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Abstract: Irrigation waters may facilitate the spread of antibiotic-resistant bacteria or genes to humans
and animals. Monitoring of resistance in irrigated waters has become common; however, many
studies do not incorporate a spatial component into sampling designs. The objective of this work was
to assess spatiotemporal variations in tetracycline-resistant E. coli in an irrigation pond. Water samples
were collected at 10 locations and two different water depths, and in situ and laboratory water quality
measurements were performed. The percentage of E. coli resistant to the low (4 µg mL−1) and high
(16 µg mL−1) tetracycline doses varied by date and location but were observed to be as high as 12.7%
and 6.3% of the total population throughout the study, respectively. While significant differences
were not observed between resistance levels measured at different depths, on one date resistant E. coli
were only detected in samples collected at depth. Nitrate, fluorescent dissolved organic matter, and
dissolved oxygen concentrations were found to be the leading control variables for the percentage
of resistant E. coli. This work demonstrates that there may be substantial spatial variability in
concentrations of antibiotic-resistant E. coli in irrigation ponds which should be accounted for in the
design of monitoring programs.
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1. Introduction

Antibiotic resistance is currently a major worldwide health challenge. Antibiotic-
resistant bacteria (ARB) can cause diseases which are difficult to treat when the infecting
bacteria are resistant to one or multiple drugs. The environment plays a major role in
the transmission and evolution of ARB, and resistance is intimately linked with human
and animal antibiotic use and excretion [1]. The aquatic environment has been identified
as the most important environmental compartment of ARB, mostly due to its receiving
wastewater effluents and surface runoff [2]. In recent years, E. coli has become a proxy
microorganism to study the levels of ARB in the environment due to its ubiquity, extensive
characterization as a model organism, and relevance in food safety [3,4]. However, while
much work has gone into the study of concentrations of E. coli in irrigation sources and
the related variability, information on the spatial and temporal distributions of antibiotic-
resistant E. coli and the physicochemical water quality factors which may control resistance
levels are not well understood. This has been acknowledged as a major emerging issue in
monitoring and modeling the microbial quality of waters [5].

One of the most widely used classes of antibiotics are tetracyclines. Their afford-
ability, accessibility, and standing as the most widely prescribed antibiotic class used for
animals is largely responsible for its prominent presence in the environment [6–9]. Like all
other antibiotics, there are currently no legal limits set for tetracycline-resistant bacteria
concentrations, the presence of resistance genes, or antibiotic residues; rather, there exist
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only cautionary principles and calls for action by policymakers, possibly due to a lack of
information to support the creation of regulatory standards [1].

In contrast with the size of the body of literature assessing spatial differences in antibiotic-
resistant fecal bacteria in lotic waters (e.g., multiple locations along a river) [10–14], sampling
of lentic waterbodies (e.g., ponds, lakes, dammed waters) is usually carried out with less
spatial resolution, such that spatial variability in resistance cannot be accurately assessed.
Additionally, in many cases, studies average measurement results from multiple locations
rather than providing site-specific information. The results of the few studies examining the
spatial variability of ARB in lakes indicate the need to sample several locations when perform-
ing resistance surveys. For example, a study focusing on antibiotic-resistant E. coli in Lake
Jinsha found substantial differences in multidrug resistance ratios between the eight sampling
locations [15]. In another study which assessed the spatial variability of bacteria resistant to
six antibiotics in two lakes it was found that concentrations of resistant heterotrophic bacteria
can vary by orders of magnitude at different sampling locations in the same waterbody [16].

Freshwater irrigation ponds serve as an important source of water for crops, yet
information on the spatial distribution of ARB in these ponds is not currently available.
Rather, the literature on ARB in irrigation ponds usually focuses on numerous ponds but
only one sample is taken per sampling event (e.g., [17,18]). So far, spatial analysis of ARB in
ponds has mostly been performed in stormwater, retention, or treatment ponds, but in many
cases these involve sampling of the influent and effluent, with more intensive sampling
rarely occurring [19,20]. A recent review on freshwater environments as reservoirs for ARB
has pointed out that ponds could be high in ARB, but this cannot be properly evaluated if
in the available studies only one sample is withdrawn for analysis [21].

Recent research has shown that antibiotics residing in irrigation waters can be taken
up and bioaccumulated in irrigated plants [22]. Thus, contaminated irrigation waters and
associated crops have the potential to act as vectors for the spread of antibiotic resistance to
animal and human populations [23]. With this being the case, it is vital to develop better
monitoring strategies to assess antibiotic resistance in irrigation water sources. Additionally,
a recent review by Liguori et al. [4] poses numerous critical research questions regarding
antibiotic resistance monitoring in surface waters, including assessment of environmen-
tal factors (e.g., pH, temperature, solar radiation, etc.), which may substantially elevate
selective pressures for resistant microbes and the maintenance of antibiotic resistance
genes (ARGs).

To our knowledge there have been no reports into the three-dimensional spatial
variation of ARB in freshwater irrigation ponds or lakes. The objectives of this pilot
project were to (1) assess the spatiotemporal variability of E. coli in non-amended and
tetracycline-amended samples at two different antibiotic dosess and (2) determine predic-
tive relationships between water quality variables and resistant E. coli populations.

