskii parameter
Ai,j

Kr?, and (b) how could we determine directly the change in the Krichevskii parameter
of an i−solute, ∆AKr ≡ Ai,k

Kr − Ai,j
Kr, when we replace the j−solvent with a k−solvent

and simultaneously know accurately the solvation behavior at ambient conditions of the
i−solute in both solvents?

In thiswork, we suggest an approach to answer these questions, by establishing routes
for the determination of the isotopic effect on the Krichevskii parameter of a solute, i.e.,
when the solvents are isotopomers, and then, by generalizing the approach to any pair
of solvents. For that purpose, in Section 2, we provide the thermodynamic foundations
underlying the isobaric‑isothermal transfer of an i−solute from the j−solvent phase to
the k−solvent phase, as characterized by the transfer Gibbs free energy of the dilute so‑
lute. Therefore, we draw the link between the standard solvation Gibbs free energy of
the i−solute in the pair of solvent environments, ∆hG∞

i,α, and the resulting Krichevskii
parameters, Ai,α

Kr. Then, we identify the aqueous systems of interest and the sources of
experimental data in Section 3, discuss the fundamentally based linear behavior of the
Ai,α

Kr = ℑ
(

∆hG∞
i,α

)
representation in terms of the solute‑solvent intermolecular interac‑

tion asymmetry, compare the resulting H/D−solvent effect on the Krichevskii parame‑
ters of selected aqueous gases, and consequently, interpret two emblematic cases of aque‑
ous solutions involving either an ideal gas solute or an i−solute behaving as the solvating
α−isotopic form of water. To complete the development, in Section 4 we provide a novel
microstructural interpretation of the solvent effect according to a rigorous characterization
of the critical solvation in terms of a finite unambiguous structuremaking/breaking param‑
eter S∞

iα (SR), and identify some relevant observations. Finally, we close the manuscript
with some additional remarks and outlook.

2. Fundamentals fromMolecular Thermodynamics
Beforewe attempt the determination of the solvent effect on theKrichevskii parameter

of a solute, we need to identify some essential thermodynamic relations and corresponding
molecular‑based interpretations. For that purpose, in what follows, we provide the frame‑
work for the microscopic‑to‑macroscopic rigorous description of the solvation process of
a solute and its concomitant solute transfer between two distinctive solvent environments
at standard (T, P) state conditions.
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2.1. Molecular‑Based Description of the Solvent Effect on the Solvation Behavior of a Solute
Our goal here is to assess how the replacement of the j−solvent with a k−solvent

affects the Krichevskii parameter of an i−solute, while avoiding the need for any experi‑
mental data of the solute behavior at the critical conditions of the two solvents. In Figure 1,
we illustrate a thought experiment involving a four‑step solvation‑cycle path for a sin‑
gle i−solute species, first in an pure j−solvent, and then in a pure k−solvent at fixed
(T, P) state conditions during the process of formation of the infinitely dilute systems.
The process comprises N = Nj solvent molecules in which Ni << Nj of them are
distinguishable by their i−solute levels, with Ni → 0 in the thermodynamic limit, i.e.,
lim

N,V→∞
(N/V)TP = ρo

j (T, P) [25]. This initial system represents an ideal solution, from

the viewpoint of the Lewis–Randall rule, because the residual properties of the (N − Ni)
solvent‑labeled and those of the Ni solute‑labeled molecules are all identical [1,26].
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Figure 1. Schematic of the isothermal‑isobaric solvation cycle used to define the Gibbs free energy
of transfer of a solute between two solvent environments, where we identify the four‑stage mutation
process, the type of residual properties involved, the resulting type of infinite dilution solution, and
its corresponding Krichevskii parameter.

Then, the Ni solute‑labeled molecules undergo an alchemical mutation process (à la
Kirkwood’s coupling‑parameter charging) [27] in which the strength of their intermolecu‑
lar potential parameters change from the original values of the solvent‑solvent to those of
the final solute‑solute interactions. This step generates the desired non‑ideal solution of the
infinitely dilute i−solute in the j−solvent, and involves the following isothermal‑isobaric
Gibbs free energy change [28],

∆gR
i,j(T, P) = µ∞,R

i (T, P)− µo,R
j (T, P)

= kT ln
(
HIS

i,j / f o
j

)
TP

(1)

where the superscript R denotes an isobaric‑isothermal residual property, whileHIS
i,j (T, P)

and f o
j (T, P) are the Henry’s law constant of the i−solute in the pure j−solvent, and its
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corresponding fugacity at the (T, P) state conditions. Likewise, for the desired non‑ideal
solution of the infinitely dilute i−solute in the k−solvent, we have that

∆gR
i,k(T, P) = µ∞,R

i (T, P)− µo,R
k (T, P)

= kT ln
(
HIS

i,k/ f o
k

)
TP

(2)

Finally, we alchemicallymutate the (N − Ni) j−solvent labeledparticles into k−solvent
along an isothermal‑isobaric path described by the following Gibbs free energy change,

∆go,R
j→k(T, P) = kT ln

(
ϕo

k/ϕo
j

)
TP

= kT ln
(

f o
k / f o

j

)
TP

(3)

so that, the corresponding change of Gibbs free energy ∆go
tr(T, P) involved in the transfer

of the infinitely dilute i−solute from the j−solvent to the k−solvent can be extracted from
the thermodynamic cycle −∆go

tr + ∆gR
i,k + ∆go,R

j→k − ∆gR
i,j = 0, i.e.,

∆go
tr(T, P) = −∆gR

i,j + ∆gR
i,k + ∆go,R

j→k

= kT
[
− ln

(
HIS

i,j / f o
j

)
+ ln

(
HIS

i,k/ f o
k

)
+ ln

(
f o
k / f o

j

)]
= kT ln

(
HIS

i,k/HIS
i,j

) (4)

For clarity sake, and to distinguish the behavior of the i−solute at infinite dilution, the
subindices in the residual property P∞,R

i(a) describe the i−solute at infinite dilution in the
α−solvent, i.e., α = j or α = k. Alternative solvation‑cycle paths, associated
with Ben‑Naim solvation approach [29], are briefly described in Section SI‑1 of the
Supplementary Materials.

2.2. Link between the Solvent Effect on the Solute’s Solvation and Its Krichevskii Parameter
Note that, while Equation (3) involves only the properties of the two pure solvents,

Equations (1) and (2) represent the solvation of the infinitely dilute i−solute in either the
j−solvent or the k−solvent. Consequently, the finite change of Gibbs free energy associ‑
ated with these two processes can be written as follows [1],

∆gR
i,α(T, P) =

∫ ρ(P)
0

[(
υ̂∞

i − υo
α

)
/(ρo

ακo
α)
]
dρ

=
∫ ρ(P)

0 ρo,−2
α (∂P/∂xi)

∞
Tρdρ

(5)

where υ̂∞
i and υo

α = 1/ρo
α denote the partial molar volumes of the i−solute at infinite dilu‑

tion and the pure α−solvent, respectively. Moreover, since lim
T,ρo

α→critical
(∂P/∂xi)

∞
Tρ = Ai,α

Kr

describes the Krichevskii parameter of the i−solute in the α−solvent [2], we are able to
express the integrand of Equation (5) in the reduced (ℜ) form as follows,∫ ρ(P)

0 ρo,−2
α,ℜ (∂P/∂xi)

∞
Tρ,ℜdρα,ℜ = Tα,ℜ

(
AIG_i,α

Kr /Ai,α
Kr

)
ln
(
HIS

i,α/ f o
α

)
= Fα(T, P)

(6)

where (· · · )ℜ ≡ (· · · )/(· · · )c represents a reduced quantity for the involved solute‑solvent
intermolecular asymmetry, and Fα(T, P) defines a general and unique function of the
state conditions of the α−solvent. The uniqueness of Fα(T, P) comes from the fact that(

∂Fα/∂ρo
α,ℜ

)
T
=

[
ρo,2

α

(
Co

αα − C∞
βα

)]
ℜ

/Tα,ℜ depends only on the solute‑solvent intermolec‑
ular asymmetry as accounted for by the difference of direct correlation function integrals
(DCFI)

(
Co

αα − C∞
βα

)
, i.e., the counterpart to the total correlation function (Kirkwood‑Buff)

integrals (TCFI),
(

Go
αα − G∞

βα

)
.
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Indeed, we have shown thatFα(T, P) = −kT ln
(

zo
j ϕo

j

)
≡ −µo,r

j [4], afterwe identified

the relations ϕ̂∞,IG_i
i = γ∞,LR,IG_i

i =
(

1/zo
j

)
TP

[30] where γ∞,LR,IG_i
i (T, P) describes the

Lewis‑Randall activity coefficient of an ideal gas i−solute (IG_i) while zo
j (T, P) = P/kTρo

j
represents the compressibility factor of the pure j−solvent, and the superindex r identifies
an isochoric‑isothermal residual property. This equation provides the rigorous theoret‑
ical foundation to the empirical linear regression originally reported by Plyasunov and
Shock [31], and embodies a fundamentally based route to the accurate estimation of the
corresponding Krichevskii parameters [4], i.e.,

Ai,α
Kr = AIG_i,α

Kr

[
ln
(
HIS

i,α/ f o
α

)
/ln

(
HIS,IG_i

i,α / f o
α

)]
TP

= −AIG_i,α
Kr

[
ln
(

ϕ̂∞
i,α/ϕo

α

)
/ln(ϕo

αzo
α)
]

TP

(7)

whereAIG_i,α
Kr = kTα,cρo

α,c defines the Krichevskii parameter of the i−solute as an ideal gas
in the α−solvent with α = (j, k) [32].

Equation (7) suggests two possible scenarios depending on the solvation properties
available for the i−solute in the desired α−solvent: if we had the standard Gibbs free
energy of solvation (or its associated Henry’s constant) of an i−solute in both j− and
k−solvents at standard conditions, we coulddetermine the solvent effect on theKrichevskii
parameter of an i−solute defined as the difference ∆AKr ≡ Ai,k

Kr −Ai,j
Kr, i.e.,

∆AKr = AIG_i,j
Kr

[(
∆hG∞

i(j) − ∆hG∞
i=j

)
/kT ln

(
ϕo

j zo
j

)]
TPo

−

AIG_i,k
Kr

[(
∆hG∞

i(k) − ∆hG∞
i=k

)
/kT ln

(
ϕo

kzo
k
)]

TPo

(8)

where ∆hG∞
i=α(T, Po) = kT ln

(
ϕo

αmo
i MWα

)
TPo

(see (A3) from Appendix A). Because
Equation (8) involves only standard solvation Gibbs free energies at normal conditions,
data typically available with significant accuracy, this expression represents a direct route
for the evaluation of ∆AKr, i.e., it provides an answer to the question (b) of the Introduction.
Otherwise, if we had at our disposal the Gibbs free energy of transfer, ∆go

tr(T, P), rather
than the standard Gibbs free energy ∆hG∞

i(k)(T, P), in addition to the Krichevskii parame‑

ter of the i−solute in the j−solvent, Ai,j
Kr, then we could proceed as follows. First, we need

to link the two Ai,α
Kr expressions involving the solvents, α = (j, k), with the one describ‑

ing the Gibbs free energy of transfer of the i−solute from the j−solvent environment to
the k−solvent environment, Equation (4), at the typically measured standard (T, P) state
conditions. For that purpose, we isolate lnHIS

i,α(T, P) from Equation (7) so that,

lnHIS
i,α(T, P) = −

(
Ai,α

Kr/AIG_i,α
Kr

)
ln(ϕo

αzo
α) + ln f o

α

= −β
(
Ai,α

Kr/AIG_i,α
Kr

)
µo,r

α + βµo,R
α + ln P

(9)

where we have identified the two distinctive residual chemical potentials, defined at ei‑
ther fixed (T, P) or its corresponding fixed (T, ρo

