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Abstract: Microbiome data is high dimensional, sparse, compositional, and over-dispersed. There-
fore, modeling microbiome data is very challenging and it is an active research area. Microbiome
analysis has become a progressing area of research as microorganisms constitute a large part of life.
Since many methods of microbiome data analysis have been presented, this review summarizes the
challenges, methods used, and the advantages and disadvantages of those methods, to serve as an
updated guide for those in the field. This review also compared different methods of analysis to
progress the development of newer methods.
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1. Introduction

The microbiome is a collection of complex microbial communities in the human body
and other environments [1–3]. These communities have been found to constitute a large
part of the human body systems and the environment. Developments in the study of
the subject indicate that the state of the microbiome can determine the susceptibility to
certain chronic conditions and diseases within various systems of the body including
cardiovascular, gastrointestinal, respiratory, immune, and others. For example, within
the gastrointestinal system, diet, medications, and environment have implications for the
modulation of gastrointestinal health, which can be further investigated with the knowledge
of the composition and function of the microbiome [4]. These implications suggest the
importance of the microbiome in disease prevention and other health-related areas. This
significance can be studied through microbiome–microbiome and drug/host–microbiome
interactions, which could provide insight into the impacts on human health.

In microbiome–microbiome interactions, the environment plays a role in how different
microbiomes interact with each other [5]. This encompasses the interaction of the human
microbiome with microbiomes from the environment (e.g., pathogen development within
the body). Host–microbiome interactions are how the microbiome and interactions within
the microbiome affect the host. Drug–microbiome interactions focus on the interaction
between drugs and the microbiome under study. Since the invention of antibiotics, the func-
tion of microorganisms in the body is more prone to the alteration of antibiotic resistance [6].
If these microorganisms are introduced to the environment, then more microorganisms
will be able to inherit the resistance gene for certain antibiotics. Therefore, microbiome
data analysis has implications for individual and community-wide health which can be
applied through various methods. Microbiome analysis is a progressive area of study, and
it is necessary to push experimental computational analysis and other methods in order to
further investigate microbiomes and their interactions with various factors [7].

A basis of microbiome analysis is multi-omics. Most multi-omic studies focus on a
separate analysis of each omics dataset without building a unified model. A major challenge
in microbiome data analysis is the integration of multi-omics datasets [8,9]. This developing
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method has future benefits in understanding the characterization of various environmental
systems, industrial systems, and treatment processes [9]. The application of the multi-omics
approach requires a combination of datasets from different omic groups to be analyzed.
These omic groups—genome, proteome, transcriptome, and microbiome—allow for a new
perception of the characterization and functions of microbial communities including gene
expression, protein production, and community metabolism. Combining these techniques
allows researchers to characterize the entire microbial community in greater depth by
identifying other information such as gene expression, protein production, and community
metabolism [9].

Data from multi-omics-based approaches can be analyzed further through post-data
analysis, integrated data analysis, or model-based integration methods. The post-data
analysis approach requires datasets to be analyzed individually so that connections between
key features can be made afterwards. Integrated data analysis requires specialized tools to
combine the datasets being analyzed so similarities can be identified statistically instead of
being interpreted by humans [9]. Model-based integration methods require the system of
study to be well-defined in order to compare new findings to the model. Since many of the
systems of multi-omics are not fully characterized, this method is limited to the systems
that are already characterized and defined [9].

Microbial analysis can have significant implications for areas beyond human health.
For example, Mohan et al.’s (2014) multi-omics study used metagenomic and metabolomic
techniques to analyze the water of hydraulic fracturing wastewater during fracking through
metagenomic and metabolomic techniques [10]. Data from microbial communities in
both sources of water were collected, tested, and analyzed. The results indicated that
microbiomes in potable water have increased genetic ability to handle stress which has
implications for biofilm control and microbial-influenced corrosion control. The implica-
tions of using fossil fuels have also been evident from a multi-omics study that analyzed
the production of biofuels as an alternative [11]. The diatom Thalassiosira pseudonana
was used to promote a high lipid yield, in order to progress the development of biofuels.
Results from this study brought new perspectives to the development of biofuels, which
emphasizes the importance of microbiome analysis beyond human health.

In this paper, we introduce various methods of modeling microbiome data. In Section 2,
we discuss the microbiome data representation and some modeling challenges related to
microbiome data. In Section 3, we discuss the types of models for sequence read counts
from a single microbiome feature including probabilistic models, regression analysis, and
longitudinal data analysis. In Section 4, methods of multivariate microbiome analysis
are reviewed. We discuss the microbiome–microbiome interaction modeling strategies,
host/drug–microbiome interaction, regression analysis, and some well-known longitudinal
data models for multivariate count response. We conclude in Section 5.

2. Microbiome Data Representation and Modeling Challenges

The microbiome data are often sparse with a high proportion of zero values. These
zeros have two possible sources. First, some species are truly never represented because
they do not exist (biological zeros). Secondly, some species exist but are not detected
as a result of insufficient sequence depth or inefficiencies of the technological processes
(non-biological zeros) [12,13].

