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Abstract: Alternaria leaf spot of cabbage, caused by the Alternaria brassicicola, affects leaves of
cabbages and often results in head rots causing severe decline in yield. In this work, the effects of
systemic and combination fungicides on A. brassicicola mycelia growth in vitro and disease severity
in field trials were investigated. The results of in vitro evaluation revealed that both fungicides
significantly inhibited (p < 0.05) the growth of A. brassicicola under in vitro conditions. However,
metalaxyl-M 6% was less effective with 100 µg/mL having only 30 ± 3.5% inhibition. On the
other hand, 100 µg/mL of mancozeb 63% + carbendazim 12% had 94 ± 3.5% growth inhibition of
A. brassicicola, respectively, under the same conditions. Dose-response analysis of the efficacy of the
two fungicides showed that the LC50 of metalaxyl-M 6% and mancozeb 63% + carbendazim 12% were
125.52 ppm and 57.22 ppm, respectively, indicating the superiority of combination fungicide over
systemic fungicide alone. Field studies showed that while manure type significantly impacted on
biomass production (p < 0.001), it did not significantly affect disease severity. On the other hand, the
frequency of fungicide application impacted on disease severity, with biweekly application leading
to a significant reduction in disease severity after 10 weeks.
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1. Introduction

Cabbage (Brassica oleracea L.) is a significant fresh vegetable crop grown globally. Bras-
sica plants have been the subject of much scientific interest because of their agricultural and
horticultural importance, with six species (including B. oleracea) having evolved through the
combination of three chromosomes from three earlier species as described by the triangle
of U theory [1] and confirmed by genetic studies [2]. Although these crucifers are biennial
crops, they are usually grown as annual plants. They are compatible with the climatic
conditions found in various parts of the world. However, their production and quality are
often impacted negatively by Alternaria leaf spot disease [3].

Alternaria leaf spot is potentially caused by three pathogens namely, Alternaria brassicicola,
Alternaria brassicae and Alternaria raphanin, with A. brassicicola being the most common
in cabbages. Alternaria brassicicola is considered a necrotrophic (causing death) plant-
pathogenic fungus and like other Alternaria species has been shown to secrete numerous
toxic secondary metabolites and proteins that cause cell death via toxin production in
plants or by directly damaging cells [4]. Symptoms include head rot that initially appears
as small brown spots on an otherwise healthy head, while leaf symptoms include round,
brown spots [5]. As the disease spreads, leaves can develop enough spots that they begin to
merge to form large necrotic areas. The result is a significant decrease in quality, yield and
value. Once present, Alternaria can persist in residues, and in some cases develop resting
spores that allow them to survive in the soil [6].

Management of Alternaria disease is a very important step to avoid extreme economic
losses. To manage this disease, scientists have employed a variety of strategies including
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the use of pesticides, plant activators and plant extracts, but the most often utilized strategy
to lessen disease severity is the introduction of resistant varieties [7,8]. The disease can
most effectively be managed by genetic resistance since it is lasting, ecologically safe and
locally appropriate. However, owing to the limited availability of resistant varieties in
many parts of the world, the commonest management strategy employed by farmers is
the use of fungicides [8]. Although metalaxyl-M is an eye irritant and was withdrawn
from outdoor seed treatment in countries of the European Union in June 2021, its use in
greenhouse conditions continues to be authorized [9]. In addition, due to the need for
an immediate response to Alternaria disease of brassica plants without the availability of
resistant varieties, mancozeb 63% + carbendazim 12% remains among the most commonly
used fungicides around the world owing to its broad spectrum of application and low
toxicity [10,11]. Generally, due to their quick effect with respect to lessening the severity
of infection, ease of application and widespread availability in the market, fungicides are
used to treat infections in most developing countries, where resistant cultivars are not
readily available [7,12]. Farmers need to quickly control disease outbreaks when they are
severe, which often requires the use of commercial fungicides. Several fungicides with
different modes of actions, including systemic and protectant (non-systemic), have been
tested with varying degrees of success in managing the disease [8,13]. In addition, organic
and inorganic nutrients have also been shown to enhance the performance of Brassica crops
under different pathogen treatments.