α), i.e., µR
α (T, P) = µr

α(T, ρo
α) − kT ln zo

α

with zo
α(T, P) = P/kTρo

α [33], µo,R
α (T, P) = kT ln ϕo

α, and µo,r
α (T, ρo

α) = kT ln(ϕo
αzo

α). Then,
we introduce lnHIS

i,α(T, P) from Equation (8) into the expression of the transfer Gibbs free
energy, Equation (4), to obtain

∆go
tr(T, P) = kT ln

(
HIS

i,k/HIS
i,j

)
= −

(
Ai,k

Kr/AIG_i,k
Kr

)
µo,r

k +
(
Ai,j

Kr/AIG_i,j
Kr

)
µo,r

j + µo,R
k − µo,R

j

= −kT
(
Ai,k

Kr/AIG_i,k
Kr

)
ln
(
ϕo

kzo
k
)
+ kT

(
Ai,j

Kr/AIG_i,j
Kr

)
ln
(

ϕo
j zo

j

)
+

kT ln
(

ϕo
k/ϕo

j

) (10)
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Therefore, the Krichevskii parameter of the i−solute in any k−solvent, Ai,k
Kr, can be

determined relative to that for the reference j−solvent, Ai,j
Kr, as follows,

Ai,k
Kr =

(
AIG_i,k

Kr /µo,r
k

)
TP

[(
Ai,j

Kr/AIG_i,j
Kr

)
µo,r

j +
(

µo,R
k − µo,R

j − ∆go
tr

)]
TP

(11)

Moreover, because the process depicted in Figure 1 involves normal (standard) state con‑
ditions, the determination of the Krichevskii parameter Ai,k

Kr becomes straightforward. In
fact, provided that the transfer free energy between the two solvents is available, it requires
only the isobaric‑isothermal and isochoric‑isothermal residual chemical potentials of the
pair of pure solvents involved, which are quantities accurately known for most solvents at
normal conditions. In other words, Equation (11) provides an answer to question (a) in the
Introduction, and leads to the essential foundations to expand the analysis in Section 3.4
of question (b) in the Introduction.

3. Experimental Evidence of the Solvent H/D−Isotope Substitution Effects and
Solvation Interpretation

While the describedmolecular‑based approach to the solvent effect on the Krichevskii
parameter of an i−solute applies to any type of solvent, here we focus our attention on the
special case of H/D−isotopic substituted aqueous solvents, i.e., water isotopomers. The
rationale for this choice is twofold: (a) these near‑critical aqueous environments are fre‑
quently found in electric power generation and pose significantly challenging to study
experimentally [34–36], and (b) the small magnitude of the H/D−effect on the thermo‑
dynamic properties of the aqueous solvent makes the alluded brute‑force subtraction ap‑
proach unreliable as a result of the large uncertainties involved in the individual near‑
critical quantities (vide infra). As a reference, and to be more precise, the typical uncer‑
tainties of the experimental Krichevskii parameters might reach±50 MPa and even higher
depending on the evaluation method [14,16] while the H/D−effect on the Krichevskii pa‑
rameters might amount to a small fraction of the alluded uncertainty.

Typically, the hydration (solvation) behavior of a solute is analyzed in terms of stan‑
dard thermodynamic quantities and their relation to the transfer process of a solute from
the ideal gas phase to its standard state in solution. In fact, we have two alternative paths to‑
ward the determination of an i−solute standard state property P̂∞

i (T, P) namely, through
its standard state dissolution quantity∆solP̂∞

i (T, P) = P̂∞
i (T, P)− P̂ o

i (T, P) or its standard
state hydration (solvation) counterpart, ∆hP̂∞

i (T, P) = P̂∞
i (T, P) − P̂ IG

i (T, Po) where IG
stands for and ideal gas phase, the superscripts (∞, o) describe environments at infinite di‑
lution and pure component, respectively, while Po = 0.1 MPa [37]. Here, we are focusing
on P̂∞

i (T, P) = Ĝ∞
i (T, P) ≡ µ∞

i (T, P), the partial molar Gibbs free energy of the i−solute
at infinite dilution under a diversity of manifestations, including the standard hydration
(solvation) Gibbs free energies ∆hG∞

i (T, Po) [38], Ben‑Naim’s solvation Gibbs free energy
∆G∗

i (T, P)σ [29], and the standard Gibbs free energy of solution ∆µ∞
i (T, P)σ [39,40], whose

meanings and their interrelations are provided in Appendix A.

3.1. Identity of the Aqueous Solute Species and the Sources of Their Experimental Data
The systems targeted here are aqueous solutions of gaseous solutes, where the aque‑

ous environments are either light or heavy water, and the i−solute species include simple
and noble gases, as well as some halogen‑substituted light hydrocarbons. In particular,
the list of i−solutes include He, Ne, Ar, Kr, Xe, Rn, H2, D2, N2, O2, CH4, C2H6, C3H8,
SF6, CCl2F2, CClF3, and CF4. This selection is based on the availability of (either assumed
or considered) reliable experimental data for either the Krichevskii parameters of the so‑
lutes in both light and heavy aqueous systems or their hydration and/or transfer Gibbs
free energies. In fact, we invoked the study of the near‑critical behavior of the Henry’s
law constant and vapor‑liquid distribution coefficient of several solutes in light and heavy
water by Fernandez‑Prini et al. [24] complemented by available information on the Gibbs
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free energy of hydration of these gases in both aqueous environment as well as the their
Gibbs free energy of transfer between light and heavy water [39,41,42].

In Table 1, we present the calculated Krichevskii parameters of the dissolved gases
in light and heavy aqueous systems and the resulting standard Gibbs free energies of hy‑
dration from the regressions of Ref. [24] as well as from solubility measurements from
Refs. [39,41,42] as explicitly indicated. In particular, in columns 2 and 3 of Table 1, we re‑
veal the Krichevskii parameters of the i−solutes in light and heavy water as determined
from the parameter E resulting from the regression of the solute distribution coefficients
in Ref. [24]. Moreover, in columns 4 and 5, we display the corresponding data for the
Gibbs free energies of hydration derived from the regression of the Henry’s law constants
in Ref. [24], and complemented with those calculated from solubility measurements in
Refs. [39,41,42].

Table 1. Krichevskii parameters of gases in light and heavy aqueous systems from regressed
E−coefficient of Fernandez‑Prini et al. [24] and corresponding standard Gibbs free energies
of hydration.

Solute Ai,H2O
Kr = 0.5RρocE

i,H2O (a) Ai,D2O
Kr = 0.5RρocE

i,D2O (a) ∆hG∞
i (H2O) (b) ∆hG∞

i (D2O) (b)

He 1661 1673 19.418 19.482

Ne 1836 1780 19.038 19.132

Ar 1692 1656 16.242 16.321

Kr 1668 1642 14.773 14.987

Xe 1482 1487 13.404 13.655

Rn — — 11.590 11.432

H2 1675 — 17.687 17.394 (c)

D2 — 1562 17.565 (c) 17.222 (c)

N2 1750 — 18.149 18.251

O2 1688 — 16.479 16.539

CH4 1623 1617 16.231 16.388

C2 H6 1570 — 15.535 15.671

C3 H8 — — 16.108 16.265

SF6 2103 — 20.510 20.643

CCl2F2 — — 14.383 14.512

CClF3 — — 17.310 17.060

CF4 — — 20.960 21.111
(a) Ref. [24]; (b) In units of KJ/mol, calculated from the correlations of the Henry’s law constants in Ref. [24], and
gas solubilities from Refs. [39,41,42]; (c) Calculated in Section SI‑2 of the Supplementary Materials.

3.2. Brute‑Force Difference Approach to the Solvent H/D−Effect on the Krichevskii Parameter of
a Solute

The obvious first attempt to assess the solvent effect is the simple subtraction
between the third and second columns of Table 1 as illustrated in Table 2, i.e.,
∆AKr ≡ Ai,D2O

Kr −Ai,H2O
Kr , where we also provide the quoted uncertainties from Ref. [24].

It becomes immediately evident that we cannot expect reliable results for the solvent (and
particularly, for the H/D−isotopic substitution) effects from the corresponding values of
the Krichevskii parameter of a solute because their subtraction will result in a magnifica‑
tion of the individual uncertainties [43].
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Table 2. Isotopic substitution effect on the Krichevskii parameters of gases in light and heavy aque‑
ous systems from regressed coefficient E of Fernandez‑Prini et al. [24].

Solute Ai,H2O
Kr (atm) (a) RMSD(atm) (b) Ai,D2O

Kr (atm) (c) RMSD(atm) (d) H/D−Effect(atm)

He 1661 ±52 1673 ±40 12 ± 92

Ne 1836 ±108 1780 ±32 −56 ± 140

Ar 1692 ±37 1656 ±67 −36 ± 104

Kr 1668 ±52 1642 ±11 −26 ± 63

H2 1675 ±76 1562 (e) ±101 −113 ± 177

CH4 1623 ±56 1617 ±15 −6 ± 71
(a) From E‑coefficients in Table 5 of Ref. [24]; (b) From Table 6 of Ref. [24]; (c) From E‑coefficients in Table 9 of
Ref. [24]; (d) From Table 10 of Ref. [24]; (e) After assuming that AH2 ,D2O

Kr
∼= AD2 ,D2O

Kr .

This contention is additionally supported by the analysis of the uncertainties associ‑
ated with the determination of the Krichevskii parameters of an ideal gas solute in light
and heavy water from the regression of their solute vapor–liquid distribution coefficients,
systems for which we know the exact answer [44]. This scenario suggests the need for an
alternative approach to assess directly the underlying isotopic effect and avoid the unreli‑
able brute‑force subtraction method.

3.3. Required Solvation Properties in the Molecular‑Based Approach to the Solvent H/D−Effect
on the Krichevskii Parameter

For the implementation of the approach proposed in Sections 2.1 and 2.2, we proceed
with the calculation of the required hydration (solvation) properties as follows. Based on
the data of Table 1, we can determine the Gibbs free energy of transfer ∆go

tr, Equation (4),
in terms of the hydration Gibbs free energy of the i−solute in the two isotopic forms of
the solvent,

∆go
tr(T, P) = ∆hG∞

i (D2O)− ∆hG∞
i (H2O)− kT ln

(
MWD2O/MWH2O

)
(12)

Alternatively, ∆go
tr can be determined according to Ben‑Naim’s scheme [45], i.e.,

∆go
tr(T, P) = ∆trG∗ + kT ln

(
ρo,L

D2O/ρo,L
H2O

)
(13)

where ∆trG∗ is given by the following difference of solvation quantities,

∆trG∗ = ∆G∗
i (D2O)− ∆G∗

i (H2O) (14)

after invoking the relations derived in Appendix A.
Moreover, we calculate the underlying solute‑solvent intermolecular interaction asym‑

metry for the i−solute, ∆∞
iα(T, P), according to the expression [46],

∆∞
iα(T, P) = 2υo

α∆solµ
∞
i(α)/kT (15)

where ∆∞
iα = Go

αα + G∞
ii − 2G∞

iα while the Gibbs free energy upon solution of the i−solute
in the α−solvent, ∆solµ

∞
i(α)(T, P), reads as follows,

∆solµ
∞
i(α) =

(
µ∞

i(α) − µo
i

)
TP

= kT ln
(

ϕ̂∞
i(α)/ϕo

i

)
TP

= kT ln γLR,∞
i(α)

(16)
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with the subscript (α) emphasizing that we are dealing with either α = j or α = k as the
solvent. Then, from the solubility measurements, xsat

i(α), we estimate the activity coefficient

γLR,∞
i(α) according to [47],

ln γLR,∞
i(α)

∼= −(1 + 2xsat
i(α)) ln xsat

i(α) (17)

as a more accurate alternative to the conventional ln γLR,∞
i(α)

∼= − ln xsat
i(α) relation used in

(A13) of Appendix A, so that

∆hG∞
i(α)(T, Po) = kT ln γLR,∞

i(α) (T, Po)− kT ln(mo
i MWα) (18)

according to (A15) in Appendix A. The resulting values from Equations (12) and (15) are
given in Table 3 below.

