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Abstract: Medium optimization and development for selective bacterial cultures are essential for
isolating and functionalizing individual bacteria in microbial communities; nevertheless, it remains
challenging due to the unknown mechanisms between bacterial growth and medium components.
The present study first tried combining machine learning (ML) with active learning to fine-tune the
medium components for the selective culture of two divergent bacteria, i.e., Lactobacillus plantarum
and Escherichia coli. ML models considering multiple growth parameters of the two bacterial strains
were constructed to predict the fine-tuned medium combinations for higher specificity of bacterial
growth. The growth parameters were designed as the exponential growth rate (r) and maximal
growth yield (K), which were calculated according to the growth curves. The eleven chemical
components in the commercially available medium MRS were subjected to medium optimization
and specialization. High-throughput growth assays of both strains grown separately were performed
to obtain thousands of growth curves in more than one hundred medium combinations, and the
resultant datasets linking the growth parameters to the medium combinations were used for the
ML training. Repeated rounds of active learning (i.e., ML model construction, medium prediction,
and experimental verification) successfully improved the specific growth of a single strain out of the
two. Both r and K showed maximized differentiation between the two strains. A further analysis
of all the data accumulated in active learning identified the decision-making medium components
for growth specificity and the differentiated, determinative manner of growth decisions of the two
strains. In summary, this study demonstrated the efficiency and practicality of active learning in
medium optimization for selective cultures and offered novel insights into the contribution of the
chemical components to specific bacterial growth.

Keywords: culture medium; machine learning; bacterial growth; active learning; medium optimization;
growth specificity; selective medium

1. Introduction

Culturomics has emerged as a vital method for studying complex microbial envi-
ronments. It often combines various medium conditions for selective cultures to identify
bacterial species. In environmental microbiology, culturomics has led to a reevaluation of
microbial diversity, particularly for those microbes that are challenging to culture [1]. In
clinical microbiology, culturomics has led to the cultivation of 341 bacterial species from
212 different culture conditions, with over half of these being newly discovered in the hu-
man gut [2]. The primary objective in the development of culturomics is to enable a method
to provide diverse culture conditions that promote the growth of fastidious bacteria [3].
With the aim of screening and identifying specific microorganisms within samples, the
development of culture media for specific bacterial growth has become increasingly crucial.
By incorporating various growth inhibitors into the culture media, unwanted microbial
populations can be eliminated, facilitating the growth of the target microorganisms [4]. Sci-
entists have been exploring novel compositions for culture media, such as those that mimic
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natural marine environments, leading to the detection of new microorganisms [5]. Due to
the complexity of increasing samples and the demands for screening and identification,
medium development for selective cultures has faced new challenges [6–8]. The selective
culture ensured the target bacterial growth and prevented other microbial communities
from growing [4]. The typical approach of adding inhibitors might also suppress the growth
of the target bacterium. In the food industry, selective culture media are frequently used to
detect microbial contamination and spoilage in food materials, which might be unsuitable
for competitive bacteria [9,10]. Therefore, medium optimization and specialization are
highly required in the field.

Medium optimization was challenging due to the high complexity of the microbiomes
and combinations of medium components [11]. Traditional methods of Design of Ex-
periments (DOE) [12,13] and Response Surface Methodology (RSM) [14,15] employed a
quadratic polynomial approximation; thus, they might not fully capture the complex inter-
actions between the medium and cells [16]. Machine learning (ML) has been introduced
to predict unknown events by learning a dataset [17]. This approach has been widely
applied in drug development [18,19], protein structure and function prediction [20,21], and
epidemic surveillance [22,23] and has exhibited better outcomes than DOE or RSM [24].
Lately, combining active learning with ML has successfully optimized the culture media for
mammalian cells [25,26]. These studies strongly suggested the efficiency of ML-associated
active learning for medium development and its availability to improve the selective effect
of a culture medium for specific bacterial growth, so-called medium specialization.

Therefore, to meet the current needs for culture medium optimization and special-
ization, a new method of medium optimization was developed in the present study by
referring to the growth dynamics of microorganisms in a wide range of medium condi-
tions. This method combined the high-throughput growth assay and machine learning
techniques to fine-tune the medium composition for the selective culture of microorgan-
isms. ML-combined active learning considering single or multiple growth parameters was
conducted to fine-tune the medium compositions for the specific growth of Lactobacillus
plantarum or Escherichia coli. High-throughput growth assays were performed to acquire
the training data and for experimental verification. Multiple benchmarks, i.e., scores,
were newly designed to be associated with ML to predict better medium combinations
for specific bacterial growth. The datasets connecting the medium combinations with the
goodness of bacterial growth obtained during active learning were analyzed to discover the
contribution of medium components to bacterial growth specificity. The decision-making
elements for bacterial growth and growth specificity were identified. The study tried to
provide a representative case of employing active learning for medium specialization and
insights into the medium’s contribution to selective bacterial cultures.