Notwithstanding the progress made in fungicide development, there is an increas-
ing need for comparative studies of in vitro and in vivo efficacies of both systemic and
combination fungicides. Therefore, this study was aimed at assessing the effectiveness
of different doses of two fungicides in vitro. One of the fungicides (metalaxyl-M 6%) is a
systemic fungicide, while the other (mancozeb 63% + carbendazim 12% Wettable Powder,
WP) is a combination fungicide. The results of this study revealed the superiority of the
combination fungicide over systemic fungicide alone for the control of Alternaria disease
of cabbage.

2. Materials and Methods
2.1. Study Design and Sampling Location

An in vitro control study was performed in the pathology laboratory of the Depart-
ment of Crop Science, University of Nigeria Nsukka, in 2019. Thereafter, the field experi-
ment was conducted in the departmental teaching and research farm in 2020/2021. The
experimental design was a split plot experiment in randomized complete block design.
Randomization was used to neutralize the effect of systematic biases [14]. Soil and organic
manure elemental compositions were determined using Thermo Solaar S4 Atomic Absorp-
tion Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). In addition, the effect
of two organic manure types (poultry manure and pig manure) on biomass production
of B. oleracea was determined through plant-height measurement. To avoid destructive
harvesting, plant heights were measured bi-weekly by measuring the distance from soil
surface to shoot tips [15,16].

2.2. Isolation and Purification of Fungi

Infected leaves and heads with water-soaked area were used for the isolation of the
fungi. Small bits of 5 mm size were taken from the junction of diseased and healthy
portions with the help of sterilized blades. These bits were surface-sterilized with sodium
hypochlorite (0.1%) for 10 to 20 s and washed thrice with sterilized distilled water and
subsequently transferred to potato dextrose agar (PDA) in a Petri plate under aseptic
conditions and incubated for 3–4 days at 25 ± 1 ◦C. The isolated fungi were purified via
the hyphae tip method. The root and stem of the diseased plant was cut into 5–6 cm pieces,
washed with tap water and surface-sterilized with 2% sodium hypochlorite for 2 min. The
piece was then plated on PDA with 10 µL of streptomycin antibiotic (30 mg/L) for the
isolation of suspected fungi in Petri dishes. All plates were incubated at 25 ± 1 ◦C for
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7 days. Different slides were prepared for the identification of the pathogens from each Petri
dish, which have pathogen cultures. Examination of the slides was performed under a light
microscope (AmScope, Irvine, CA, USA), where they were identified by morphological
characteristics such as septations, spore shape and colony growth.

2.3. Pathogenicity Test

To determine whether the isolates can cause infection, virulence test assays of the
isolates were carried out on the three crucifers. Mycelia plugs (5 mm in diameter) from
a 6-day-old PDA culture of A. brassicicola were placed on the surface of the uninfected
cabbage over artificial wound for easy penetration of the pathogen, kept moist with a piece
of moistened absorbent cotton and incubated in a growth chamber at 25 ◦C under a 12 h
photoperiod and 85% relative humidity. After 6 days, lesion diameters were measured
as the mean of two diameters at perpendicular angles. This experiment was carried out
in triplicates.

2.4. In Vitro Evaluation of Fungicides

Two fungicides were added to separate conical flasks containing 80 mL of PDA media
at concentrations of 10, 20, 40, 80 and 100 µg/mL. The two fungicides examined were
(1) metalaxyl-M 6% (traded as Red Force in Nigeria) and (2) mancozeb 63% + carbendazim
12% Wettable Powder, WP (traded as Green Force in Nigeria). A total of 20 mL of the
media was poured into a Petri dish of 90 cm diameter. The freshly growing mycelium
from the selected culture plate was cut 5 mm with a borer and inoculated at the cen-
ter of the Petri dish under aseptic conditions in an isolation chamber. Controls were
maintained without any fungicides. An in vitro experiment was conducted in a com-
pletely randomized design with factor A being the fungicides and factor B the isolates,
replicated three times. Mycelial radial growth was measured 5 days after inoculation
for all treatments and the inhibition percent of mycelium by different concentrations
of chemicals was calculated. The percentage of growth inhibition was calculated and
arcsine-transformed prior to statistical analysis using the percentage-transformation for-
mula Inhibition rate = ASIN·(SQRT·(ab/100) × 180/3.1415926).