Table 3. Gibbs free energy of transfer, ∆go
tr in J/mol, of gases in light and heavy aqueous

systems from the correlations of the Henry’s law constants in Ref. [24] and gas solubilities from
Refs. [39,41,42].

Solute ∆gotr(T,P)
(a) ∆∞

i,H2O(cm
3/mol) (b) ∆∞

i,D2O(cm
3/mol) (c)

He −198.0 428.5 427.0

Ne −168.0 423.0 421.9

Ar −183.0 383.2 380.7

Kr −48.0 360.8 361.2
Xe −11.0 340.8 341.7

Rn −420.0 314.3 309.1

H2 −555.0 403.3 396.4

D2 −605.0 402.8 393.9

N2 −160.0 410.0 408.9

O2 −202.0 385.7 383.9

CH4 −105.0 382.0 383.4

C2H6 −126.0 371.9 371.2

C3H8 −105.0 380.3 379.9

SF6 −129.0 444.5 444.0

CCl2F2 −133.0 355.1 354.2

CClF3 −512.0 397.8 391.5

CF4 −111.0 451.1 450.8
(a) From 4th–5th columns of Table 1 via Equation (12) in units of J/mol; (b) ∆∞

i,H2O = Go
H2O−H2O + G∞

ii − 2G∞
i,H2O;

(c) ∆∞
i,D2O = Go

D2O−D2O + G∞
ii − 2G∞

i,D2O.

3.4. Resulting Linear Representation for the Krichevskii Parameter Ai,α
Kr = ℑ

(
∆hG∞

i,α

)
After recalling thatAIG_i,α

Kr = kTα,cρo
α,c defines theKrichevskii parameter of the i−solute

as an ideal gas in the α−solute as an ideal gas in the solvent with α = (j, k) [8,32], and
considering the critical conditions of the light [48] and heavy water [49,50], we immedi‑
ately find that AIG_i,H2O

Kr
∼= 948 atm and AIG_i,D2O

Kr
∼= 938 atm. Therefore, by invoking

Equations (7) and (A4) as well as the corresponding residual chemical potentials µo,R
α (T, P)

and µo,r
α (T, ρo

α) of the pure α−solvent, we obtain the following linear representations for
the Krichevskii parameter of an i−solute in light and heavy water,

Ai,H2O
Kr = −AIG_i,H2O

Kr

[(
∆hG∞

i − ∆hG∞
i=H2O

)
/kT ln

(
ϕo

H2Ozo
H2O

)]
TPo

(19)
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and,
Ai,D2O

Kr = −AIG_i,D2O
Kr

[(
∆hG∞

i − ∆hG∞
i=D2O

)
/kT ln

(
ϕo

D2Ozo
D2O

)]
TPo

(20)

where,
∆hG∞

i=α(T, Po) = kT ln(ϕo
αmo

i MWα)TPo
(21)

which is (A3) from Appendix A, forHIS
i,α = f o

α .
As we might have expected, the resulting linear hydration Gibbs free energy repre‑

sentations, Equations (19) and (20), exhibit slightly different slopes in their dependence on
the relative (to that of the corresponding pure α−solvent) hydration free energies. These
expressions highlight the size of the resulting H/D−isotopic substitution effect on the
Krichevskii parameter of the solutes under investigation, i.e., such an effect is significantly
smaller than the magnitude of the reported uncertainties of the individual Krichevskii pa‑
rameters Ai,H2O

Kr and Ai,D2O
Kr [24].

We have recently addressed the uncertainty issue according to a rigorous analysis of
the behavior of the orthobaric‑density dependence of the solute distribution coefficient of
an ideal gas solute at infinite dilution, Tσ ln K∞,IG_i

D

(
ρo,L

j − ρo
j,c

)
, when the j−solvent was

light water [23]. Moreover, we have illustrated how small experimental uncertainties of
the solute distribution coefficient at high temperature can drastically affect the outcome
of the regression, and consequently, the resulting effective Krichevskii parameter [44]. In‑
deed, by analyzing the behavior of Tσ ln K∞,IG_i

D

(
ρo,L

j − ρo
j,c

)
when the j−solventwas either

light or heavy water, we found that there were no H/D−isotopic effects on the orthobaric‑
density slope within the range of effective linearity as a consequence of the null solute‑
solvent interactions. However, as we replaced the ideal gas solute with a real gas (compare
Figures 8 and 9 in Ref. [44]), the range of effective linearity of the Tσ ln K∞,He

D

(
ρo,L

j − ρo
j,c

)
when the j−solvent was heavy water became narrower than that observed for the same so‑
lute in lightwater, i.e., a clearmanifestation of the H/D−isotopic effect associatedwith the
non‑zero solute‑solvent interactions. Obviously, this feature imposes a stronger constraint
on either the

(
ρo,L

j − ρo
j,c

)
−range or its lowest Tσ = T⊕, where we could invoke the asymp‑

totic orthobaric Tσ ln K∞,He
D ∼

(
ρo,L

j − ρo
j,c

)
effective linearity leading to the determination

of the Krichevskii parameter. On the one hand, the closer T⊕ is to Tc, the better since it pro‑
vides amore accurate representation of the asymptotic critical slope; on the other hand, the
closeness of the chosen T⊕ to Tc is significantly constrained by the experimental challenges
associated with highly compressible environments.

3.5. Link between the Solvent H/D−Effect on the Krichevskii Parameter and Solute–Solvent
Intermolecular Interaction Asymmetries

Considering the nature of the aqueous systems under study, we can first invoke the
following identity [30],

HIS
i,α(T, P) = Pϕ̂∞,Lα

i (T, P) = f o,Lα
i (T, P)γLR,∞,Lα

i (T, P) (22)

where the superscript Lα identifies the liquid phase of the α−solvent. Then, we introduce
the accurate second‑order composition representation for the partial molar excess free en‑
ergy of an interacting solute, (see Appendix A of Ref. [30] and Appendix B of Ref. [46]
for details while noting that the second‑order expansion is unable to describe accurately
the behavior of non‑interacting solutes as discussed in Ref. [51]) to find a link between the
magnitude of the Henry’s law constant of an i−solute and a precisely‑defined molecular
measure of solute‑solvent intermolecular interaction asymmetry, i.e.,

lnHIS
i,α(T, P) =

(
ln f o,Lα

i + 0.5ρo
α∆∞

iα

)
TP

(23)
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where we have invoked Equations (15) and (16) to describe the infinite dilution activity
coefficient γLR,∞,Lα

i (T, P) in Equation (22). Moreover, by introducing Equation (23) into
Equation (7), we obtain a revealing linear dependence of the magnitude of the Krichevskii
parameter of the i−solute and the solute‑solvent intermolecular interaction asymmetry,
∆∞

iα(T, P), as follows,(
Ai,α

Kr/AIG_i,α
Kr

)
= −

[
ln
(

f o
i / f o

α

)
+ 0.5ρo

α∆∞
iα
]

TP/ln(ϕo
αzo

α)TP

= −kT
[
ln
(

f o
i / f o

α

)
+ 0.5ρo

α∆∞
iα
]

TP/µo,r
α (T, ρo

α)
(24)

with µo,r
α (T, ρo

α) = kT ln(ϕo
αzo

α)TP. In other words, the Krichevskii parameter of an
i−solute in an α−solvent, Ai,α

Kr, becomes described by a linear function of ∆∞
iα(T, P)

with a slope − 0.5AIG_i,α
Kr [ρo

α/ln(ϕo
αzo

α)]TP, whose ordinate at the origin becomes
−AIG_i,α

Kr
[
ln
(

f o
i / f o

α

)
/ln(ϕo

αzo
α)
]

TP. Therefore, according to Equations (7) and (24), the sol‑
vent effect on the Krichevskii parameter of an i−solute defined as the difference of
Krichevskii parameters between the two solvents, ∆AKr ≡ Ai,k

Kr −Ai,j
Kr, becomes

∆AKr ≡ AIG_i,j
Kr ln

(
HIS

i,j / f o
j

)
TP

/ln
(

ϕo
j zo

j

)
TP

−

AIG_i,k
Kr ln

(
HIS

i,k/ f o
k

)
TP

/ln
(
ϕo

kzo
k
)

TP

= kTc,jρ
o
c,j

[
ln
(

f o
i / f o

j

)
+ 0.5ρo

j ∆∞
ij

]
TP

/ln
(

ϕo
j zo

j

)
TP

−
kTc,kρo

c,k
[
ln
(

f o
i / f o

k
)
+ 0.5ρo

k∆∞
ik
]

TP/ln
(
ϕo

kzo
k
)

TP

(25)

This equation suggests that ∆AKr can be interpreted as a AIG_i,α
Kr −prorated

difference of the solute‑solvent intermolecular interaction asymmetry function
∆∞

iα(T, P) = Go
αα + G∞

ii − 2G∞
iα , an observation that we will analyze below. In fact, we

should note that the isothermal‑isochoric residual chemical potential of the gaseous solutes
at infinite dilution in aqueous solutions, µ∞,r

i(α)(T, ρo
α), exhibits a linear dependence with

the corresponding solute‑solvent intermolecular interaction asymmetry function ∆∞
iα(T, P)

as illustrated in Figure 2 when the α−solvent is either light or heavy water at ambient
conditions. We can also identify µ∞,r

IG_i(α)(T, ρo
α) = 0 at a hypothetical value of the solute‑

solvent intermolecular interaction asymmetry, i.e., one that differs from the theoretical
∆∞

IG_i α(T, ρo
α) = Go

αα. The reason for this difference resides in the fact that, as demon‑
strated in Ref. [51], the second‑order expansion cannot provide an accurate description
of the behavior of non‑interacting solutes, i.e., it requires at least a six‑order composition
expansion. However, because the condition µ∞,r

IG_i(α)(T, ρo
α) = 0 also means that

γLR,∞
IG_i(α)(T, P) = 1/zo

α, we can determine the hypothetical value of ∆
∞,µ∞,r

i(α)=0

iα so that

ln γLR,∞
IG_i(α)(T, P) = 0.5ρo

α ∆
∞,µ∞,r

i(α)=0

iα , where ∆
∞,µ∞,r

i(α)=0

iα comprises contributions from the
first few infinite dilution composition derivatives of the ln γLR

IG_i(α)(T, P, xi) as indicated
by Equation S5 in the Supplementary Information document of Ref. [51].