2. Results
2.1. Experimental and Computational Design of Active Learning for Medium Optimization

The initial training data were experimentally acquired, linking medium combinations
to bacterial growth. Escherichia coli (Ec) and Lactobacillus plantarum (Lp) were used, as
they were of different growth preferences and commonly employed in laboratories and
production tests using selective culture media [27–30]. Although the media appropriate
for both strains were well known, whether the culture medium specific for Lp growth
could be fine-tuned via machine learning for Ec growth was tested. Eleven components
in the commercially available MRS medium for Lp growth were used to prepare the
medium combinations. Theoretically, any media or components would be fine for medium
optimization. The choice of MRS (11 components) was to benefit from machine learning,
which is powerful when the number of variables (medium components) is large enough.
Note that agar in the MRS medium was removed from the optimization medium, as the
growth assay was performed in liquid media. These components were mixed in a broad
range of concentration gradients, changing on a logarithmic scale (Figure 1A). Ec and Lp
were cultured independently in 98 medium combinations (n = 4) to obtain the growth
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curves for calculating the growth parameters of growth rate (r) and maximal population
density (K) (Figure 1B). As the initial training data, the medium combinations connecting
with the growth parameters of both strains, i.e., r_Lp, K_Lp, r_Ec, and K_Ec, were acquired.
These four parameters were used as the machine learning (ML) objective variables, either
in a single mode or a multiple combination (Figure 2A).
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Figure 1. Growth assay under medium combinations. (A). Concentration gradients of medium
components. Circles indicate the concentrations used in the medium combinations, shown on a
logarithmic scale. (B). High-throughput growth assays. Monoculture of two bacterial strains was
performed under hundreds of medium combinations. The growth parameters calculated from the
growth curves, i.e., growth rate and growth yield, are indicated as r and K, respectively.

ML-assisted medium optimization and specialization for different strains were per-
formed using the gradient-boosting decision tree (GBDT), which has been repeatedly
validated to have superior predictive performance and interpretability compared to other
algorithms [31–33]. The initial training data (R0) were applied to the GBDT model to im-
prove r_Lp or K_Lp (R1 and R2) (Figure 2A). Medium optimization and specialization were
performed by active learning, following model construction, prediction, and experimental
verification steps. The top 10~20 predicted medium combinations of the best objective
values (e.g., r, K) were subjected to experimental validation. The results were included
in the training data for the following round of ML model construction and prediction
(Figure 2B). Active learning was conducted for five rounds for each strain: R1 and R2
considered r_Lp or K_Lp for medium optimization of Lp, and S1~S3 considered multiple
parameters for the medium specialization of Lp or Ec (Figure 2A). That is, S1-1 and S1-2
considered the pairs of r or K (i.e., r_Lp vs. r_Ec, K_Lp vs. K_Ec) to maximize the difference
of r or K between Lp and Ec, and S2-1, S2-2, and S3 considered all parameters to maximize
the difference of both r and K between Lp and Ec (Figure 2C).
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Figure 2. Active learning for medium optimization. (A). ML models considering single or multiple
growth parameters. The growth parameters subjected to being increased or suppressed are indicated
in cyan and grey, respectively. R1 and R2 consider a single out of four parameters; S1 considers the
paired parameters; and S2 and S3 consider all four. (B). Repeated rounds of active learning. The
process of active learning is presented, i.e., ML model construction (described in (A)), medium pre-
diction, and experimental verification. (C). Number of experimentally tested medium combinations
in each round of active learning. R0 indicates the initial training data. S1-1, S1-2, S2-1, and S2-2
represent two rounds of active learning with the ML models of S1 and S2, respectively.