2. Materials and Methods

Water sampling was conducted from June to September of 2022 at a commercial farm
with an actively used irrigation system in Maryland, USA (location withheld at the request
of the owners). The irrigation pond measured in this study is approximately 40,000 m2.
The property is zoned as cropland and has deciduous forested areas adjacent to the inflow
and outflows. The areas to the North and Northeast are designated intensively managed
row and garden cropland. The observed pond depths ranged from 0.40 m to 2.36 m with an
average depth of 1.22 m. Sampling of the pond was conducted in a grid-like fashion with
nine sampling locations each approximately 50 m apart and the 10th location placed at the
irrigation intake (Figure 1). The pond is creek-fed from a riparian forest to the North, and
water that enters the pond passes through two settling ponds before entering the larger
pond. Areas in the Northern and Northwestern portions of the pond were not sampled
due to the shallowness of the water.
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Figure 1. Map of the study site and sampling locations. Location 10 is where the irrigation intake 
pipe is located. 

Surface water samples (0–20 cm depth) were collected on 9 June 2022, 29 June 2022, 
24 August 22, 1 September 22, 8 September 22, and 29 September 22 from 10 locations 
across the pond on each date. Subsurface samples were also collected at each location from 
a depth of 1 m. Depth samples were not collected if the water depth at a sampling location 
was less than 1 m. All samples were collected with a Hach Sigma 900 Max autosampler 
(Hach, Loveland, CO, USA) equipped with vinyl tubing which was lowered to the desired 
sampling depth. Upon arrival at a sampling site or when lowering the sampler to take the 
depth measurement, the tubing was flushed with water at that location for 10 s prior to 
sample collection. All samples were collected from a boat and were placed into a backpack 
cooler on the boat until they could be placed in a dark ice-filled cooler at the end of the 
sampling event.  

A YSI EXO 2 (YSI, Yellow Springs, OH, USA) multiparameter sonde was used to 
measure in situ levels of water quality variables in the location where samples were col-
lected. The EXO2 measured temperature (C) (°C), dissolved oxygen (DO) (mg L-1), pH 
(unitless), specific conductivity (SPC) (µS cm-1) turbidity (NTU) (NTU), phycocyanin (PC) 
(relative fluorescence unit (RFU)), and chlorophyll (CHL) (RFU). Photosynthetic active ra-
diation (PAR) (W m-2) and total solar radiation (TSR) (W m-2) (Apogee Instruments Inc., 
Logan, UT, USA) were measured at the water surface and at the same depth as subsurface 
water samples. On the same day as sample collection, subsamples were partitioned in the 
laboratory for additional analyses. The levels of colored dissolved organic matter (CDOM) 
(µg L-1), in vivo chlorophyll (INV) (RFU), and phycocyanin (µg L-1) were measured with 
a fluorometer (AquaFlour, Turner Designs, CA, USA). Concentrations of nutrients includ-
ing ammonia (NH3) (mg L-1), orthophosphate (PO4) (mg L-1), and nitrate (NO3) (mg L-1) 
were measured with a SEAL AQ300 (Seal Analytical Inc., Mequon, MA, USA) discrete 
nutrient analyzer. Concentrations of total carbon (TC) (mg L-1), inorganic carbon (TIC) 
(mg L-1), organic carbon (TOC) (mg L-1), and total nitrogen (TN) (mg L-1) and nitrate-nitro-
gen (NN) (mg L-1) were measured with a Formacs HT TOC/TN (Skalar Inc. Breda, Neth-
erlands). All nutrient samples were filtered with a 0.45 um filter prior to analysis. 

E. coli concentrations were enumerated using the Colilert Quanti-Tray 2000 system 
(IDEXX, Westbrook, MA, USA). Two levels of the antibiotic tetracycline (Zymo, Irvine, 
CA, USA) were added to samples prior to incubation as detailed in Galvin et al. [24]. A 
concentration of 4 ug/mL and of 16 ug/mL were added to subsamples and will be referred 
to as low and high tetracycline doses henceforth. The low and high concentrations were 

Figure 1. Map of the study site and sampling locations. Location 10 is where the irrigation intake
pipe is located.

Surface water samples (0–20 cm depth) were collected on 9 June 2022, 29 June 2022,
24 August 22, 1 September 22, 8 September 22, and 29 September 22 from 10 locations
across the pond on each date. Subsurface samples were also collected at each location from
a depth of 1 m. Depth samples were not collected if the water depth at a sampling location
was less than 1 m. All samples were collected with a Hach Sigma 900 Max autosampler
(Hach, Loveland, CO, USA) equipped with vinyl tubing which was lowered to the desired
sampling depth. Upon arrival at a sampling site or when lowering the sampler to take the
depth measurement, the tubing was flushed with water at that location for 10 s prior to
sample collection. All samples were collected from a boat and were placed into a backpack
cooler on the boat until they could be placed in a dark ice-filled cooler at the end of the
sampling event.