2.5. Analysis of the Effectiveness of Combination Fungicide in Field Trials

Based on the result of in vitro studies, mancozeb 63% + carbendazim 12% was used
for field studies. The experimental design was a split-plot experiment in randomized
complete block design. The foliar spray regimens were replicated three times. A portion
of land 20 m long by 16 m wide with an area of 320 m2 was cleared, ploughed, harrowed
and ridged. Beds were prepared 2 weeks prior to transplanting and well-cured manure
(poultry or pig, 20 ton/ha) was applied on the beds. In each bed, measuring 1 m × 1 m,
12 seedlings were transplanted with a spacing of 25 cm in between plants. Four plants
were sampled in each bed. Cabbage seedlings inoculated with A. brassicicola were trans-
planted from the departmental nursery to the already-made beds. Inoculation followed
the method described by Macioszek et al. [17]. In brief, the second leaves of B. oleracea
seedlings were inoculated with two drops (10 µL per drop) of A. brassicicola conidial sus-
pension at a concentration of 5 × 105 conidia per ml of distilled water. A total of 50 mL
of mancozeb 63% + carbendazim 12% (100 ppm) was applied per plant as foliar spray at
different frequencies. The spray regimens followed are described in Table 1, while disease
severity (a measure of fungicide effectiveness against pathogen) was calculated using the
method and scale of Aba et al. [18]. In brief, the extent of coverage of the pathogen (as
percentage of leaf surfaces) was determined per plant. Based on this, a parametric score
of 0 was assigned to plants with 0% infection; a score of 1 to plants with 1–25% infection;
a score of 2 for 26–50% infection; a score of 3 for 51–75% infection; and a score of 4 for
76–100% infection. Finally, the mean values of the scores per treatment were used to assess
the effectiveness of each treatment.
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Table 1. Spray regimen of mancozeb 63% + carbendazim 12% (100 ppm) used during the field study.

Treatment Spray Regimen
Weeks after Transplanting

Description
2 4 6 8 10

Treatment 1 No spray - - - - - Control
Treatment 2 2-weekly + + + + + 5 times
Treatment 3 4-weekly + - + - + 3 times
Treatment 4 6-weekly + - - + - 2 times

“+” indicates application; “-“ indicates no application.

2.6. Data Analysis

The data were collected at 2, 4, 6, 8 and 10 weeks after transplanting. Statistical
analysis was performed using Microsoft Excel, version 16 (Microsoft, Redmond, WA, USA)
and R language, version 4.3.0 [19]. One-way analysis of variance (ANOVA) was used to
compare the mean values under different treatments with that of the control, followed by
Tukey’s all-pairwise comparisons. In all cases, the normality of variances was tested via
the Shapiro–Wilk method [20], while homogeneity of variances was tested using Levene’s
test [21]. Differences were considered significant at p < 0.05.

3. Results and Discussion
3.1. Physicochemical Properties of Soil and Organic Manure

The physicochemical properties of the soil from the experimental sites before planting
revealed that the soil was not fertile. The percentage nitrogen (2.44), phosphorus (30.28) and
potassium (2.00) were low. Cation exchange capacity (13.60 meq/100 g) and base saturation
(19.93) was relatively low. Organic matter (2.44%) and organic carbon (1.42%) depict the low
fertility of the soil of the study area. The pH was 6.2 (slightly acidic). The soil was classified
as sandy loam. The percentages of organic matter, organic carbon, nitrogen, phosphorus
and potassium in poultry manure were 77.98, 22.70, 4.17, 3.13 and 2.41% respectively. On
the other hand, the percentages of organic matter, organic carbon, nitrogen, potassium and
phosphorus in pig manure were 52.69, 18.96, 2.68, 2.09 and 1.36%, respectively. These results
indicate that poultry manure has higher levels of nutrients essential for plant growth than
pig manure. In a recent study of different organic and inorganic manure sources, Adekiya
et al. [22] found that although all organic manure increased soil nitrogen, phosphorus
and potassium levels over NPK fertilizer, poultry manure had the highest values of soil
nutrients (except soluble organic matter, for which rabbit manure had the highest amount).