Microbiome data are high dimensional data, in general, as the number of species is
greater than the number of samples in many situations. The microbiome data are over-
dispersed (i.e, the variance is much higher than the mean). When the data are sparse with
a high proportion of zeros, the distribution of the Operational Taxonomic Unit (OTU) is
skewed [14]. Therefore, the OTUs cannot be correctly analyzed using standard baseline
distributions such as Poisson and negative binomial distributions. The below Figure 1 is an
example that shows the sparsity and right skewness of the feature distribution.
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Figure 1. This figure presents a histogram of the distribution of sequencing count for OTU Finegoldia
Magna from Romero et al. (2014) [15] dataset. The data are sparse with a right-skewed distribution.

To study and analyze microbiome data, metagenomic reads are processed for each
microbiome sample to construct taxonomic profiles [16,17]. Then, the combination of the
taxonomic profiles into one count table is called the Operational Taxonomic Unit (OTU)
table, which is widely used in microbiome studies [18]. A typical OTU dataset contains
measurements of abundance for OTUs, the total number of reads, and the number of
samples. Table 1 shows what an OTU table looks like. The dimension of the table is
n×m, where n denotes the number of metagenomic samples, and m denotes the number
of microbial features.

The entry zij represents the number of reads from sample i that mapped to microbial
feature j, where i ∈ [1, n], j ∈ [1, m]. This number can be the abundance of taxa grouped
at different levels such as species, genus, and family. Ni, i ∈ [1, n] is the total number of
sequence reads for sample i. Table 1 is a general representation of an OTU table.

Table 1. A general form of a microbiome OTU table.

Sample/Species OTU 1 OTU 2 OTU 3 ... OTU m Total Reads

Sample 1 z11 z12 z13 ... z1m N1

Sample 2 z21 z22 z23 ... z2m N2

... ... ... ... ... ... ...

Sample n zn1 zn2 zn3 ... znm Nn

Differential Abundance and Normalization Methods for Microbiome Data

Metagenomic samples may have different sequencing depths, so the metagenomic
counts need to be normalized among samples [19]. Failure to normalize the metagenomic
counts may increase the distribution bias and reduce the distribution power [20]. We
summarize below three well-known normalization methods.

1. Scaling Methods. The idea of the scaling method is to divide the observed abundance
zij by a scaling (normalization) factor. More specifically, scaling is defined as follows.

z̃ij =
zij

si
,

where z̃ij is the normalized abundance for feature j within sample i, and si is the
scaling (normalization) factor for sample i.
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Some common scaling normalization methods include cumulative sum scaling
(CSS) [21], median-of-ratios scaling factor (DESeq2) [22], analysis of composition
of microbiomes (ANCOM) [23], and trimmed mean of M-values (TMM) [24].

2. Log-ratio Methods. The most known log-ratio transformation used in microbiome
data analyses is the centered log-ratio (clr) [25]. In particular, clr transforms the
features by taking the log of the ratio between observed features and their geometric
mean. Some common log-ratio normalization methods include centered log-ratio
(CLR) transformation [26] and ALDEx [27].

3. RNA-seq Methods. The RNA-seq methods are parametric methods. A large part of the
variability in RNA-seq data arises from the sampling of the microbial ecosystem [28].
DESeq2 and edgeR are two popular methods from RNA-seq for testing differences
across study groups. Both methods model the observed abundances using the nega-
tive binomial distribution. Some recent studies have indicated the poor performance
of these two methods [20,29]. MetagenomeSeq is an alternative RNA-seq method. In-
stead of using a negative binomial model, MetagenomeSeq is based on a zero-inflated
Gaussian (ZIG). For more details about a general zero-inflated model, please read
Section 3.1.3. MetagenomeSeq has been applied to different microbiome studies and
shows higher powers than most of the other differential abundance methods such as
DESeq2 and edgeR [30,31].

3. Modeling Single Feature

Identifying algorithms remains a crucial part of recognizing patterns, regression, and
classification. Thus, it is imperative to choose independent features [14]. In microbiome
analysis, modeling single features can help identify a genome for microbes with low
abundance and can reveal more taxonomic and functional information about specific
members of the microbiome at the cellular level [32]. The biomarkers found can allow for
low-abundance microbes to be analyzed in further detail, and provides information about
microbiome interactions and individual microbes [14]. Two different applications related
to gut and vaginal microbiomes are explained below.

The gut microbiome has been found to fluctuate due to the intensified medication used
to treat flares of inflammatory bowel disease (IBD) [33]. By analyzing the 16S ribosomal
RNA gene, Bacteroidetes and Firmicutes have been found to make up ninety percent of
phylogenetic categories, giving these bacterial divisions a distinct role in the human gut
microbiome [34]. As the importance of dominating bacterial divisions is discovered, it is
equally as important to understand microbes with low abundance and their impact on IBD
or other chronic diseases.