A YSI EXO 2 (YSI, Yellow Springs, OH, USA) multiparameter sonde was used to
measure in situ levels of water quality variables in the location where samples were
collected. The EXO2 measured temperature (C) (◦C), dissolved oxygen (DO) (mg L−1),
pH (unitless), specific conductivity (SPC) (µS cm−1) turbidity (NTU) (NTU), phycocyanin
(PC) (relative fluorescence unit (RFU)), and chlorophyll (CHL) (RFU). Photosynthetic active
radiation (PAR) (W m−2) and total solar radiation (TSR) (W m−2) (Apogee Instruments Inc.,
Logan, UT, USA) were measured at the water surface and at the same depth as subsurface
water samples. On the same day as sample collection, subsamples were partitioned in the
laboratory for additional analyses. The levels of colored dissolved organic matter (CDOM)
(µg L−1), in vivo chlorophyll (INV) (RFU), and phycocyanin (µg L−1) were measured with
a fluorometer (AquaFlour, Turner Designs, CA, USA). Concentrations of nutrients including
ammonia (NH3) (mg L−1), orthophosphate (PO4) (mg L−1), and nitrate (NO3) (mg L−1)
were measured with a SEAL AQ300 (Seal Analytical Inc., Mequon, MA, USA) discrete
nutrient analyzer. Concentrations of total carbon (TC) (mg L−1), inorganic carbon (TIC)
(mg L−1), organic carbon (TOC) (mg L−1), and total nitrogen (TN) (mg L−1) and nitrate-
nitrogen (NN) (mg L−1) were measured with a Formacs HT TOC/TN (Skalar Inc. Breda,
Netherlands). All nutrient samples were filtered with a 0.45 um filter prior to analysis.

E. coli concentrations were enumerated using the Colilert Quanti-Tray 2000 system
(IDEXX, Westbrook, MA, USA). Two levels of the antibiotic tetracycline (Zymo, Irvine,
CA, USA) were added to samples prior to incubation as detailed in Galvin et al. [24]. A
concentration of 4 ug/mL and of 16 ug/mL were added to subsamples and will be referred
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to as low and high tetracycline doses henceforth. The low and high concentrations were
adopted from the Clinical Laboratory Standards Institutes (CLSI) breakpoint values for
assessment of antibiotic resistant E. coli [25].

Data Analysis

Total coliform bacteria are also reportable from the Colilert system; however, due to an
overwhelmingly large number of samples being above the higher detection limit they were
excluded from the analysis but can be viewed in Supplementary Table S1. The percentages
of low and high tetracycline-resistant E. coli were calculated by dividing the concentration
in antibiotic-amended samples by the corresponding non-amended subsample and multi-
plying by 100. Percentages of tetracycline-resistant E. coli were assessed on the latter four
sampling dates.

Correlations between E. coli concentrations, percentages of resistant E. coli, and water
quality parameters were determined using the non-parametric Spearman rho (rs). A
principal component analysis (PCA) was also used to explore the relationships between
E. coli and water quality parameters and identify prevailing patterns in the dataset. For
the PCA analysis, a correlation matrix was used to account for the differences in the scale
of variables. Comparisons of cumulative probability distributions between surface and
sub-surface samples were performed using the Kolmogorov–Smirnov (K–S) test. Kruskal–
Wallis one way ANOVA on ranks was used to compare medians of resistant E. coli across
dates, and the Mann–Whitney test was used for pairwise comparison of individual dates.
All statistical testing and PCA analyses were performed using the PAST Software v4.12b
(Paleontological Association, Oslo, Norway) [26]. Statistical significance in all tests was
performed using the 0.05 level of probability. Graphs were generated using SigmaPlot v13
(Systat, San Jose, CA, USA), and the site map was created using QGIS v3.30.0.

Conditional decision trees (cTrees) were computed using water quality variables as
inputs and the percentages of resistant E. coli as outputs. Traditional classification and
regression trees (CART) operate using recursive binary partitioning to create splits in
datasets which help to best distinguish between different values of the target variable
(i.e., percentages of resistant E. coli) based on levels of the inputs (i.e., environmental
variables). Instead of maximizing purity (or minimizing impurity) in split groups, cTrees
use statistical permutation tests to determine whether a split based on a certain level of
a parameter leads to a significant or insignificant improvement in model performance.
Conditional trees have been shown to deal with multicollinearity and avoid bias and
overfitting better than traditional regression trees [27]. cTrees were created using the R
software (R Foundation for Statistical Computing, Vienna, Austria) [28] using the ‘partykit’
package [29]. All cTrees were run with default settings except that terminal nodes in the
trees had to contain at least 10 observations.

3. Results
3.1. Variation of E. coli Concentrations across the Observation Period

Concentrations of E. coli measured in the pond along with precipitation amounts
are shown in Figure 1. There was a negative correlation between the average E. coli
concentration across the pond and the number of days between the last rainfall event and
each sampling event (Spearman rs = −0.657, p = 0.175; rs = −0.600, p = 0.292 for surface
and depth, respectively) and a positive correlation between concentrations and the sum
of the precipitation amounts in the 72 h prior to sampling (Spearman rs = 0.885, p = 0.033;
rs = 0.600, p = 0.350, respectively). In other words, concentrations of E. coli were higher on
sampling dates closer to rainfall and when rainfall volumes were high and were low when
the opposite was true.

Concentrations of E. coli were assessed at the surface and at 1 m depth on five of six
dates (Figure 2; Supplementary Table S2). Concentration differences between surface and
depth samples was the lowest on 9 June 2022 (12.4% difference) and highest on 24 August
2022 (48.5%) with an average of 10.8% across sampling dates. The K–S test showed that
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the distributions of surface and subsurface sample E. coli concentrations pooled across the
study were not significantly different (p = 0.515). Linear regressions between surface and
subsurface concentrations by date are shown in Supplementary Figure S1. Values of R2

between the two depths ranged from 0.088 (24 August 2022) to 0.953 (8 September 2022), and
there was a positive correlation noted between samples taken from each sampling depth
except on 24 August 2022 where a slightly negative correlation was observed (r = −0.079).
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Figure 2. Average concentrations of E. coli measured across locations on each sampling date. The
blue and yellow bars show concentration averages on the surface and at the 1 m depth, respectively,
and grey bars show precipitation amounts.