2.2. Active Learning Successfully Fine-Tuned the Media for Selective Bacterial Growth

Active learning considering the single parameter of r_Lp and K_Lp (R1 and R2),
which was started from the initial training data (R0), successfully increased r_Lp and K_Lp
within two rounds; however, the media optimized for Lp also improved the growth of Ec
(Figure 3A,B, R1 and R2). Active learning considering multiple growth parameters was
designed to maximize the difference of r or K between Lp and Ec, e.g., promoting the growth
of Lp but repressing the growth of Ec. Three formulas were employed for the ML prediction
and medium selection (see Methods). Three rounds of active learning (considering multiple
parameters) increased the medium specialization: significant Lp growth and no Ec growth
(Figure 3A,B, S1-1, S1-2, and S2-1). Intriguingly, although the optimization targeted a
single parameter (r_Lp or K_Lp), the other parameter was also improved to a certain extent
(Figure 3E,F, S1-1, S1-2, and S2-1). Moreover, the medium combinations suitable for Ec
growth were successfully developed by active learning (Figure 3C,D), despite the medium
components originating from MRS, which is developed explicitly for Lp. Three rounds of
active learning improved the growth of Ec but had poor specificity because Lp grew as
well (Figure 3C,D, S1-1, S1-2, and S2-1), and the parameters other than the targeted one
were unsatisfied (Figure 3G,H, S1-1, S1-2, and S2-1). Two additional rounds considerably
increased the medium specialization for Ec, both the targeted (Figure 3C,D, S2-2, and S3)
and untargeted parameters (Figure 3G,H, S2-2, and S3).

Six medium combinations of high specificity for Lp (M1-3_Lp) or Ec (M1-3_Ec), newly
developed via active learning, were selected for further verification. As the active learning
prediction was performed in the mono-culture condition, whether these media remained
specific in the presence of both Lp and Ec remained uncertain. The co-culture of Lp and
Ec was performed in the six media, the medium compositions of which differed from
that of MRS (Table 1). Nearly all of them exhibited significant specificity for the growth
of the target strain, Lp or Ec, regardless of mono- or co-culture (Figure 4). Although
Lp producing acetic acid might inhibit Ec [34–36], the media developed for Ec growth
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(M1-3_Ec) retained specificity in the presence of Lp. The results suggested that the ML-
assisted medium optimization and specialization were practical, and the resultant media
were robust regardless of mono- or co-culture.
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Table 1. ML-predicted medium combinations of significant growth specificity. Six media were
selected for the co-culture test. MLp1, 2, and 3 and MEc1, 2, and 3 indicate the ML-predicted media
specifically for Lp and Ec growth, respectively. The concentrations of the medium components are
shown in the unit of g/L in comparison to the original medium MRS.

(g/L) MLp1 MEc1 MLp2 MEc2 MLp3 MEc3 MRS

Tryptone 10 10 10 10 10 10 10
Yeast extract 5 1.35 1.35 0.05 5 1.35 5

Glucose 16.2 0.6 0.6 0.2 16.2 0.2 20
K2HPO4 0.18 4.86 6 6 0.18 6 6

C6H14N2O7 1.62 0.54 0.54 0.18 1.62 0.18 2
CH3COONa 4.05 0.15 0.15 0.15 4.05 0.15 15

MgSO4 0.6 0.6 0.486 0.006 0.6 0.018 0.6
MnSO4 0.16 0.1296 0.1296 0.0016 0.16 0.0144 0.16
FeSO4 0.0005 0.0045 0.0045 0.0135 0.0005 0.0135 0.05

CH3COOH 0.013 0.013 3.159 0.013 0.013 0.039 1.3
Tween80 1 0.27 0.27 0.81 1 0.81 1
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2.3. Changes in Growth Parameters Revealed the Effectiveness of Active Learning

How the growth was fine-tuned during active learning was further analyzed. The
distributions of the growth parameters significantly differentiated between the strains,
considerably changing during active learning (Figure 5A). Bimodal distributions were com-
monly observed in Ec (Figure 5A, bottom), indicating the medium combinations predicted
in the active learning were highly selective for Ec growth. In contrast, monomodal distribu-
tions were more often found in Lp, although the transition from monomodal to bimodal
was observed in r_Lp (Figure 5A, upper). The peaks of distributions altered significantly as
active learning proceeded (Figure 5, color variation), revealing the effectiveness of active
learning for medium optimization and specialization. In addition, a correlation analysis of
the four growth parameters showed significant cross-correlations, except for the pair of
r_Ec and r_Lp (Figure 5B, red). The positive correlations between r and K in both strains
(Figure 5B, blue) indicated a common feature of improved growth rate associated with
increased population density. The negative correlation across the strains (Figure 5B, black)
reasonably presented the trade-offs in the growth of Lp and Ec, as the active learning aimed
to improve the medium specificity for a single strain. Taken together, the features of the
datasets acquired during active learning well reflected the process of medium optimization
and specialization.