Given the observed linearity in Figure 2, and the definition of the Gibbs free
energy of transfer, Equation (10) in the alternative form∆go

tr(T, P) = kT ln
(

γ∞,LR
i(k) /γ∞,LR

i(j)

)
TP
,

we also expect a ∆go
tr(T, P) linearly dependent on the difference

(
ρo

k∆∞
ik − ρo

j ∆∞
ij

)
TP
.

In fact, the quadratic‑composition dependent ln γLR
i (T, P, xi) = ln γ∞,LR

i(j) (T, P)x2
i

that describes accurately the LR−nonideal behavior of these solutes [46] leads
to ∆go

tr(T, P) = 0.5kT
(

ρo
k∆∞

ik − ρo
j ∆∞

ij

)
TP

with ln γ∞,LR
i(j) (T, P) = 0.5ρo

j ∆∞
ij , while the

condition
(

G∞
ii = G∞

ij = G∞
ik

)
TP

= 0 for an IG_i solute translates into(
ρo

k∆∞
IG_ik − ρo

j ∆∞
IG_ij

)
TP

= kT
(

ρo
kκo

k − ρo
j κo

j

)
TP

and identified as the red dot in Figure 3.

Note also that, while the second‑order composition approximation for ln γLR
i (T, P, xi) is
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not accurate for an IG_i solute as indicated above, we can still identify the IG_i solute in
Figure 3, given that Equation (4) becomes ∆go

tr(T, P) = kT ln
(

ρo
k/ρo

j

)
TP

for this solute.
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According to the linear behaviors described above, we can alternatively express the
solvent effect ∆AKr in terms of the solvation Gibbs free energies ∆G∗

i,α(T, P) as follows,

∆Akr = −AIG− ,k
kr

[
∆G∗

i,k(T, P)/kT − ln
(

f o
k /kTρo

k
)

pP

]
/β∆G∗

r=k(T, P)+

AlGi ,j
Kr

[
∆G∗

i,j(T, P)/kT − ln
(

f ◦j /kTρ◦j

)
TP

]
/β∆G∗

i=j(T, P)

= −AIG−i,k
Kr

(
∆G∗

i,k/∆G∗
i=k

)
RP

+AIG−i,j
Kr

(
∆G∗

i,j/∆G∗
i=j

)
TP

+(
AIG−i,k

Kr −AIG−i,j
Kr

) (26)

where ∆G∗
i,α(T, P) = kT ln

(
HIS

i,α/kTρo
α

)
identifies the solvation Gibbs free energy of the

i−solute in the α−solvent, while ∆G∗
i=α(T, P) = kT ln( f o

α /kTρo
α)TP denotes the Gibbs free

energy of self‑solvation of the α−solvent, i.e., µo,r
α (T, ρo

α) = kT ln(ϕo
αzo

α), for the α = (j, k)
solvents [40,52]. Likewise, ∆AKr can be equivalently written in terms of the isothermal‑
isochoric residual chemical potential of the species, µ⊕,r

β (T, ρo
α) = kT ln

(
ϕ̂⊕

β zo
α

)
, as follows,

∆AKr = −AIG_i,k
Kr

[
µ∞,r

i(k)

(
T, ρo

k
)
/µo,r

k
(
T, ρo

k
)]
+

AIG_i,j
Kr

[
µ∞,r

i(j)

(
T, ρo

j

)
/µo,r

j

(
T, ρo

j

)]
+

(
AIG_i,k

Kr −AIG_i,j
Kr

) (27)

where⊕ = o or pure component when β = α, otherwise⊕ = ∞ describes the condition of
infinite dilution of the β−solute in an α−solvent. This equation represents an alternative
answer to question (b) in the Introduction. Finally, Equation (27) can be recast in terms
of the Gibbs free energy of transfer of the i−solute from the j−solvent to the k−solvent
environments according to Equations (10) and (11), i.e.,

Ai,k
Kr −Ai,j

Kr = Ai,j
Kr

[(
µo,r

j /µo,r
k

)(
AIG_i,k

Kr /AIG_i,j
Kr

)
− 1

]
+(

AIG_i,k
Kr /µo,r

k

)(
µo,R

k − µo,R
j − ∆go

tr

) (28)

which becomes the answer to question (a) in the Introduction as the desirable form of∆AKr.
Equations (25)–(28) reveal that the solvent effect on the Krichevskii parameter of a

solute results from a linear combination of the relative solvation Gibbs free energy of the
i−solute in the pair of solvents. More specifically, the solvent effect on the magnitude
of the Krichesvkii parameter for an i−solute becomes directly proportional to the differ‑
ence of two similar quantities comprising two distinctive terms, i.e., (a) the Krichesvkii
parameter for the ideal gas solute in the chosen solvents, and (b) the ratio between the
solvation Gibbs free energy of the i−solute in the chosen solvents and their self‑solvation
counterparts. Given the relation between the solvation Gibbs free energy and the species
residual free energies, Equation (27), the solvent effect on the Krichevskii parameter can be
interpreted as the sum of an ideal gas contribution,

(
AIG_i,k

Kr −AIG_i,j
Kr

)
, and the difference

of AIG_i,α
Kr −prorated residual free energy ratio µ∞,r

i(α)(T, ρo
α)/µo,r

α (T, ρo
α) for the α = (j, k)

solvents. Moreover, because the residual quantities measure the contribution of the in‑
termolecular interactions to the thermodynamic properties, the AIG_i,α

Kr −prorated differ‑
ence conveys the contribution of the difference of solute‑solvent intermolecular interac‑
tion asymmetries to the solvent effect on the Krichevskii parameter. In fact, according to
Equations (10) and (25) as well as the resulting linear behavior in Figures 2 and 3, the sol‑
vent effect on the Krichevskii parameter of these gaseous solutes becomes also effectively
linear with the difference

(
ρo

D2O∆∞
i D2O − ρo

H2O∆∞
i H2O

)
TP

as illustrated in Figure 4.



Liquids 2022, 2 487Liquids 2022, 2, FOR PEER REVIEW 15 
 

 

 

Figure 4. Isotopic substitution effect on the Krichevskii parameter of gases in water, 

, as a function of the solvent-density weighted difference between the solute-

D
2
O  and the solute- H

2
O  interaction asymmetry, r

D
2
O

o D
iD

2
O

¥ - r
H

2
O

o D
iH

2
O

¥( )
TP

, according to the 

regressed data from Ref. [24] in comparison with the results from the molecular-based formalism as 

described by Equation (8). 

In summary, Equations (25)–(28) provide alternative direct routes to both (a) a simple 

test of consistency between the calculated (by any method) Krichevskii parameters of a 

common i- solute in the j,k( )- pair of solvents through the determination of the 

standard Gibbs free energy for the transfer of the given i-solute from the j - solvent to 

the k - solvent, and the standard thermodynamic properties of the two pure solvents, 

and (b) an accurate evaluation of the effect of the solvent on the Krichevskii parameter of 

the i- solute, i.e., , when we replace the j - solvent with the k -

solvent, avoiding the regression of near-critical properties of the solute in the 

corresponding solvents as illustrated in Table 4 and Figure 4. In fact, the  values 

reported in Table 4 are the outcome of the derived Equations (8), (27), and (28), which 

provided precisely the same answer, after invoking the properties from Table 1 and the 

required thermodynamic properties of the two solvents at ambient conditions from the 

corresponding equations of state. Among the three theoretically equivalent expressions 

for , Equations (8), (27) and (28), the first two do not require the reference Krichevskii 

parameter , and thus, for practical purposes, they might be the preferred routes. 

Table 4. Solvent H D- isotopic substitution effect on the Krichevskii parameter. 

Solute  (a) 

He  −25.50 

Ne −24.14 

Ar  −22.42 

Rn  −26.97 

H
2
 −36.60 

D
2
 −38.26 

Figure 4. Isotopic substitution effect on the Krichevskii parameter of gases in water,
∆AKr ≡ Ai,D2O

Kr −Ai,H2O
Kr , as a function of the solvent‑densityweighted difference between the solute‑

D2O and the solute‑H2O interaction asymmetry,
(

ρo
D2O∆∞

iD2O − ρo
H2O∆∞

iH2O

)
TP
, according to the re‑

gressed data from Ref. [24] in comparison with the results from the molecular‑based formalism as
described by Equation (8).

In summary, Equations (25)–(28) provide alternative direct routes to both (a) a simple
test of consistency between the calculated (by any method) Krichevskii parameters of a
common i−solute in the (j, k)−pair of solvents through the determination of the standard
Gibbs free energy for the transfer of the given i−solute from the j−solvent to the k−solvent,
and the standard thermodynamic properties of the two pure solvents, and (b) an accurate
evaluation of the effect of the solvent on the Krichevskii parameter of the i−solute, i.e.,
∆AKr ≡ Ai,k

Kr −Ai,j
Kr, when we replace the j−solvent with the k−solvent, avoiding the re‑

gression of near‑critical properties of the solute in the corresponding solvents as illustrated
in Table 4 and Figure 4. In fact, the ∆AKr values reported in Table 4 are the outcome of the
derived Equations (8), (27), and (28), which provided precisely the same answer, after in‑
voking the properties from Table 1 and the required thermodynamic properties of the two
solvents at ambient conditions from the corresponding equations of state. Among the three
theoretically equivalent expressions for ∆AKr, Equations (8), (27) and (28), the first two do
not require the reference Krichevskii parameterAi,j

Kr, and thus, for practical purposes, they
might be the preferred routes.

Moreover, in Figure 4, we illustrate the comparison between the solvent H/D−
isotopic substitution effect on theKrichevskii parameter as determined by the “brute‑force”
subtraction approach based on the regressed coefficient E of Fernandez‑Prini et al. [24] and
that from our proposed routes, including the reported uncertainties. This comparison pro‑
vides clear evidence of the lack of reliability of the “brute‑force” approach in the assessment
of the H/D−isotopic substituted (or for thatmatter, any solvent) effect from the regression
of the Henry law constant and vapor–liquid distribution coefficient of solutes, as we could
have anticipated given the challenges behind the measurements at near‑critical compared
with those at standard ambient solvent environments.
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Table 4. Solvent H/D−isotopic substitution effect on the Krichevskii parameter.

Solute ∆AKr(atm) (a)

He −25.50
Ne −24.14
Ar −22.42
Rn −26.97
H2 −36.60
D2 −38.26
N2 −23.21
O2 −23.15

CH4 −19.68
C2H6 −19.85
C3H8 −19.58
SF6 −23.96

CCl2F2 −19.17
CClF3 −34.80

CF4 −23.69
(a) Equations (8), (27) and (28) provide identical outcomes at least up to the 10th decimal figure.

3.6. Solvent H/D−Effect on the Krichevskii Parameter of the Emblematic Ideal Gas Solute
It becomes instructive to analyze the effect of the change of solvent environment on the

Krichevskii parameter for an ideal gas solute IG_i for which we know the answer before‑
hand, and consequently, to be able to check the validity of the approach. FromEquation (4),
we obtain

∆go,IG_i
tr (T, P) = kT ln

(
ρo

k/ρo
j

)
TP

(29)

so that, after introducing (29) and the condition AIG_i,j
Kr = kTj,cρo

j,c into Equation (10),
we obtain

Ai,k
Kr = AIG_i,k

Kr ≡ kTk,cρo
k,c (30)

which is the expected answer, wherewe note that the critical conditions of the two solvents
are obviously different.