Coefficients of variation (CV) for concentrations of E. coli across sampling locations on
each date ranged from 21.6% (9 June 2022) to 130% (24 August 2022) for surface samples
and from 24.2% (9 June 2022) to 80.0% (1 September 2022) for depth samples. For surface
samples across the observation period, the difference between the maximum and minimum
concentrations measured at different sampling locations was typically within 100–200 MPN
100 mL−1. However, on 1 September 2022 and 8 September 2022 these differences were
much larger at 855 and 3766 MPN 100 mL−1 respectively. These differences were between
locations 1 and 10 and 2 and 10 for 1 September 2022 and 8 September 2022, respectively,
with both cases involving lower concentrations at location 10. For depth samples, all
dates but 8 September 2022 had maximum differences between sampling locations of
100–200 MPN 100 mL−1

. On 8 September 2022 the maximum difference between locations
for subsurface samples was 1201.5 MPN 100 mL−1, which was between locations 2 and 10,
with the latter containing lower concentrations.

3.2. Dynamics of Tetracycline-Resistant E. coli

Concentrations of E. coli resistant to the low and high tetracycline doses showed mod-
erate to strong correlation with E. coli concentrations in non-amended samples (rs = 0.710
and 0.810, respectively, both p < 0.05) (Figure 3). The correlation between E. coli concentra-
tions at low and high doses in subsamples from the same original sample was very strong
(rs = 0.957, p < 0.01). On average, the concentration of E. coli in non-amended samples was
about 20 and 56 times greater than those measured in subsamples which received the low
and high doses, respectively. The coefficients of variation for E. coli concentrations in the
no-, low-, and high-doses of tetracycline were 148%, 160%, and 217%, respectively.
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Figure 3. Linear regressions between the total E. coli population and the low (blue) and high (red)
tetracycline-resistant E. coli populations. Circles and squares indicate samples taken at the water
surface and sub-surface, respectively.

The slopes from the regression equations fit to the concentration data were found
to be significantly different (F test, p = 0.007). However, in logarithmic coordinates and
with the removal of zeros (i.e., only numbers from samples in which the low and high
dose concentration was measurable) the slopes of the regression equations were nearly
identical (p = 0.934) (Supplementary Figure S2). This indicated that subtraction of intercept
values (i.e., y0(high dose)–y0(low dose)) would be a constant which was independent of
the total E. coli population present. These values were 1.39 and 1.08, respectively, and the
resulting value after subtraction was 0.31 or ≈ log10(2), meaning that the percentages of
tetracycline resistant to total E. coli were on average two times different between the low
and high doses.

Percentages of tetracycline-resistant E. coli to the low (PRELt) and high (PREHt) doses
by date, location, and sampling depth are shown in Table 1. On 24 August 2022 only three
of 19 samples were resistant to the high tetracycline dose (PREHt = 16 µg mL−1), and these
samples were all collected from subsurface locations (Table 1). Locations 1-2, 2-2, and 5-2
showed PREHt of 0.9, 4.8, and 4.1%, respectively. On 1 September 2022 both high (ERPHt)
and low (PRELt = 4 µg mL−1) dosages were applied to subsamples. The PRELt in surface
samples ranged from 0.5% to 2.7% (CV = 50.2%), while the PREHt ranged from 0% to 1.3%
(CV = 102.5%). On this date locations 9-1 and 10-1 were susceptible to the high dose while
all other locations had measurable resistance. On 8 September 2022 no locations, surface or
subsurface, showed complete susceptibility to tetracycline at either dose. The PRELt and
PREHt in samples taken at the surface ranged from 1.75% to 10.5% (CV = 64.7%) and 0.63
to 5.0% (CV = 62.5%), respectively. For the subsurface samples these ranges were 2.45%
to 9.29% (CV = 63.8%) and 1.11 to 4.08% (CV = 61.4%), respectively. The PRELt showed
a weak negative correlation between surface and subsurface samples (rs = −0.105, p = 1)
on 1 September 22, whereas the PREHt showed a strong positive relationship between
sampling depths (rs = 0.948, p = 0.166). On 29 September 22 the PRELt and PREHt in the
surface water ranged from 0 to 12.7% (CV = 86.5%) and from 0 to 6.3% (CV = 69.7%),
respectively. These ranges for subsurface samples were from 0 to 8.9% (CV = 113.0%)
and from 0 to 4.4% (CV = 85.5%) for the low and high doses, respectively. There was a
positive correlation between water samples collected between depths for both the PRELt
(rs = 0.670, p = 0.076) and PREHt (rs = 0.368, p = 0.362). Combining data from 8 September 22
and 29 September 22 provided similar positive strengths between surface and subsurface
samples for the PRELt (rs = 0.578, p = 0.048, n = 12) and PREHt (rs = 0.562, p = 0.056, n = 12).
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Table 1. Summary of the percentages of tetracycline-resistant E. coli by date, location, depth,
and dosage.