2.4. Decision-Making Medium Components for the Changes in Bacterial Growth

The GBDT analysis showed that all four growth parameters were primarily determined
by a single medium component (Figure 6). Differentiated decision-making components
were observed in Lp, i.e., yeast extract and acetic acid for K and r, respectively (Figure 6,
upper). As yeast extract was reported to provide initial nutrients for cell division and
substance synthesis [37,38], the abundance of the resource might determine the final popu-
lation size. It was reasonable that acetic acid, which often inhibited microbe growth [39–41],
targeted r_Lp, as Lp preferred an acidic environment. On the other hand, both r_Ec and
K_Ec were commonly determined by K2HPO4 (Figure 6, bottom), which might provide a
buffering effect in response to the changes in pH caused by Lp.
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A hierarchical clustering analysis of the normalized feature importance intriguingly
divided the medium components into four main categories (Figure 7A). The medium
components assigned in the same categories showed neither common chemical properties
nor similar biological functions. It strongly suggested that the novel classification of
medium components depended on their impact on bacterial growth. Four different trends of
medium components contributing to the growth parameters were identified, that is, highly
relevant to K_Lp (pink), r_Lp (yellow), r (purple), and Ec (grey), respectively (Figure 7B).
Such specificity of medium components might be applied to the medium’s development
for differentiated bacterial growth.
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2.5. Medium Components Adjusted via Active Learning for Bacterial Growth Specificity

The medium components contributing to the bacterial growth specificity could be
identified according to the medium specialization that proceeded via active learning. The
scores (S), calculated in active learning considering multiple growth parameters, were
subjected to the GBDT analysis. As they represented the goodness of the growth specificity,
the medium components of high feature importance indicated a significant contribution
to the growth specificity. The results showed that yeast extract and glucose primarily
determined the specificity of K for Lp and Ec, respectively (Figure 8A, blue), and K2HPO4
was the common component determining the specificity of r for Lp and Ec (Figure 8A,
green). Yeast extract and K2HPO4 are shown in Figure 8A in black. The findings revealed
that adjusting a single component differentiated the growth of Lp and Ec to a great extent.

In summary, the bacterial growth specificity was roughly determined by a single
component, regardless of considering one or both of the parameters r and K. As r and K
were the most representative features that quantitatively described the bacterial growth
dynamics [42,43], the determinative manner of medium components contributing to r
and K revealed the working principle for specific growth control. The buffering capacity
and nutritional richness might influence the growth specificity during the exponential
and stationary phases, respectively (Figure 8B). K2HPO4 was supposed to control the pH
condition and execute the buffering effect. Yeast extract and glucose were considered to
provide nutrients, such as carbon resources, for metabolism, supporting bacterial growth.
The differentiation in the essential components for bacterial growth specificity was well
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supported by the findings that the buffering agents influenced cell division and biosyn-
thesis [44,45] and the nutritional resources affected the organic acid metabolism [46,47]. In
summary, ML-assisted medium optimization and specialization provided a practical tool
for medium development and discovered novel insights into bacterial growth for precise
culture control.
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3. Discussion

The present study first demonstrated ML-assisted medium specialization for differ-
entiated bacterial growth. ML was remarkably significant in medium optimization for
microbial and mammalian cells [26,31], which could be widely applied to synthetic con-
struction and production [48,49]. The present study provides alternative applications in
medium development for selective cultures. The results indicated that combining ML with
active learning was highly practical for precisely fine-tuning the medium compositions for
the selective culture of particular bacteria. Further applications of optimizing selective cul-
ture media for complex microbiomes were perceived, such as the systematic development
of selective media for individual bacteria living in the environmental microbial community.