3.2. In Vitro Efficacy of Systemic versus Combination Fungicide

Pathogenicity test revealed that A. brassicicola recorded a virulence rate of 16.67 ± 6.40%
on cabbage after 6 days of inoculation. The results of in vitro evaluation revealed that both
fungicides significantly inhibited (p < 0.05) the growth of A. brassicicola under in vitro condi-
tions. However, metalaxyl-M 6% was less effective with 100 µg/mL having only 30 ± 3.5% in-
hibition. On the other hand, 80 µg/mL and 100 µg/mL of mancozeb 63% + carbendazim 12%
had 70 ± 5.6% and 94 ± 3.5% growth inhibition of A. brassicicola, respectively, under the
same conditions (Figure 1).

Dose-response analysis of the efficacy of the two fungicides showed that the LC50 of
metalaxyl-M 6% and mancozeb 63% + carbendazim 12% to A. brassicicola were 125.52 ppm
and 57.22 ppm respectively, indicating the superiority of combination fungicide over
systemic fungicide alone (Figure 2). In this case, LC50 refers to the concentration of
fungicide that is lethal to 50% of A. brassicicola mycelia. Similarly, while 28.92 ppm of
mancozeb 63% + carbendazim 12% is lethal to 10% of A. brassicicola, it requires 78.82 ppm
of metalaxyl-M 6% to achieve the same result (Figure 2). The observed difference in the
efficacy of the two fungicides is related to their mode of action. Metalaxyl-M 6% is a
systemic fungicide that inhibits protein and nucleic acid synthesis, with RNA produc-
tion being particularly affected so that mitosis is inhibited [23,24]. On the other hand,
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mancozeb 63% + carbendazim 12% is a combination fungicide composed of both systemic
(carbendazim) and protectant (mancozeb) fungicides [8]. Carbendazim is a benzimidazole
derivative that primarily blocks nuclear division during fungal-cell division and invariably
inhibits DNA and RNA biosynthesis [25–27]. Mancozeb is a non-systemic fungicide that is
widely used as a contact fungicide to control fungal diseases [28]. It interferes with enzymes
containing sulphydryl groups, disrupting several biochemical processes within fungal-
cell cytoplasm and mitochondria [29]. As a result, carbendazim-containing combination
fungicides have wide application for the control of diseases in agriculture [8,30]. Previous
studies have shown that combination fungicides are more effective for the treatment of
fungal diseases. For example, in a study of six fungicides for the treatment of Botrytis
gray mold of chickpea, Rashid et al. [8] found that mancozeb 63% + carbendazim 12% was
most effective, resulting in the lowest disease severity (3.33 score on a scale of 1–9) and the
highest increase (38%) of grain yield. Similar results were found for combination treatment
in sunflower [12].
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3.3. Effect of Manure Type on Plant Biomass

It was observed that manure type significantly affected cabbage plant height (Figure 3).
Organic manure is considered more effective than chemical fertilizers owing to its benefits
to crops and soil. Poultry manure led to significantly greater plant height (p < 0.001) than
pig manure in all the treatment regimens (Figure 3). The higher growth rate observed in
cabbage plants under poultry manure amendment can be explained by the low C:N ratio,
which often leads to faster mineralization and early release of nutrients [22]. The carbon-
to-nitrogen ratio of organic manure influences the growth of microorganisms involved
in organic carbon mineralization, and consequently enhances the decomposition and
mineralization of nitrogen by plants [31].
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The findings in this study were in harmony with some previous experiments on
cabbage production [32]. In a separate study of the effect of different organic manure
sources (cow, pig, poultry and rabbit) and NPK fertilizer on the growth and yield of
okra, it was observed that poultry manure led to the greatest yield, while rabbit manure
and NPK fertilizer each gave the least yield [22]. Similarly, Fagwalawa and Yahaya [33]
found that when compared to other organic-manure sources investigated, poultry manure
significantly increased the growth and yield of vegetable plants. Poultry manure positively
affects nitrogen uptake and dry-matter accumulation [34]. Abd El-Monem and Hamed [35]
and Zhou et al. [36] observed that chicken manure and other organic manure sources slowly
releases nutrients that anchor root development, leading to higher yield and better quality,
while improving soil quality. Organic soil amendment sustains crop-production systems
since it forms an integral source of N and C, in addition to being an important part of soil
pH moderation [37,38]. Furthermore, organic manure provides secondary nutrients and
amino acids which are required by plants for photosynthetic activities, cell division, plant
growth and dry-matter accumulation [39], and are necessary for enzymatic activities and
soil-organic-carbon quality and quantity [40].
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3.4. Effectiveness of Combination Fungicide in the Field Study