24 August 2022 1 September 2022 8 September 2022 29 September 2022

Location Low High Low High Low High Low High

1-1 N.M. 0.0 1.2 0.2 3.8 1.4 9.0 3.0
1-2 N.M. 0.9 N.M. N.M. 2.5 1.1 8.9 1.4
2-1 N.M. 0.0 1.9 0.2 1.8 1.4 1.8 0.0
2-2 N.M. 4.8 N.M. N.M. 2.5 1.2 1.6 0.8
3-1 N.M. 0.0 2.7 0.5 3.3 2.5 0.0 0.0
3-2 N.M. 0.0 N.M. N.M. 6.6 4.1 1.9 0.9
4-1 N.M. 0.0 1.0 0.4 10.6 5.0 1.9 0.9
4-2 N.M. 0.0 N.M. N.M. N.M. N.M. N.M. N.M.
5-1 N.M. 0.0 1.1 0.4 4.1 1.8 12.7 6.3
5-2 N.M. 4.1 N.M. N.M. N.M. N.M. 4.7 2.3
6-1 N.M. 0.0 0.6 0.3 2.1 1.8 3.8 0.0
6-2 N.M. 0.0 N.M. N.M. N.M. N.M. N.M. N.M.
7-1 N.M. 0.0 1.5 1.3 3.1 1.0 7.5 6.3
7-2 N.M. 0.0 N.M. N.M. N.M. N.M. 4.2 0.7
8-1 N.M. 0.0 2.5 0.2 3.8 1.4 6.4 3.3
8-2 N.M. 0.0 N.M. N.M. N.M. N.M. 5.6 4.4
9-1 N.M. 0.0 1.9 0.0 5.8 3.2 4.8 2.4
9-2 N.M. 0.0 N.M. N.M. N.M. N.M. 6.5 2.5

10-1 N.M. 0.0 0.5 0.0 1.9 0.6 0.0 0.0
10-2 N.M. 0.0 N.M. N.M. 9.3 0.0 0.0 0.0

x surface N.M. 0.0 1.5 0.4 4.0 2.0 4.8 2.2
x sub-surface N.M. 1.0 N.M N.M. 5.2 1.6 4.2 1.6
x combined N.M. 0.5 1.5 0.4 4.4 1.9 4.5 2.0

Low and high refer to the tetracycline dosage of 4 µg mL−1 and 16 µg mL−1, respectively. N.M. = not measured,
Surface and subsurface describe the water sampling depths of 0–20 cm and 1-m, respectively.

Kruskal–Wallace one-way ANOVA of ranks with sampling date as a factor showed
that there was a significant difference in median PRELt in surface samples (p = 0.018). Mann–
Whitney pairwise testing revealed significant differences between 1 September 2022 and
8 September 2022 (p = 0.002), but neither date contained significantly different percentages
from those observed on 29 September 22 (p > 0.05). A significant difference was also
found for PREHt (p < 0.013) with pairwise testing, showing significantly different median
percentages between 1 September 2022 and 8 September 2022 (p < 0.001). For both the
PRELt and PREHt in surface samples the median value increased from 1 September 2022 to
8 September 2022 to 29 September 2022. Statistical comparison of median PRELt and PREHt
in subsurface samples could only be conducted on the last two dates. Mann–Whitney
pairwise testing showed that depth was not a significant factor for the PRELt (p = 0.461) or
PREHt (p = 0.367).

Cumulative probability distributions of PRELt and PREHt are shown in Supplementary
Figure S3. Approximately 10% of the entire sample set showed full susceptibility to the low
tetracycline dose while 40% were susceptible to the high dose. The K–S test for equality of
cumulative distributions showed that the percentages of resistant E. coli were significantly
different between tetracycline doses (p = 0.001). Distributions of antibiotic resistance for
both the low and high doses did not significantly differ between sampling depths on any
individual date (K-S test, p > 0.05) or when the four sampling dates were analyzed pooled
together (p = 0.730 and p = 0.701 for low and high dose, respectively).

The plot of E. coli concentration versus PRELt and PREHt showed that the slopes of the
regression lines for both doses were not significantly different from zero (F-test, p = 0.390)
(Supplementary Figure S4). In this case, the data in the graph show that on average the
resistance percentage does not significantly depend on the total concentration of E. coli
present in the pond water. That is, this dataset shows that higher concentrations of E. coli
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present do not necessarily indicate that the percentage resistant to tetracycline will be
higher and vice versa.

3.3. Relationships between Water Quality Variables and Percentage of Tetracycline-Resistant E. coli

Correlations between PRELt and PREHt and water quality variables were computed
(Supplementary Table S3). The strength and signs of correlations were very similar be-
tween the low and high doses (rs = 0.763, p < 0.001). For the PRELt, FDOM (rs = 0.544),
PHYC (rs = −0.368), NO3 (rs = 0.459), and NN (rs = 0.326) were all significantly corre-
lated (p < 0.05). For the PREHt, ◦C (rs = −0.497), CHL (rs = 0.596), FDOM (rs = 0.476),
INV (rs = 0.576), CDOM (rs = −0.547), NO3 (rs = 0.462), and NN (rs = 0.417) were signifi-
cantly correlated.