The present study made a first trial to combine the growth parameters, determined
according to the experimental records, as the quantitative reference values for model
construction and prediction. Medium optimization for multiple strains might raise the cost
of data acquisition for training and testing. Theoretically, more data led to a more accurate
ML model, and more targets (variables) required more experimental data [50]. To save
labor and cost, three combinations of four growth parameters (r_Lp, K_Lp, r_Ec, and K_Ec),
representing the growth features of two different bacterial strains, were employed in active
learning here. The success in medium optimization demonstrated that combining multiple
parameters was highly recommended for fine-tuning the selective culture media. Note
that many other combinations of the growth parameters could be considered, which might
show higher efficiency or better selectivity.
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On the other hand, improving multiple growth parameters simultaneously in model
construction was theoretically ideal but might be biologically impractical, as the living cells
and their communities were highly self-regulated and coordinated [51–54]. In the present
study, the constructed ML models tried to improve the growth rate (r) and maximize the
population size (K) simultaneously, which was assumed to be impossible because of the
potential trade-offs between r and K [55,56]. Intriguingly, active learning allowed us to find
the medium combinations that improve both r and K, demonstrating the availability of
the parallel optimization of multiple growth parameters. The differentiated growth of two
bacterial strains was also successfully achieved when considering the growth parameters
of both strains. Intriguingly, the selective culture media developed in the mono-culture
maintained specificity for bacterial growth in the co-culture. As the two strains (Lp and
Ec) in the present study were ecologically and genetically far from each other, whether the
present approach for medium specialization was practical for closely related or habited
bacteria remained questioned. If single species played the dominant role in the microbial
communities [57–60], the interactions among multiple species might be ignored in active
learning by weighting the particular growth parameters in ML models. Nevertheless,
further technical and experimental developments are required.

In addition, the big dataset acquired in active learning allowed us to investigate the
contribution of medium components to bacterial growth. A novel understanding of the
chemical role of bacterial growth was achieved. As an example of the new findings, acetic
acid was commonly used to adjust the pH of the media for culturing Lp (e.g., MRS) to
suppress the growth of other microbiomes growing at neutral conditions [39–41]. The
GBDT analytical results showed that the inhibitory effect of acetic acid on Ec was limited,
and yeast extract played a more significant role in selective culture. The finding indicated
that the commonly used or commercially available media could be further fine-tuned for
better performance or milder conditions. For instance, antibiotics or dyes were often added
to the media for selective microbial culture, which might cause increased resistance due to
frequent usage [61–64]. Optimizing medium components other than antibiotics should be
tried to acquire milder conditions for suppressed bacterial growth associated with reduced
a potentiality of acquiring antibiotic resistance.

ML-assisted medium optimization often resulted in novel insights that were outside of
current knowledge. Besides the present findings of the medium contributions to differenti-
ated bacterial growth, our previous studies observed the secondary contribution of glucose
to bacterial growth [65], the differentiated contribution of carbon, sulfate, and nitrogen
for survival [32], and the diversified metabolic strategies in transcriptome reorganization
for increased productivity [31]. Additionally, the cluster analysis intriguingly divided the
medium components into four clusters, which were outside of any well-known chemical
or biological categories. The mono-culture data showed higher accuracy in predicting
interspecies relationships than the metabolic or phylogenetic data [33]. Taken together,
active learning for medium optimization and specialization allowed better cell culture
and provided a dataset connecting medium compositions to microbial growth for a better
understanding and application of microorganisms.

4. Materials and Methods
4.1. Bacterial Strains

Escherichia coli BW25113 and Lactobacillus plantarum (ATCC8014) were used, which
were obtained from the National BioResource Project, the National Institute of Genetics
(Shizuoka, Japan), and the National Biological Resource Center (Tsukuba, Japan), respec-
tively. As previously described in detail [65,66], the stock solutions of the bacterial cells
grown in the exponential phase were prepared for growth assay in advance, and hundreds
of the stock solutions (60 µL) were stored at −80 ◦C for future use.
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4.2. Medium Combinations

The medium combinations were initially decided according to the commercially avail-
able medium, MRS (Wako, Japan). The components (chemical compounds, reagents,
etc.) comprised in MRS were purchased from Wako, except Tryptone (Sigma, Kawasaki,
Kanagawa), yeast extract (MP Biochemicals, Santa Ana, CA, USA), and Tween 80 (MP
Biochemicals). The lowest concentrations of these components were set at 1% of their
concentrations in MRS. Their highest concentrations were determined based on the liter-
ature and manufacturers’ instructions. The stock solutions of the medium components
were prepared as described previously [32,65]. They were aliquoted into 100~1000 µL
portions for single use and stored at −30 ◦C. The medium combinations were prepared
by mixing the stock solutions, of which the concentrations varied logarithmically in five
different gradients, as previously reported [31,32,65]. Initially, 96 medium combinations
were prepared for the growth assay of both bacterial strains as the training data. A total of
192 combinations were prepared to test both strains in the present study.