3.7. Solvent H/D−Effect on the Krichevskii Parameter of the Emblematic Case of Lewis‑Randall’s
Quasi‑Ideal Solutions

The mixture of water isotopomers, e.g., D2O + H2O, falls into the category of quasi‑
ideal solutions within the Lewis‑Randall reference [53]. In fact, in their study of highly
dilute aqueous solutions of heavy water, Japas et al. [54] introduced the simplifying as‑
sumption of Raoult solution ideality to provide an estimation of the Krichevskii parameter
of D2O(i) in H2O(j), and arrived to the following expression in terms of the saturation pres‑
sures of the two species, (for a detailed analysis of either Lewis‑Randall or Raoult solution
ideality of these systems see Appendix B)

(∂P/∂xi)
∞
Tσ,j

∼=
(

Psat
i − Psat

j

)
Tσ,j

(31)

at Tσ,i = Tc,i < Tc,j and Tc,α denotes the critical temperature of the α−species. Note that
the Krichevskii parameter of an i−solute in a j−solvent is defined at the critical saturation
conditions of the solvent, i.e., Ai,α

Kr = lim
Tσ,α→critical

(∂P/∂xi)
∞
Tσ,α

. Thus, Equation (31) becomes

a good guess for the actual AD2O,H2O
Kr given that Tc,H2O − Tc,D2O ≃ 4K.
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According to the description of either Hill et al. [49] or Herrig et al. [50] and Wagner
and Pruss [48] equations of state for heavy and light water, respectively, we have from
Equation (31) that

AD2O,H2O
Kr

∼= 0.42 MPa (32)

and by the same quasi‑ideal approximation for the infinitely dilute light water in heavy‑
water solvent we can conclude, as discussed in details in Appendix B, that

AH2O,D2O
Kr = −AD2O,H2O

Kr
∼= − 0.42 MPa (33)

In fact, in Appendix B we have provided a molecular‑based argument for the general
scenario of a Lewis‑Randall ideal solution to demonstrate rigorously that should the mix‑
ture of light and heavywater behave ideally, thenAH2O,D2O

Kr = −AD2O,H2O
Kr , after assuming

for the sake of argument that Tc,H2O ≃ Tc,D2O.
Obviously, as highlighted by Jancsó and coll. [53,55], these isotopic mixtures

exhibit small but non‑negligible deviations from ideality, which are usually
described by either the simplest symmetric βgE(xH2O

)
TP = xH2OxD2O ln γLR,∞,

i.e., γLR,∞ = γLR,∞
D2O,H2O = γLR,∞

H2O,D2O, or the more realistic asymmetric
βgE(xH2O

)
TP = x2

H2OxD2O ln γLR,∞
D2O,H2O + x2

D2OxH2O ln γLR,∞
H2O,D2O excess Gibbs free energy

representation [56]. In this context, we should note that in Table IV of Ref. [57],
the authors reported that AD2O,H2O

Kr = 0.428 MPa and AH2O,D2O
Kr = 0.495 MPa according

to the behavior of (dPc/dxi)
∞ and (dTc/dxi)

∞ in the evaluation of
Ai,j

Kr = (dPc/dxi)
∞ − (dPσ/dT)ρc

(dTc/dxi)
∞. While AD2O,H2O

Kr = 0.428 MPa is in agree‑
ment with the sign predicted by the non‑ideal solution scenario, AH2O,D2O

Kr = 0.495 MPa is
at odd. Unfortunately, the authors have not provided any information on the uncertainties
for the two composition limiting derivatives involved, thoughwe are aware of the fact that
these quantities usually bear large uncertainties that would affect these outcomes [16]. In
contrast, in a later report by Bazaev et al. [58], they determined thatAD2O,H2O

Kr = 0.478MPa
and AH2O,D2O

Kr = −0.475 MPa, which are consistent with the theoretical expectations from
the ideal solution approximation as discussed in Appendix B.

4. Discussion and Relevant Observations
The proposed approach to the H/D−effect on the Krichevskii parameter leads

naturally to the assessment of this parameter for binary systems comprising
isotopomers. In fact, when the i−solute in solution with the original j−solvent is
simply another j−species, i.e., the iconic special case of Lewis‑Randall ideal solution,
we have Ai,j=i

Kr = 0, ∆gR
i,j(T, P) = 0, ∆go

j→k(T, P) = kT ln
[
ϕo

k
(
T, ρo

k
)
/ϕo

j

(
T, ρo

j

)]
,

and ∆go
tr = kT ln

[
ϕ̂∞

j
(
T, ρo

k
)
/ϕo

j

(
T, ρo

j

)]
. Given the resulting Ai,j=i

Kr = 0, from

Equations (3) and (10) we have that the effect of the k−solvent on theAi,k
Kr becomes merely

∆AKr = Aj,k
Kr, i.e.,

Aj,k
Kr = −AIG_j,k

Kr

[
ln
(

ϕ̂∞
j /ϕo

k

)
/ln

(
ϕo

kzo
k
)]

T,ρo
k

= AIG_j,k
Kr

[
ln
(

ϕ̂∞
j /ϕo

k

)
/ln

(
ϕ̂∞,IG_k

k /ϕo
k

)]
T,ρo

k

(34)

where the j− and k−species are simply two isotopomers. Therefore, depending on the
solute‑solvent intermolecular asymmetry and the fact that usually

(
ϕo

kzo
k
)
≪ 1 at normal

conditions, Equation (34) translates into two potential scenarios, either

(
ϕ̂∞

j /ϕo
k

)
⪆ 1 with

(
ϕ̂∞,IG_k

k /ϕo
k

)
> 1 →

{
ϕo

k ⪅ ϕ̂∞
j ≪ ϕ̂∞,IG_k

k

Aj,k
Kr > 0

(35)
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or, (
ϕ̂∞

j /ϕo
k

)
⪅ 1 with

(
ϕ̂∞,IG_k

k /ϕo
k

)
≫ 1 →

{
ϕ̂∞

j ⪅ ϕo
k ≪ ϕ̂∞,IG_k

k

Aj,k
Kr < 0

(36)

By noting that when the k−species is an ideal gas, ϕ̂∞,IG_k
k ≡ zo,−1

k =
(
kTρo

k/P
)
≫

1 [30], so that for the case of mixtures of light (j−species) and heavy water (k−species) we
have ϕ̂∞

j (T, P) ⪅ ϕo
k(T, P), consequently, we expect Aj,k

Kr < 0 according to Equation (36).

Otherwise, when ϕ̂∞
j (T, P) ⪆ ϕo

k(T, P), we expect Aj,k
Kr > 0 according to Equation (35).

In other words, Equations (35) and (36) indicate that the sign of the Krichevskii parameter
of an isotopic j−solute in an isotopic k−solvent will be decided by either(

γLR,∞
j ϕo

j

)
TP

⪋ ϕo
k(T, P) or γLR,∞

j (T, P) ⪋
(

ϕo
k/ϕo

j

)
TP

conditions, where Aj,k
Kr < 0,

Aj,k
Kr = 0, and Aj,k

Kr > 0 will be the outcome for the upper inequality, the middle equal‑
ity and the lower inequality, respectively.

At this point, it is worth highlighting the subtle effect of the small perturbations of
the solute‑solvent intermolecular interaction asymmetry ∆∞

H2O D2O around zero, i.e., the
Lewis‑Randall (Raoult) solution ideality [59], on the non‑ideality of these aqueous sys‑
tems. On the one hand, the D2O + H2O system described as a slightly non‑ideal solu‑
tion characterized by the excess Gibbs free energy βgE(xH2O

)
TP = xH2OxD2O ln γLR,∞ with

γLR,∞
D2O,H2O = γLR,∞

H2O,D2O = γLR,∞, as suggested by Jancsó et al. [53], leads to(
ϕ̂∞

H2O,D2O/ϕo
H2O

)
TP

=
(

ϕ̂∞
D2O,H2O/ϕo

D2O

)
TP

→(
ϕ̂∞

H2O,D2O/ϕo
D2O

)
TP

=
(

ϕ̂∞
D2O,H2O/ϕo

H2O

)
TP
R(T, P)

(37)

after considering the definition γLR,∞
i,j (T, P) =

(
ϕ̂∞

i,j/ϕo
i

)
TP

with R =
(

ϕo
H2O/ϕo

D2O

)
TP
.

Consequently, as the solute‑solvent interaction asymmetry ∆∞
ij (T, P) vanishes, we have

that lim
∆∞

H2O D2O→0
γLR,∞

H2O,D2O = lim
∆∞

D2O H2O→0
γLR,∞

D2O,H2O = 1. Therefore, the reference to the Lewis‑

Randall (Raoult) solution ideality for the description of the behavior of the D2O + H2O
system, i.e., ∆∞

H2O D2O = ∆∞
D2O H2O = 0, represents the equivalent limiting behavior,

Go
H2O H2O = Go

D2O D2O = G∞
H2O D2O = G∞

H2O H2O = G∞
D2O D2O ̸= 0 (38)

as if the light and heavy water behaved identically, leading to R = 1, and consequently to
AH2O,D2O

Kr = AD2O,H2O
Kr = 0, which is obviously not consistent with the actual case for the

water isotopomers. In fact, the symmetric nature of the βgE(xH2O
)

TP = xH2OxD2O ln γLR,∞

description for the non‑ideality of these mixtures is neither agreeing with the actual
R(T, P) ̸= 1 evidence, nor being compatible with the general Lewis‑Randall (Raoult) be‑
havior discussed in Appendix B which leads to AH2O,D2O

Kr = −AD2O,H2O
Kr .

On the other hand, because the two water isotopomers exhibit slightly
different thermodynamic behaviors, e.g.,

(
ϕo

H2O/ϕo
D2O

)
TP

̸= 1, we might
expect a marginally asymmetric isothermal‑isobaric composition representation
for its excess Gibbs free energy. In other words, instead of the simple symmetric B4 form,
we could have a more realistic Margules‑type representation, i.e.,
βgE(xH2O

)
TP = x2

H2OxD2O ln γLR,∞
D2O,H2O + x2

D2OxH2O ln γLR,∞
H2O,D2O [56], so that [60]

ρo
H2O∆∞

D2O H2O = 4 ln γLR,∞
D2O,H2O − 2 ln γLR,∞

H2O,D2O

ρo
D2O∆∞

H2O D2O = 4 ln γLR,∞
H2O,D2O − 2 ln γLR,∞

D2O,H2O

(39)
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and consequently, lim
∆∞

H2O D2O→0
γLR,∞

H2O,D2O = lim
∆∞

D2O H2O→0
γLR,∞

D2O,H2O = 1, leading to

lim
∆∞

H2O D2O→0

(
ϕ̂∞

H2O,D2O/ϕo
D2O

)
TP

=
(

ϕo
H2O/ϕo

D2O

)
TP

lim
∆∞

H2O D2O→0
γLR,∞

H2O,D2O = R ̸= 1

lim
∆∞

D2O H2O→0

(
ϕ̂∞

D2O,H2O/ϕo
H2O

)
TP

=
(

ϕo
D2O/ϕo

H2O

)
TP

lim
∆∞

D2O H2O→0
γLR,∞

D2O,H2O = R−1 ̸= 1
(40)

This analysis indicates that the relative magnitude of the two activity coefficients at
infinite dilution, γLR,∞

H2O,D2O and γLR,∞
D2O,H2O, decides the sign of the corresponding Krichevskii

parameters. In fact, after invoking Equations (35) and (36), and according to the equations
of state for light [48] and heavy water [49,50], R =