A principal component analysis was performed using both concentrations of resistant
E. coli and ratios of resistance. The first three principal components (PCs) accounted
for 71% of the variability in the dataset (36.2, 22.6, and 12.5% for PC1, PC2, and PC3,
respectively). Similar measurements showed similar directionality on the biplot and
loadings plot (Supplementary Figures S4 and S5). For example, phytoplankton-related
measurements (PHY, BGA, CHL, INV), fluorescent dissolved organics (CDOM and FDOM),
forms of carbon (TC, TOC, TIC), radiation measurements (PAR, TSR), and nitrates (NO3
and NN) all showed tight biplot grouping. E. coli resistance ratios showed the most similar
direction with nitrate measurements, while concentrations of resistant E. coli were aligned
with phytoplankton, fluorescent dissolved organics, and turbidity.

The cTree analysis showed that for the PRELt the concentration of nitrate (NO3)
present determined the leading split of the dataset with a threshold value of 0.415 mg L−1

(Figure 4). When nitrate values were higher than 0.415 mg L−1 the average percentage of
E. coli surviving the low dose was 5.52% of the total population. When concentrations of
nitrate were lower than this value the concentration of fluorescent dissolved organic matter
(FDOM) was found to be the next best splitter of the dataset, with a value of 35.47 µg L−1.
Below this threshold the average PRELt was 1.57%, and above the threshold the percentage
was 4.24%. The cTree for the PREHt also had the level of NO3 create the first split of the
dataset, with a value of 0.270 mg L−1. When nitrate levels were higher than this the average
PREHt was 2.17%. If NO3 was below 0.27 mg L−1 the concentration of DO created the next
best split, with a threshold of 6.17 mg L−1. If DO was less than this the average PREHt was
0.86%, and if DO was higher the average value was 0.31%.
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4. Discussion

The average concentrations of E. coli in the pond water showed correlations with days
since rainfall and with rainfall amounts in the previous 72 h. The effect of precipitation on
concentrations of fecal indicator bacteria in agricultural ponds has been documented by
several researchers, and the positive correlation is most often attributed to runoff containing
high concentrations of indicators entering the pond waters [30–33] and sediment resuspen-
sion [34–36]. However, poor correlations between indicator or pathogen concentrations and
rainfall have also been reported, which may be attributed to dilution effects especially in the
absence of fecal matter present [36–40]. The authors of the present study agree with the con-
clusions of Draper et al. [41] in regard to precipitation effects in that any single factor may
not explain the underlying cause of changes in concentrations (e.g., precipitation volume,
intensity, frequency, fecal microorganisms present or available for release/transport etc.).

Concentrations of E. coli measured at the 0 and 1 m depths were on average similar,
and positive correlations between sampling depths were observed on all dates except
24 August 2022 (Figure 1; Supplementary Table S2). The effect of the sampling depth has
not been extensively explored in studies focusing on the microbial quality of irrigation
ponds. In studies where sampling has been performed at multiple depths there have
been inconsistent results; on some sampling dates concentrations of fecal microorganisms
are higher at the surface, and on others the concentrations are higher at depth [39,42,43].
For example, a recent study of a large irrigation pond in Turkey showed that in six of
11 sampling dates from June to November 2018 concentrations of E. coli were higher at the
surface than in samples collected 30 cm above the pond bottom [33]. Interestingly, in the
same study when differences in water quality parameters by depth (e.g., temperature, pH,
and DO) were reduced in the colder months, the concentrations of E. coli in the surface and
subsurface were on average about the same. This finding agrees with the results of Brissaud
et al. [44] and He et al. [45], both of whom found stratification in pond water quality
parameters, particularly temperature, to be a major driver of creating differences in fecal
microbe concentrations between water sampling depths. The average depth of the pond
in the present study was only 1.22 m, which may explain the lack of differences between
concentrations measured at each depth. Additionally, examination of the water quality
parameter data shows that on most dates differences in measurements were not large, with
the exception of light-related parameters (PAR & TSR) (Supplementary Table S2). This is
similar to a recent study performed on three irrigation ponds in Maryland which showed
significant differences in E. coli concentrations at different depths when water quality
parameters differed appreciably between those depths [43]. In that study the shallowest
pond (1.5 m depth) did not show large differences in water quality parameters between
sampling depths, and E. coli concentrations were never found to significantly differ by
depth, potentially due to well mixed conditions.

Concentrations of tetracycline-resistant E. coli did not significantly differ between
sampling depths on any individual date or when the results of all dates were pooled
together. However, on 24 August 2022 resistant E. coli were detected only in samples
collected at 1 m depth while all 10 surface samples showed no resistance to the 16 µg mL−1

dose of tetracycline. The importance of this finding is that if only surface samples were
collected one may conclude that the E. coli populations in this waterbody are not resistant
to a single or multiple antibiotics depending on the antibiotic(s) tested. In many studies
samples are collected close to the water surface (~0–20 cm) and close to the irrigation intake.
The present study highlights the need to expand the spatial component of sampling or
incorporating composite sampling if resources do not allow for processing many samples.
More work is needed to compare the results of composite samples to those obtained from
averaging the result of multiple samples.

Correlations between water quality parameters and percentages of resistant E. coli
revealed several significant relationships for both tetracycline levels, which interestingly
differed in strength and in some cases in sign (Supplementary Table S3). Of common
importance across the correlation and cTREE analysis were the concentrations of NO3 and
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FDOM (Figure 4). Dissolved organic and inorganic nutrients have commonly shown posi-
tive associations with fecal bacteria concentrations in ponds [43,46–48] and lakes [49–51].
Two possible reasons for this include the simple availability of nutrients used for growth
and persistence [52–54] and the cooccurrence of nutrients with precipitation events which
can transport nutrients to waterways along with fecal bacteria [51,55,56]. Additionally,
the role of dissolved organic matter has been acknowledged as an important factor gov-
erning the fate and transport of antibiotics in the environment by way of electrochemical
interactions [22].