4.3. Growth Assay and Calculation

The prepared culture mixtures were dispensed into a 96-well microplate (Costar,
Washington, DC, USA) with 3–4 biological replicates per combination, each consisting of
200 µL per well, and the combinations were placed in different positions. The 96-well plate
was incubated at 37 ◦C with shaking at 567 rpm in a microplate reader (Epoch2, BioTek,
Winooski, VT, USA). Cell growth was monitored at an optical density of 600 nm (OD600),
and readings were taken at 30 min intervals over 48 h. The temporal changes of OD600
readings were exported from the microplate reader and subjected to Python programs to
calculate the two representative growth parameters, the growth rate (r) and the maximal
OD600 (K), as described elsewhere in detail [65,66]. In total, 1660 growth curves were
experimentally obtained, and the mean values of r and K (biological replicates, N = 4~6)
were used for machine learning and computational analyses.

4.4. Machine Learning and Computational Analyses

Python 3 was used for machine learning (ML), as described previously [26,31,32]. The
ML models used the “GradientBoostingRegressor” from the “ensemble” module in the
“scikit-learn” library. The explanatory and target variables were the medium components
and growth parameters. The model employed ‘random_state’ and ‘n_estimators’ set to
0 and 300, respectively. The ‘learning_rate’ and ‘max_depth’ were searched between
0.001 and 0.5, using increments of 0.005 among 2, 3, 4, and 5. The root-mean-square
error (RMSE) was calculated to assess prediction accuracy using the ‘mean_squared_error’
from the ‘metrics’ module in “scikit-learn”. The ‘feature_importances_’ was calculated
using an outer five-fold cross-validation. Both outer and inner cross-validations were
performed using the ‘cross_val_score’ function from the ‘model_selection’ module in
“scikit-learn”. ‘GridSearchCV’ was used for the hyperparameter search with ‘learning_rate’
and ‘max_depth’ ranging between 0.01 and 0.5, incrementing by 0.01 among 2, 3, 4, and 5.
The ‘n_estimators’ were set to 300, while other hyperparameters were left as default. The
average of the ‘feature_importances_’ values derived from the five-fold cross-validation
was used. Additionally, the ‘feature_importances_’ were subjected to the hierarchical
clustering analysis, using ‘normalize’ in the “sklearn.preprocessing” package with the
“ward” method.

4.5. Model Construction and Active Learning

As previously reported [26], ML model construction and prediction were conducted
using the supercomputer Cygnus system (NEC LX 124Rh-4G) in active learning. The GBDT
models (R0~R2) were constructed initially for active learning, i.e., learning, prediction, and
validation. The top 10~20 predicted medium combinations that showed the best r or K of
individual strains were subjected to experimental verification. The resultant experimental
outputs were included in the training dataset, which was used for the following round of
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ML model construction. Subsequently, ML models combining both growth parameters (r
and K) were constructed using the following formula (Equations (1)–(3)) in the following
rounds of active learning.

S1 = (Paratar − Paracon)× Paratar (1)

S2 = [norm(Ktar − Kcon) + norm(rtar − rcon)]× (Ktar × rtar) (2)

S3 = [norm(Ktar − Kcon) + 5 × norm(rtar − rcon)]× (Ktar × rtar) (3)

Here, Para represents any of the growth parameters of any strain. Para_tar and Para_con
indicated the parameters of the target and control strain, respectively. Norm indicated the
data normalization. K_tar and K_con, r_tar, and r_con represented K and r as the target
or control, respectively. The resultant scores (S1~S3) were used as the target variables.
The higher the scores, the more significant the difference in growth parameters, indicating
higher specificity for the target bacterial growth. The top 10~20 medium combinations
showing the highest scores (S1~S3) were experimentally tested and added to the train-
ing dataset for subsequent learning and prediction. Repeated rounds of active learning
associated with the changes in ML models were performed.

4.6. Co-Culture Verification

The cell stocks of both bacterial strains were diluted 1000fold in 1 mL of the identical
medium separately. The diluted mixture of E. coli was dispensed into a 24-well plate, and
that of L. plantarum was placed into a Transwell insert (ThinCert® Cell Culture Inserts, pore
size 0.4 µm, Greiner Bio-One) and then positioned on the 24-well plate (Greiner Bio-One)
containing the E. coli mixture. This allowed the two bacterial strains to grow in the same
medium conditions without mixing with each other. The 24-well plate was incubated
at 37 ◦C with shaking at 567 rpm (Epoch2, BioTek) for 24 h. The culture mixtures were
individually injected into separate wells in an alternative 24-well microplate (1 mL per
well), and OD600 readings were measured using the same microplate reader. Six fine-tuned
selective media were tested with three biological replicates.
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