(
ϕo

H2O/ϕo
D2O

)
TPo

∼= 1.15, then we can
reach the following conclusions,

γLR,∞
D2O,H2O > R → AD2O,H2O

Kr > 0

1 ⪋ γLR,∞
D2O,H2O < R → AD2O,H2O

Kr < 0
(41)

and,
1 ⪋ γLR,∞

H2O,D2O > R−1 → AH2O,D2O
Kr > 0

γLR,∞
H2O,D2O < R−1 → AH2O,D2O

Kr < 0
(42)

Notably, the available literature provide at least two sets of experimental data for the
Krichevskii parameters AH2O,D2O

Kr and AD2O,H2O
Kr , i.e., those from Abdulkadirova et al. [57]

and from Bazaev et al. [58] The first one, given in their Table IV, indicates that
AH2O,D2O

Kr
∼= AD2O,H2O

Kr > 0, which would suggest that the two activity coefficients at infi‑
nite dilution are different and follow the relation γLR,∞

D2O,H2O > R >
(

1/γLR,∞
H2O,D2O

)
. In con‑

trast, the second source indicates that AH2O,D2O
Kr < 0 while AD2O,H2O

Kr > 0, resulting in two
different activity coefficients at infinite dilution obeying the relation
γLR,∞

D2O,H2O > ⌢ <
(

1/γLR,∞
H2O,D2O

)
. Therefore, while the two referred sources agreed on

that AD2O,H2O
Kr > 0, they are at odds on the sign of AH2O,D2O

Kr . Moreover, while the two
references also agree with the outcome from the ideal solution approximation given by
Japas et al. [54], i.e., AD2O,H2O

Kr > 0 as in Equation (32), only does Bazaev et al. [58] match
the AH2O,D2O

Kr < 0 counterpart.
We should emphasize that the agreement/disagreement observed in these datasets

must be taken with caution given not only the approximated nature of the quasi‑ideality
approach and its inherent inconsistency as discussed above, but also the magnitude of the
H/D−effect relative to the size of the uncertainties in the experimentally measured coeffi‑
cients associated with the calculation of the corresponding Krichevskii parameters. In fact,
we should also note that the AD2O,H2O

Kr and AH2O,D2O
Kr are about two orders of magnitude

smaller than the typical values for aqueous non‑electrolyte solutes, e.g., see tabulation in
Ref. [16], making their accurate experimental determination extremely challenging.

Yet, the most important aspects of the observed disparity of results are their
microscopic (solvation) interpretation and macroscopic (thermodynamic)
modeling consequences. Considering its thermodynamic representation,
Ai,α

Kr = lim
T,ρo

α→critical

(
ρo

αυ̂∞
i /κo

α

)
, and the positive definite nature of the molar volume and

isothermal compressibility of the pure solvent, it becomes obvious that the sign of Ai,α
Kr is

defined by the sign of the diverging partialmolar volume of the solute, υ̂∞
i , a crucial feature

for the appropriate interpretation of solvation phenomena in highly compressible environ‑
ments [1,61]. In fact, the observed solvent H/D−effects on the Krichevskii parameter of a
solute can be interpreted in terms of the solute’s ability to perturb the solvent microstruc‑
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ture, given that lim
T,ρo

α→critical
(∂P/∂xi)

∞
Tρ = Ai,α

Kr, and the pressure perturbation (∂P/∂xi)
∞
Tρ

is directly linked to the structure making/breaking parameter for a general dissociative
(ν = 1 for non‑dissociative) i−solute [62,63], as follows

S∞
iα (T, P) = −ν−1κo

α(∂P/∂xi)
∞
Tρ (43)

where κo
α denotes the isothermal compressibility of the pure α−solvent. Consequently, we

can immediately conclude that,

Ai,α
Kr = −ν lim

T,ρo
α→critical

(S∞
iα /κo

α) (44)

The significance of Equation (44) becomes evident after noting that the sign of the pres‑
sure perturbation upon solute solvation (∂P/∂xi)

∞
Tρ has been key in the characterization of

the solvation behavior of solutes in near‑critical solvents, so that according to Equation (43)
an i−solute behaves as a structure‑maker in an α−solvent environment when the system ex‑
hibits a (∂P/∂xi)

∞
Tρ < 0 [62], and the solute is depicted as non‑volatile [2] or attractive [64].

Conversely, an i−solute behaves as a structure‑breaker in an α−solvent environment when
the system responds with a (∂P/∂xi)

∞
Tρ > 0 [62], and the solute is described as volatile [2]

or weakly attractive and repulsive [64] in the jargon of supercritical fluid solutions [65,66].
More importantly, from the fundamental expression given by Equation (43), we can

split S∞
iα (T, P) into its solvation (i.e., short‑range local density perturbation, SR) contribu‑

tion while isolating its diverging (i.e., long‑range or compressibility driven, LR) contribu‑
tion associated with the propagation of the density perturbation as follows [8],

S∞
iα (T, P) = −ν−1κo,IG

α (∂P/∂xi)
∞
Tρ︸ ︷︷ ︸

S∞
iα (SR)

−ν−1κo,R
α (∂P/∂xi)

∞
Tρ︸ ︷︷ ︸

S∞
iα (LR)

(45)

In Equation (45), we identify κo,IG
α = (ρo

αkT)−1
TP as the ideal gas compressibility at

the prevailing state conditions, and κo,R
α (T, P) = κo

α − κo,IG
α as the corresponding isobaric‑

isothermal residual isothermal compressibility. Therefore, from Equations (43) and (45)
we immediately find the desired explicit expression for the solvation finite contribution,

S∞
iα (SR) =

(
κo,IG

α /κo
α

)
S∞

iα (46)

whose divergent compressibility‑driven contribution becomes,

S∞
iα (LR) =

(
κo,R

α /κo
α

)
S∞

iα (47)

Moreover, as demonstrated in Appendix C, the solvation and compressibility‑driven
contributions to the structure making/breaking parameter S∞

iα (T, P) are related as follows,

S∞
iα (LR) = −S∞,IG_i

iα S∞
iα (SR) (48)

with S∞,IG_i
iα = 1 − ρo

αkTκo
α. Equation (48) tells us that the long‑range contribution to the

structure parameter of any real solute in an α−solvent, S∞
iα (LR), becomes proportional to

its short‑range counterpart S∞
iα (SR) through the negative value of the structure parameter

of the ideal gas i−solute in the real α−solvent environment at the prevailing state condi‑
tions, S∞,IG_i

iα (T, P). Consequently, from Equations (44) and (A41) of the Appendix C, we
finally arrive to the following fundamental identity,

Ai,α
Kr = −νAIG_i,α

Kr lim
T,ρo

α→critical
S∞

iα (SR) (49)
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so that, the solvent effect on the Krichevskii parameter becomes,

∆AKr = −ν

[
AIG_i,k

Kr lim
T,ρo

k→critical
S∞

ik (SR)−AIG_i,j
Kr lim

T,ρo
j →critical

S∞
ij (SR)

]
= −νk

[
Tk,cρo

k,cS
∞,c
ik (SR)− Tj,cρo

j,cS
∞,c
ij (SR)

] (50)

The identity in Equation (49) emphasizes that theKrichevskii parameter of an i−solute
ability to perturb the α−solvent environment is simply that of the corresponding ideal gas
solute IG_i prorated by (−v) times the short range (finite) contribution to the structure
making/breaking parameter at critical conditions. Any increase (decrease) in the i−solute
ability to perturb the α−solvent environment as a structure‑making effect, S∞

iα > 0, will
translate into amore (less) negativeAi,α

Kr. Otherwise, any increase (decrease) in the i−solute
ability to perturb the α−solvent as a structure‑breaking effect, S∞

iα < 0, will translate into a
more (less) positive Ai,α

Kr. Likewise, when the i−solute is identical to the k−solvent (D2O),
the effect of the j−solvent (H2O) will manifest as slightly positive, i.e., AD2O,H2O

Kr ≳ 0 (see
(A44) in Appendix D). In other words, according to the analysis above, a D2O molecule
as a solute will exhibit a structure‑breaking behavior in the solvent H2O environment,
S∞

D2O H2O(SR) < 0, while a H2Omolecule as a solutewill induce a structure‑making pertur‑
bation of the solvent D2O environment, S∞

H2O D2O(SR) > 0 (i.e., AH2O,D2O
Kr ≲ 0 according

to (A43) in Appendix D).

5. Final Remarks and Outlook
In this work we have discussed the solvent effect on the Krichevskii parameter of an

i−solute in a k−solvent,Ai,k
Kr, and addressed its accurate determination when we know ei‑

ther (a) not only the solvation behavior of the i−solute in a j−solvent but also, its
Krichevskii parameter Ai,j

Kr, or (b) the solvation behavior of the i−solute in both solvents
as well as the Gibbs free energy of transfer of the i−solute between the two solvents. For
that purpose, we first proposed a general molecular thermodynamic approach based on a
Gibbs free energy cycle at standard state conditions, and then, we applied it to the deter‑
mination of the H/D−isotopic substitution effect on the Krichevskii parameter of gaseous
solutes in light and heavy water.

Although theoretically equivalent, the choice among the resulting
Equations (8), (27) and (29) would depend on the non‑trivial condition of accuracy of the
available data for the Krichevskii parameterAi,j

Kr of the i−solute in the reference j−solvent.
Consequently, it becomes more fruitful to assess directly the solvent effect as ∆AKr, Equa‑
tions (8) and (27), and after validating the accuracy of Ai,j

Kr, proceed with the evaluation of
Ai,k

Kr = ∆AKr +Ai,j
Kr.

The proposed scheme, developed around a fundamentally based solvation formalism
of dilute solutions, identifies the links between the standard solvation Gibbs free energy of
the i−solute in the two participating solvent environments and the resulting Krichevskii
parameters, thorough the linear relation between the latter and the standard solvation
Gibbs free energy of the solute. Additionally, it provides a novel microstructural inter‑
pretation of the solvent effect on the Krichevskii parameter through the rigorous charac‑
terization of the critical solvation as described by a finite unambiguous structure mak‑
ing/breaking parameter S∞

iα (SR) of the i−solute in the pair of α−solvent environments.
The molecular thermodynamic foundations of the proposed approach, combined with the
involvement of accurate standard solvation properties, provide a broader and encourag‑
ing outlook on the understanding, and consequent interpretation, of the solvent effect on
the Krichevskii parameter of any solute in any solvent environment.
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Nomenclature

Symbols
AKr,Ai,j

Kr Krichevskii parameter of an i−solute in a j−solvent, i.e., lim
T,ρo

j →critical
(∂P/∂xi)

∞
Tρ

C⊗
αβ(T, P) direct correlation function integral, aka DCFI, for the αβ−interactions at

the ⊗ conditions, either infinite dilution ∞ or pure component o
DCFI direct correlation function integral
fi(T, P, xi) fugacity of the i−species
Fα(T, P) isobaric‑isothermal function defined by Equation (6)

G⊗
αβ(T, P) Kirkwood‑Buff integral for the αβ−interactions at the ⊗ conditions, either

infinite dilution ∞ or pure component o

HIS
i,j (T, P) Henry’s law constant of an i−species in a j−solvent given by

HIS
i,j (TP) = f o

i (TP)γLR,∞
i (TP)

k Boltzmann constant
KB Kirkwood‑Buff
κo

j (T, P) isothermal compressibility of the pure j−solvent
K∞

D (T, P) vapor‑liquid solute distribution coefficient
MWα molar weight of an α−species
mo

i reference molality of an i−solute
Nα number of molecules of an α−species
P system pressure