Dissolved oxygen was found to be important in the PREHt cTREE, with higher DO
associated with lower resistance ratios. In a review of mechanisms controlling the survival
of fecal microorganisms in ponds, Dias et al. [57] detail that survival is poorer with higher
DO, especially in the presence of sunlight. Solar radiation can act upon dissolved oxygen
and create radical species which can cause photooxidative damage to planktonic cells.
Significant positive correlations between tetracycline-resistant E. coli and phytoplankton
pigments, especially chlorophyll, may indicate that resistance may be related to the abun-
dance of phytoplankton. More work is needed to elucidate relationships in antibiotic
resistance between fecal microbes and phytoplankton existing in the same waterbodies, as
the transfer of genes between groups appears possible [58–60].

Of important note is that not only were the strengths of the relationships between
E. coli and water quality parameters different when using resistance percentages versus
concentration data, but with some parameters so too were the signs of the relationships
(Supplementary Table S3). This highlights the need to take caution when comparing
relationships between studies as well as to have researchers present the results both ways or
provide the data to allow readers to do so. We could find only one publication that reported
correlation results using both antibiotic resistance ratio as well as concentration data. In the
report by Duff et al. [12] E. coli and tetracycline-resistant E. coli concentrations in coastal
streams were studied and related to water quality measurements. Their work showed
positive and negative relationships between E. coli concentrations and orthophosphate
and ammonium, respectively, but different signs of relationships were observed when the
percentage of resistant E. coli was used in the analysis. More work is needed to evaluate
if the levels of certain water quality variables, or combinations of them, can be used as
predictors of either the absolute concentrations of ARB or percentages of resistant bacteria.

Many studies involving ARB in surface waters include the measurement of water
quality parameters, but this appears to be rarely compared to the resistance percent-
age or resistant concentrations such that predictive relationships can be developed or
compared. In numerous cases isolates are drawn from samples collected across a water-
body, but in later steps of the analysis the spatial information is not used or not reported
(e.g., Yoneda et al., [9]). This highlights a glaring lack of information on the interaction
between ARB and water quality parameters as well as providing grounds for future re-
search into the topic. Correlations or multivariate analysis with water quality parameters
seem to be more commonly reported in studies focusing on ARGs, which appear to show
consistency in a positive relationship with nutrient concentrations [61–63], although the
available literature revolves heavily around waste waters or waters which receive or are
affected by these effluents. More work is needed to study ARB/ARGs and their associations
with water quality variables in irrigation sources disconnected from direct anthropogenic
effects as well as continued efforts exploring ARB/ARG dynamics in reclaimed waters
used for irrigation [22].

The prevalence of resistant E. coli may be expected to increase after recent or heavy
rainfalls [1,60]. The 29 September 2022 sampling date contained the largest proportions of
tetracycline-resistant E. coli in the surface samples, and this date had the greatest separation
from rainfall (17 days), which may indicate that another process such as horizontal gene
transfer may be responsible for higher resistance percentages [60]. Future research would
benefit from incorporating sampling conducted in both wet and dry conditions as well as
expanding the selection of study sites, incorporating the study of additional antibiotics,
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and assessing resistance to clinically relevant antibiotics such as cefotaxime or vancomycin.
It would also be worthwhile to examine differences in antibiotic resistance levels between
E. coli and a larger group of aquatic bacteria such as total heterotrophs to better assess the
representability of E. coli as an indicator of the overall resistance present. At least one such
study has found disagreement between E. coli resistance and that of total coliforms and
total cultivable cells in surface waters [64]. Aquatic sediments appear to be an understudied
reservoir of ARB/ARG in the environment, and future work is needed to determine to what
extent they may propagate or influence ARB/ARG in the overlying water column [65].

There are a wide range of antibiotic doses used in surface water studies that assess
antibiotic resistance. While it appears that most are chosen based on well-established
breakpoint values such as those presented by the Clinical and Laboratory Standards Insti-
tute or The European Committee on Antimicrobial Susceptibility Testing (EUCAST) [66],
many studies worldwide use different standards or do not report why a certain level was
chosen. The results of this pilot study show that (1) the relationships between water quality
parameters and antibiotic-resistant E. coli may differ depending on the dose used and
(2) the 3-dimensional spatial structure of antibiotic-resistant E. coli may differ depending
on dose. Both points highlight the need for a standardized framework for analyzing an-
tibiotic resistance in surface waters [4]. Another point to consider is that high doses may
affect our ability to determine relationships between water quality and antibiotic resistance.
Care should be taken when determining relationships or comparing the results between
studies. Perhaps a higher dose would be suitable for wastewater-affected surface waters
but may be too high for anthropogenically less affected surface waters. This indicates that
a one-size-fits-all criterion may negatively affect our ability to surveil antibiotic resistance
in aquatic environments.