The analysis of the effect of fungicide on disease severity revealed that mancozeb
63% + carbendazim 12% significantly (p < 0.05) reduced disease severity 10 weeks after
transplanting (Table 2). The study revealed that variability existed among the spray
regimens of mancozeb + carbendazim used in the management of A. brassicicola in field
conditions, with the highest disease severity recorded in the control (no spray) treatment
and the lowest severity in the bi-weekly treatments (Table 2). The variability observed in
incidence and severity of diseases could therefore be attributed to frequency of spray of
mancozeb + carbendazim as well as pesticide chemistry. Previous studies have shown
that for many fungal diseases, the most effective method of control and sometimes the
only one available for disease control is the frequent application of chemical sprays on
plants, seeds or into the soil [41]. Similarly, McGrath [42] observed that a higher dosage of
pesticides led to better control of phytophthora blight disease of cucumber. While manure
type significantly (p < 0.001) affected plant biomass under all spray treatments, it did not
have the same effect on disease severity for the all treatment regimens. This observation
may be explained by the fact that both manures were organic in nature. Previous studies
have shown that when compared to conventional farms, soils from organic farms were
more suppressive with respect to various soil-borne and foliar diseases [43–45]. Since the
two manures used in this study were both organic in nature, they had similar effects on
disease severity. Hence, the effect of manure type on disease severity was not always
significantly different. Instead, the most significant differences observed were associated
with variation in spray regimen or frequency.

Table 2. Mean values (±SE) of disease severity scores showing the effect of manure type and fungicide
spray regimen on Alternaria disease on cabbage.

Manure Regimen
Weeks after Transplanting

2 4 6 8 10

Poultry No spray 1.33 ± 0.10 a 1.67 ± 0.09 a 1.33 ± 0.12 a 1.33 ± 0.08 a 1.33 ± 0.05 a

2× 1.00 ± 0.12 ab 1.33 ± 0.10 ab 1.33 ± 0.13 a 1.33 ± 0.10 a 1.33 ± 0.10 a

3× 1.00 ± 0.08 ab 1.33 ± 0.06 ab 1.33 ± 0.09 a 1.33 ± 0.09 a 1.33 ± 0.11 a

5× 0.67 ± 0.06 b 1.00 ± 0.05 b 1.00 ± 0.04 ab 1.00 ± 0.07 ab 1.00 ± 0.07 ab

Pig No spray 2.00 ± 0.11 c 2.33 ± 0.14 c 1.67 ± 0.11 c 1.67 ± 0.05 c 1.67 ± 0.08 c

2× 1.00 ± 0.07 ab 1.33 ± 0.11 ab 1.33 ± 0.04 a 1.33 ± 0.05 a 1.33 ± 0.12 a

3× 1.00 ± 0.04 ab 1.00 ± 0.07 b 1.00 ± 0.05 ab 1.00 ± 0.10 ab 1.00 ± 0.05 ab

5× 0.00 ± 0.02 d 0.33 ± 0.02 d 0.67 ± 0.03 b 0.67 ± 0.05 b 1.00 ± 0.07 ab

2×, 3× and 5×: Spray frequencies of 2 times, 3 times and 5 times, respectively. Mean values in the same column
with different superscript are significantly different from each other (p < 0.05).

In conclusion, in vitro studies revealed that combination fungicides that are composed
of systemic and non-systemic (contact) compounds (mancozeb 63% + carbendazim 12%)
were more effective than systemic fungicide alone (metalaxyl 6%). The spray regimens (2×,
3× and 5×) of the combination treatment (mancozeb 63% + carbendazim 12%) were positive
for the control of A. brassicicola under field conditions. However, spraying fortnightly (5×)
was the most effective regimen for the management of A. brassicicola and in turn effectively
controlled Alternaria leaf spot disease in field trial.
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