P∞,R
i(a)

generic isobaric‑isothermal residual property of an infinitely dilute i−species
in an α−solvent

P̂∞
i (T, P) generic partial molar property of an infinitely dilute i−species

S∞
i,j (T, P) structure making/breaking parameter of an infinitely dilute i−species in a j−solvent

SR, LR
short‑ and long‑range contributions to the Kirkwood‑Buff integral according to the
Ornstein‑Zernike equation

TCFI total correlation function integral, aka Kirkwood‑Buff integral
T, P state conditions defined by the system temperature and pressure
T, ρ state conditions defined by the system temperature and density
V(T, P, xi) system volume at the specified state conditions and composition
υ̂i(T, P, xi) partial molar volume of the i−species
xi liquid phase composition defined by the mole fraction of the i−species
zo

j (T, P) compressibility factor P/ρo
j kT for the pure j−solvent

∆hG∞
i,j(T, P) standard solvation Gibbs free energy of the i−solute in the j−solvent

∆go
tr(T, P)

solvation Gibbs free energy of transfer of an infinitely dilute i−solute between
two solvent environments

∆G∗
i (T, P)σ solvation Gibbs free energy according to Ben‑Naim’s definition

∆∞
ij (T, P) linear combination of Kirkwood‑Buff integrals related to the non‑ideality of the

dilute solution, i.e.,
(

G∞
ii + Go

jj − 2G∞
ij

)
TP

https://www.mdpi.com/article/10.3390/liquids2040028/s1
https://www.mdpi.com/article/10.3390/liquids2040028/s1
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ϕ̂i(T, P, xi) partial molar fugacity coefficient of the i−species
ℑ(· · · ) a general function
γLR

i (T, P, xi) Lewis‑Randall’s activity coefficient of the i−species, i.e., ϕ̂i(T, P, xi)/ϕo
i (T, P)

µR
i (T, P, xi)

isobaric‑isothermal residual chemical potential of the i−species at the specified
state conditions and composition

µr
i (T, ρ, xi)

isochoric‑isothermal residual chemical potential of the i−species at the specified
state conditions and composition

ρ(T, P, xi) molar density of the system at the specified state conditions and composition
Sub‑ and super‑scripts
c critical condition for the pure j−solvent
o pure component
∞ infinite dilution
i solute species
IS ideal solution
j, k solvent species
LR Lewis‑Randall
IG ideal gas condition
IG_i special case of solute as an ideal gas i−species
LR − IS special case of Lewis‑Randall ideality when

(
G∞

ii = G∞
ij = Go

jj

)
TP

R residual property at constant (T, P, xi)
r residual property at constant (T, ρ, xi)

Appendix A. Relation among Solvation Gibbs Free Energy Expressions
The standard Gibbs free energy of hydration (solvation) ∆hG∞

i (T, Po) of a solute
species is the isothermal‑isobaric change of free energy required to transfer the species
from an ideal gas environment, at Po (either 1.0 atm [29,67], or 0.1 MPa [37,38]) and tem‑
perature T, into the solvent environment to form a hypothetical solution of unit molality,
i.e., [29]

∆hG∞
i (T, Po) = kT ln

(
f̂ ∞
i / f o,IG

i

)
TPo

+ kT ln
(
mo

i MWj
)

= kT ln
(
HIS

i,j /P
)

TPo
+ kT ln

(
mo

i MWj
)

= kT ln
(
HIS

i,j / f o
j

)
TPo

+ kT ln
(

f o
j /P

)
TPo

+ kT ln
(
mo

i MWj
) (A1)

where mo
i = 1.0 mol/kg denotes the unit molality of the i−solute in the j−solvent of molec‑

ular weight MWj, while HIS
i,j (T, P) and f o

j (T, P) represent the corresponding Henry’s law
constant of the i−solute and the fugacity of the j−solvent at the prevailing state conditions,
respectively. Note that the first term, kT ln

(
HIS

i,j / f o
j

)
TP

in (A1) describes the difference
of residual Gibbs free energy between the infinite dilute solute and the original solvent
species in the alchemical process depicted in Figure 1 of Ref. [4], where the superscripts r
and R denote residual properties at fixed system density or pressure, i.e.,

kT ln
(
HIS

i,j / f o
j

)
TP

= µ∞,r
i (T, ρ)− µo,r

j (T, ρ)

= µ∞,R
i (T, P)− µo,R

j (T, P)
(A2)

with P r,⊕
a (T, ρ) = PR,⊕

a (T, P) + kT ln(P/kTρ), where ⊕ represents either an infinite dilu‑
tion, ∞, or a pure component, o, condition. After identifying f o

j (T, P) = HIS,LR−IS
i,j (T, P),

from (A1) and (A2), [30] we also have that

kT ln
(
HIS

i,j / f o
j

)
TPo

= ∆hG∞
i (T, Po)− kT ln

(
ϕo

j mo
i MWj

)
TPo

(A3)
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Note that, whenever the Henry’s law constants are given at the saturation conditions
Tσ, then

kT ln
(
HIS

i,j / f o
j

)
TPσ

= ∆hG∞
i (T, Po)− kT ln

(
mo

i MWj
)
+ kT ln

[
Po/ f o

j (T, Pσ)
]

(A4)

where we assume that HIS
i,j (T, Po) ∼= HIS

i,j (T, Pσ) given the negligibly small Poynting cor‑
rection under these conditions. In fact, we can rewrite (A4) as follows,

kT ln
(
HIS

i,j / f o
j

)
TPσ

=
(

∆hG∞
i − ∆hG∞

i=j

)
TPo

(A5)

after invoking Equation (21), and recognizing that f o
j (T, Po)/ f o

j (T, Pσ) ∼= 1 at ambient con‑
ditions. Moreover, from (A5) and its corresponding expression for an ideal gas solute, we
find that,

kT ln
(
HIS

i,j /kTρo
j

)
TPσ

= kT ln
(
HIS

i,j /HIS,IG_i
i,j

)
TPσ

= ∆G∗
i (T, P)σ

=
(

∆hG∞
i − ∆hG∞

IG_i

)
TPo

(A6)

Then, from (A4)–(A6) we obtain,

∆G∗
i (T, P)σ =

(
∆hG∞

i − ∆hG∞
IG_i

)
TPo

= kT ln
(

ϕ̂∞
i zo

j

)
TPσ

= µr,∞
i

(
T, ρo

j

)
σ

(A7)

∆G∗
i=j(T, P)σ =

(
∆hG∞

i=j − ∆hG∞
IG_i

)
TPo

= kT ln
(

ϕo
j zo

j

)
TPσ

= µr,o
j

(
T, ρo

j

)
σ

(A8)

Alternatively, (A5)–(A7) provide the following relations,

kT ln
(
HIS

i,j / f o
j

)
TPσ

=
(

µ∞,R
i − µo,R

j

)
σ

= ∆G∗
i (T, P)σ − kT ln

(
ϕo

j zo
j

)
σ

= kT ln
(

ϕ̂∞
i zo

j

)
σ
− kT ln

(
ϕo

j zo
j

)
σ

=
(

µ∞,r
i − µo,r

j

)
σ

(A9)

so that, from (A4), we obtain

∆hG∞
IG_i(T, Pσ) = −kT ln

(
zo

j,σPo/Pσ

)
+ kT ln

(
mo

i MWj
)

(A10)

and from (A7) and (A10), we find

µr,∞
i

(
T, ρo

j

)
= ∆hG∞

i (T, Po) + kT ln
(

zo
j,σPo/Pσ

)
− kT ln

(
mo

i MWj
)

(A11)

Note also that, following the original definition, such as in Refs. [68,69], we have that

∆µ∞
i (T, P)σ = kT ln

(
HIS

i,j /Po

)
TPσ

= kT ln
(
HIS

i,j /kTρo
j

)
TPσ

+ kT ln
(

Pσ/Pozo
j,σ

)
= ∆G∗

i (T, P)σ + kT ln
(

Pσ/Pozo
j,σ

) (A12)



Liquids 2022, 2 497

Finally, we consider the low‑pressure gas solubility scenario as described byWilhelm
et al. [39,67] i.e.,

∆solµ
∞
i =

(
µsat

i − µo,IG
i

)
TPo

= kT ln ϕ̂sat
i

(
T, Po, xsat

i
)

= kT ln γLR,sat
i

(
T, Po, xsat

i
)
+ kT ln ϕo

i (T, Po)
∼= kT ln γLR,sat

i
(
T, Po, xsat

i
)

∼= −kT ln xsat
i (T, Po)

(A13)

where the equivalence and validity of the approximation in the (A13) has been discussed
elsewhere [47] so that, we can identify the following link [45],

∆G∗
i (T, P)σ

∼= ∆solµ
∞
i − kT ln

(
kTρo

j /Po

)
= kT ln

(
γLR,∞

i Po/kTρo
j

)
= kT ln γLR,∞

i (T, Po) + kT ln
(

zo
j,σPo/Pσ

) (A14)

given that the negligible pressure difference (Pσ − Po). Moreover, from (A1) and (A14),
we find

∆hG∞
i (T, Po) = kT ln γLR,∞

i (T, Po)− kT ln
(
mo

i MWj
)

(A15)

Therefore, (A1)–(A15) provide the links among the three frequently quoted changes of
Gibbs free energy in the solvation process.

Appendix B. Krichevskii Parameter of Solutes in Quasi‑Ideal Solutions
The typical case of Lewis‑Randall’s quasi‑ideality is represented by mixtures of iso‑

topic forms of the same compound such as H2O + D2O [53,55]. For that purpose, Japas
et al. [54] introduced the simplifying assumption of (Lewis Randall and/or Raoult) solu‑
tion ideality, i.e., [70]

P(T, xi) =
(

Psat
i γLR

i xi

)
/Φi +

(
Psat

j γLR
j xj

)
/Φj (A16)

where Φα(P, T, yα) represents the pressure correction to the fugacity coefficient of the
α−species in the vapor phase, i.e.,

Φα =
(
ϕ̂α/ϕ̂sat

α

)
exp

(
−β

∫ P

Psat
α

υαdP
)

(A17)

Note that for the low density vapor (A17) can be written in terms of second virial coeffi‑
cients as follows,

Φα = exp
[

β(Bαα − υα)
(

P − Psat
α

)
+ βPy2

βδαβ

]
(A18)

with δαβ = 2Bαβ − Bαα − Bββ, where Bαβ(T) defines the second virial coefficient for the
αβ−pair interactions.