5. Conclusions

E. coli concentrations were correlated with precipitation occurrence and volume. Con-
centrations of generic E. coli were similar between the 0 and 1 m depths, and concentrations
between the two depths were positively correlated on most dates. The percentages of
tetracycline-resistant E. coli did not significantly differ between sampling depths; however,
subsurface sampling revealed resistant E. coli that surface sampling alone would have oth-
erwise missed. Spatial variability in tetracycline-resistant E. coli was also noted for locations
across the pond on each sampling date. On average, the low dose of tetracycline resulted
in two times more E. coli in the same sample than the high dose when the concentration
difference between low and high was fourfold. Water quality parameters were significantly
correlated with both concentrations of antibiotic resistant E. coli and ratios of resistance in
the low and high dosages. Nitrate and fluorescent dissolved organic matter were identified
as important parameters in both correlations and conditional regression trees, with both
showing positive associations with tetracycline resistance. Overall, this work provides
insight into the spatiotemporal variability of antibiotic-resistant E. coli in irrigation waters
which may be used to improve the design of monitoring centered around addressing the
major global issue of antibiotic resistance associated with the food supply.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/applmicrobiol3020036/s1, Supplementary Figure S1: Results of the
linear regression analysis between concentrations of E. coli measured in surface and subsurface sam-
ples by date. The black line and bold R2 value show the result from pooling all dates together;
Supplementary Figure S2: Linear regressions between the logarithms of total E. coli population and
the low (blue) and high (red) tetracycline-resistant E. coli populations. Circles and squares indicate
samples taken at the water surface and sub-surface, respectively; Supplementary Figure S3: Cumu-
lative probability distributions of tetracycline-resistant E. coli. Blue and red colors indicate E. coli
resistant to the low and high doses, respectively.; Supplementary Figure S4: Linear regressions of
the concentration of E. coli in water samples plotted against the ratio of tetracycline-resistant E. coli at
the low (blue) and high (red) doses. Circles and squares indicate samples taken at the water surface
and subsurface, respectively; Supplementary Figure S5: Scattergram created from performing a prin-
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cipal component analysis on the tetracycline-resistant E. coli dataset. mpn = concentration of E. coli
in unamended samples (MPN 100 mL−1), mpnL = concentrations of E. coli in low dose tetracycline
amended samples (MPN 100 mL−1), mpnH = concentrations of E. coli in high dose tetracycline amended
samples (MPN 100 mL−1), %L = percentage of low dose tetracycline concentration to total E. coli pop-
ulation (%), %H = percentage of high dose tetracycline concentration to total E. coli population (%),
C = water temperature (◦C), DO = dissolved oxygen (mg L−1), SPC = specific conductivity (µS cm−1),
NTU = turbidity (NTU), BGA = phycocyanin (RFU), CHL = chlorophyll-a (RFU), FDOM = fluores-
cent dissolved organic matter (µg L−1), PHYC = phycocyanin laboratory (µg L−1), INV = laboratory
chlorophyll (RFU), CDOM = colored dissolved organic matter (µg L−1), NH3 = ammonia (mg L−1),
NO3 = nitrate (mg L−1), PO4 = orthophosphate (mg L−1), TC = total carbon (mg L−1), TIC = inorganic
carbon (mg L−1), TN = total nitrogen (mg L−1), NN = nitrate nitrogen (mg L−1), TOC = organic car-
bon (mg L−1), PAR = photosynthetic active radiation (W m−2), TSR = total solar radiation (W m−2);
Supplementary Figure S6: Loadings plot of PC1 from the principal component analysis. mpn = con-
centration of E. coli in unamended samples (MPN 100 mL−1), mpnL = concentrations of E. coli in low
dose tetracycline amended samples (MPN 100 mL−1), mpnH = concentrations of E. coli in high dose
tetracycline amended samples (MPN 100 mL−1), %L = percentage of low dose tetracycline concentra-
tion to total E. coli population (%), %H = percentage of high dose tetracycline concentration to total
E. coli population (%), C = water temperature (◦C), DO = dissolved oxygen (mg L−1), SPC = specific
conductivity (µS cm−1), NTU = turbidity (NTU), BGA = phycocyanin (RFU), CHL = chlorophyll-
a (RFU), FDOM = fluorescent dissolved organic matter (µg L−1), PHYC = phycocyanin laboratory
(µg L−1), INV = laboratory chlorophyll (RFU), CDOM = colored dissolved organic matter (µg L−1),
NH3 = ammonia (mg L−1), NO3 = nitrate (mg L−1), PO4 = orthophosphate (mg L−1), TC = total carbon
(mg L−1), TIC = inorganic carbon (mg L−1), TN = total nitrogen (mg L−1), NN = nitrate nitrogen
(mg L−1), TOC = organic carbon (mg L−1), PAR = photosynthetic active radiation (W m−2), TSR = total
solar radiation (W m−2); Supplementary Table S1: Concentrations of total coliform bacteria (MPN
100 mL−1) in unamended, low-tetracycline (4 µg mL−1), and high-tetracycline (16 µg mL−1) amended
samples; Supplementary Table S2: Averages and standard errors of E. coli concentrations, percent-
ages of tetracycline resistant E. coli, and water quality variables measured across the entire study;
Supplementary Table S3: Spearman correlation coefficients (rs) between E. coli concentrations or ratios
and measured water quality variables Cell colors depict the direction of the relationship with green and
red cells indicating positive and negative values, respectively. Weak correlations are shown in yellow.
The strength of the relationship determines the intensity of the coloring.
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