Now, according to Jancsó et al. [53], the quasi‑ideal behavior of the H2O + D2O mix‑
ture could be described by the (Margules‑Porter) quadratic excess Gibbs free
energy expression,

βgE(T, P, xi) = Axixj
= ln γLR,∞xixj

(A19)

with γLR,∞
i = γLR,∞

j = γLR,∞, and A = 0.5ρo
j

(
Go

jj + G∞
ii − 2G∞

ij

)
[46]. Therefore, if we

follow Japas et al.’s assumptions [54] i.e., we set Φα = 1 and γLR,∞
α = 1, so that from (A16)

we obtain,
(∂P/∂xi)

∞
Tσ

∼=
(

Psat
i − Psat

j

)
Tα

(A20)
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Note that, under the same ideal‑behavior approximations we expect, at the xj → 0
limit, that (

∂P/∂xj
)∞

Tσ

∼=
(

Psat
j − Psat

i

)
Tσ

(A21)

Consequently,
(∂P/∂xi)

∞
Tσ

= −
(
∂P/∂xj

)∞
Tσ

(A22)

A more rigorous way to tackle this “quasi‑ideal” case is through the analysis of the
solute‑solvent intermolecular interaction asymmetry using the Kirkwood‑Buff
formalism [71]. In fact, if we assume ideality, then [59]

∆LR−IS
ij (T, P, xi) = GIS

ii + GIS
jj − 2GIS

ij = 0 (A23)

where the trivial situationwill indicate thatGIS
αβ(T, P, x) = 0 for all pairs of αβ−interactions,

i.e., a system where the solvent and the solute are differentiated only by their labels. How‑
ever, we are interested in the general case, i.e.,(

GIS
ii − GIS

ij

)
+

(
GIS

jj − GIS
ij

)
= 0

= (A− + A+)TPx = 0 → A−(T, P, xi) = −A+(T, P, xi)
(A24)

with A−(T, P, xi) ̸= 0 and A+(T, P, xi) ̸= 0, leading to the following expressions for the
species partial molar volumes from the Kirkwood‑Buff formalism [71],

ρυIS
i = 1 + ρj

(
GIS

jj − GIS
ij

)
(A25)

ρυIS
j = 1 + ρi

(
GIS

ii − GIS
ij

)
(A26)

From (A25) and (A26),

υIS
i /υIS

j =
[
1 + ρj

(
GIS

jj − GIS
ij

)]
/
[
1 + ρi

(
GIS

ii − GIS
ij

)]
=

(
1 + ρj A+

)
/(1 − ρi A+)

(A27)

or its alternative form,
υIS

i (1 − ρi A+) = υIS
j
(
1 + ρj A+

)
(A28)

whose limiting behavior read,

lim
ρi→0

υIS
i = υIS,∞

i = υIS,o
j + Ao

+(xi = 0); Ao
+ =

(
GIS,o

jj − GIS,∞
ij

)xi=0

lim
ρj→0

υIS
j = υIS,∞

j = υIS,o
i − A∞

+ ; A∞
+

(
xj = 0

)
=

(
GIS,∞

jj − GIS,∞
ij

)xj=0 (A29)

Likewise, we provide the asymptotic behavior of the infinite dilution species partial
molar volumes, i.e.,

lim
(T,P)j→crit

(
υIS,∞

i /κo
j

)
= lim

(T,P)j→crit

(
Ao
+/κo

j

)

lim
(T,P)i→crit

(
υIS,∞

j /κo
i

)
= lim

(T,P)i→crit

(
A∞
+/κo

i
) (A30)

Note that, given (A24), we find that

Ao
+ = −Ao

−
A∞
+ = −A∞

−

}
→

{
Ao
+ = A∞

−
Ao
− = A∞

+

}
→ Ao

− = −Ao
+ = A∞

− = −A∞
+ (A31)
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Therefore, from (A30) and (A31), we conclude that,

lim
(T,P)→crit

(
υIS,∞

i /κo
j

)
= lim

(T,P)j→crit

(
Ao
+/κo

j

)
= lim

(T,P)j→crit

(
GIS,o

jj − GIS,∞
ij

)xi=0
/κo

j

lim
(T,P)i→crit

(
υIS,∞

j /κo
i

)
= lim

(T,P)i→crit

(
A∞
+/κo

i
)
= lim

(T,P)i→crit

(
GIS,∞

jj − GIS,∞
ij

)xj=0
/κo

i

= − lim
(T,P)i→crit

(
GIS,o

jj − GIS,∞
ij

)xi=0
/κo

i

(A32)

and thus, within the ideality condition (A23), and after considering that Tc,j ≃ Tc,i, the two
Krichevskii parameters become related as follows,

Ai,j
Kr = −Aj,i

Kr (A33)

In other words,

υIS,∞
D2O H2O criticality

−−−−−−−−−−→
+ κo

H2O → ρo
H2OυIS,∞

D2O /κo
H2O = AD2O,H2O

Kr > 0

υIS,∞
H2O D2O criticality

−−−−−−−−−−→
− κo

D2O → ρo
D2OυIS,∞

H2O /κo
D2O = AH2O,D2O

Kr < 0
(A34)

where α criticality
−−−−−−−→

means that the property on the left scales asymptotically as the property
of the right with the indicated sign.

Note that, as the actual Tc,japproaches
−−−−−−→

Tc,i, the ideality condition given by (A24) be‑
comes more restrictive and approaches A−(T, P, xi) = −A+(T, P, xi) = 0, or alternatively,
GIS

ii = GIS
ij = GIS

jj ̸= 0. This is the special case of null solute–solvent intermolecular asym‑
metry, ∆LR−IS

ij (T, P, x), and the system behaves as a pure fluid.

Appendix C. Relation between the Krichevskii ParameterAKr and the Structure
Making/Breaking Parameter S∞

iα

Note also that the isothermal‑isochoric rate of change of pressure (∂P/∂xi)
∞
Tρ

can also be written as
(
∂P/∂xβ

)∞
Tρ

= νρo
α

(
Co

αα − C∞
βα

)
/κo,IG

α [28], where
C⊕

βα(T, P) ≡ 4π
∫ ∞

0 c⊕βα(r)r
2dr defines the DCFI for the βα−type of interactions at the pre‑

vailing (T, P) state conditions and composition, i.e., ⊕ = o for the pure component and
⊕ = ∞ for the infinite dilution [1]. Thus, after invoking the following macroscopic inter‑
pretation for the DCFI [13],

Co
αα(T, P) = υo

α

[
1 −

(
νυo

α/υ̂∞,IG_i
i

)]
(A35)

C∞
iα (T, P) = υo

α

[
1 −

(
υ̂∞

i /υ̂∞,IG_i
i

)]
(A36)

so that,
(∂P/∂xi)

∞
Tρ = νkTρo

α

(
υ̂∞

i − νυo
α

)
/υ̂∞,IG_i

i

= ν
(
υ̂∞

i − νυo
α

)
/
(

υ̂∞,IG_i
i κo,IG

α

) (A37)

Therefore, from Equations (41) and (A37), we find

S∞
iα (SR) = −

(
υ̂∞

i − νυo
α

)
/υ̂∞,IG_i

i
= −

(
υ̂∞

i − νυo
α

)
/(νkTκo

α)
(A38)
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leading straightforwardly to,

S∞
iα (LR) = (υ̂∞

i − νυo
α)
([

1/υ̂∞,IG_i
i

]
− [1/νυo

α]
)

(A39)

where κo,IG
α = (kTρo

α)
−1 and υ̂∞,IG_i

i = νkTκo
α so that,

S∞
iα (LR) = (kTρo

ακo
α − 1)S∞

iα (SR)
= −S∞,IG_i

iα S∞
iα (SR)

(A40)

Equation (A40) tells us that the long‑range contribution to the structure parameter of
any real solute, S∞

iα (LR), regardless of the value of ν, becomes proportional to its short‑
range counterpart S∞

iα (SR) through the negative value of the structure parameter of the
ideal gas i−solute at the prevailing state conditions, S∞,IG_i

iα (T, P). Obviously, for a non‑
dissociative solute, ν = 1. Consequently,

S∞
iα (T, P) = S∞

iα (SR) + S∞
iα (LR)

=
(

1 − S∞,IG_i
iα

)
S∞

iα (SR)
= kTκo

αρo
αS∞

iα (SR)
(A41)

an outcome that confirms the contention that, even for a highly compressible solvent envi‑
ronment, the structure making/breaking behavior of a i−solute at infinite dilution is still
defined by its short range (solvation) contribution. In other words, the isothermal com‑
pressibility of the α−solvent only magnify its magnitude, by the positive defined factor,
(kTκo

αρo
α), at the prevailing state conditions.

Appendix D. The Standard Hydration Gibbs Free Energy of Water Isotopomers and
Their Link to the Corresponding Krichevskii Parameters

Starting from Equation (A1) of Appendix A, we have that(
∆hG∞

i − ∆hG∞
i=j

)
TPo

= kT ln
(

γLR,∞
i ϕo

i /ϕo
j

)
TPo

(A42)

where Po = 1 atm and R =
(

ϕo
i /ϕo

j

)
TPo

̸= 1. For i = H2O and j = D2O, R(298, Po) ∼=
1.15 [48,49] so that, according to (A5)–(A8) of Appendix A and the critical conditions of
D2O [49,50], we have AIG_i,D2O

Kr = 938.4 atm and the slope AIG_i,D2O
Kr /kT ln

(
ϕo

D2Ozo
D2O

)
=

−34.99 atm mol/kJ. Consequently, the equivalent to Equation (7) for this pair of
isotopomers (i = H2O and j = D2O) becomes,

AH2O,D2O
Kr = AIG_i,D2O

Kr

(
∆hG∞

i − ∆hG∞
i=j

)
TPo

/
(

∆hG∞
i=j − ∆hG∞

IG_i

)
TPo

= −AIG_i,D2O
Kr

(
∆hG∞

i − ∆hG∞
i=j

)
TPo

/kT ln
(

ϕo
D2Ozo

D2O

)
TPo

= 86.7 ln
(
RγLR,∞

H2O,D2O

)
TPo

(A43)

For example, if
(
RγLR,∞

H2O,D2O

)
TPo

≲ 1, i.e., γLR,∞
H2O,D2O(298, Po) ≲ 0.87 then AH2O,D2O

Kr ≲ 0 as

described by Ref. [58]. Otherwise, AH2O,D2O
Kr ≳ 0 as described by Ref. [57].

Moreover, when i = D2O and j = H2O, R(298, Po) ∼= 0.87 so that, according to
(A5)–(A8) of Appendix A, and the critical conditions of H2O [48], we have
AIG_i,H2O

Kr = 948.2 atm and the slope AIG_i,H2O
Kr /kT ln

(
ϕo

H2Ozo
H2O

)
= −35.82 atm mol/kJ.
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Consequently, the equivalent to Equation (7) for this pair of isotopomers (i = D2O and
j = H2O) leads to,

AD2O,H2O
Kr = AIG_i,H2O

Kr

(
∆hG∞

i − ∆hG∞
i=j

)
TPo

/
(

∆hG∞
i=j − ∆hG∞

IG_i

)
TPo

= −AIG_i,H2O
Kr

(
∆hG∞

i − ∆hG∞
i=j

)
TPo

/kT ln
(

ϕo
H2Ozo

H2O

)
TPo

= 88.7 ln
(
RγLR,∞

D2O,H2O

)
TPo

(A44)

For example, if
(
RγLR,∞

D2O,H2O

)
TPo

≳ 1, i.e., γLR,∞
D2O,H2O(298, Po) ≳ 1.15 then AD2O,H2O

Kr ≳ 0 as
described by Refs. [54,57,58].

We should note that γLR,∞
H2O,D2O = 0.9992 ± 0.0002 according to Ref. [56], and there‑

fore, according to the analysis above and Equation (42) the light water solute at infinite
dilution in heavy water would lead to AH2O,D2O

Kr ≳ 0 as found by Ref. [57]. Moreover,
if we assumed the validity of the symmetric relation γLR,∞

D2O,H2O = γLR,∞
H2O,D2O based on the

βgE(xH2O
)

TP = xH2OxD2O ln γLR,∞ description for the non‑ideality of the aqueous iso‑
topomers, then Equation (41) and the above analysis would translate into AD2O,H2O

Kr ≲ 0
for the heavy water solute at infinite dilution in light water. As we might expected, this
outcome is at odd with the available (though scarce) experimental evidence.
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