Lactobacilli are the most abundant vaginal bacteria in women [35]. Lactobacilli pro-
duce lactic acid, which acidifies the vagina to pH < 4 to restrict the growth of all bacteria
and protect the vagina against pathogens. Lactobacilli also produce hydrogen peroxide to
kill bacterial cells by destroying their cell walls [36]. The following are three questions that
have arisen and need some answers: (1) What is the distribution of Lactobacilli species?
(2) Given some covariates such as the subject’s age and group, how can we model the
Lactobacilli count? (3) Suppose we have longitudinal data with multiple time points, how
can we identify the most significant time intervals for the Lactobacilli count?

To answer the above three questions, in general, there are three types of modeling
of single microbiome features: (1) Probabilistic models for snapshot studies, where each
subject provides only one sample; (2) longitudinal studies, which include multiple samples
per subject over time; and (3) regression analysis. In this section, we focus on modeling a
single microbiome feature, that is, zij for a sample i and feature j.

3.1. Probabilistic Models

The microbiome has been linked to some major human diseases such as obesity [37],
diabetes [38], hepatic steatosis [39], inflammatory bowel diseases (IBD) [40], autism [41],
food allergies [42], cardiovascular disease [43], depression [44], many types of cancer [45],
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and more. Therefore, the human microbiome plays a vital role in the diagnosis, analysis,
and treatment of these diseases [46]. For example, in order to determine if there is an
association between a microbiome feature and the disease, we may need to detect the
significance of the difference between the two groups. With appropriate probabilistic
models identified successfully, we can improve the power of the test significantly [17].

Below is a list of the most common probabilistic models used in snapshot micro-
biome studies.

3.1.1. Poisson Model

Poisson distribution is one of the most common models used for modeling non-
negative count data. If a random feature count Zij follows a Poisson distribution with mean
λ > 0, then the probability mass function (pmf) is given by

P(Zij = k) = e−λ λk

k!

for k = 0, 1, 2, . . .. The parameter λ is equal to the expected value of Zij and also to its
variance. This restriction is usually not true in most microbiome applications. Most often,
the observed variation is greater than the mean so an extension to the Poisson model is
more appropriate.

3.1.2. Negative Binomial Model

The negative binomial (NB) distribution is another probabilistic model for count data.
It is especially useful when the sample variance exceeds the sample mean, known as
over-dispersion.

Given a sequence of independent Bernoulli trials, each trial has two potential outcomes
called “success” and “failure.” In each trial, the probability of success is p and failure is
1− p. We observe this sequence until a predefined number r of successes occurs. Then
the random number of observed failures, Zij before the rth success is called a Negative
binomial (NB) distribution, and its pmf is given by

P(Zij = k) =
(

k + r− 1
k

)
pr(1− p)k,

where r > 0 and 0 6 p 6 1 are two distribution parameters, and k = 0, 1, 2, . . . .

3.1.3. Zero-Inflated Models

Although the negative binomial distribution is able to address the over-dispersion
where the variance is greater than the mean, it is not appropriate for modeling sparse data
with a high proportion of zeros. In order to handle this issue, zero-inflated and hurdle
models are used to model read counts that have an excess of zeros.

A zero-inflated model is a mixture of two statistical processes; one always generates
zero counts and the other generates both zero and nonzero counts [47].

As a result, the combined probability under a zero-inflated model is

PZI(Zij = k) = φ1{k=0} + (1− φ)P(Zij = k), (1)

where φ > 0 is the probability of extra zeros. P(Zij = k) stands for the probability deter-
mined by any baseline distribution such as Poisson, negative binomial, normal, or other
parametric distributions. The corresponding distributions are known as zero-inflated
Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated Gaussian (ZIG) distri-
butions, etc.

3.1.4. Hurdle Models

Hurdle models, also known as zero-altered models, provide another way of dealing
with the excess zeros in OTU counts [14,48]. A hurdle model consists of two components,
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one generating the zeros and one generating the positive values. Unlike the zero-inflated
model, the zero and non-zero counts are separated in the hurdle model.

The hurdle model is defined as

PZA(Zij = k) = φ1{k=0} + (1− φ)Ptr(Zij = k), (2)

where Ptr(Zij = k) is a truncated version of P(Zij = k).

Ptr(Zij = k) =

{
0 if k = 0
P(Zij = k)/[1− P(Zij = 0)] if k > 0.

(3)

For example, if P(Zij = k) comes from a negative binomial distribution, then
Ptr(Zij = k) is known as a zero-truncated negative binomial distribution.

Probabilistic models used in a snapshot microbiome is a growing research area. For
example, Aldirawi et al. (2019) developed a statistical method for identifying the most
appropriate probabilistic models for some discrete distributions with applications to micro-
biome data [17]. They have adjusted the Kolmogorov–Smirnov test (KS-test) to fit discrete
probabilistic models with unknown parameters. Their developed approach can be applied
to a general class of zero-inflated and hurdle models, then the estimated parameter can be
calculated. Their method was applied to datasets related to lung and skin microbiomes.
They found that beta binomial, beta negative binomial, and the corresponding zero-inflated
and hurdle models are more appropriate compared to the commonly used discrete distribu-
tions such as Poisson, negative binomial, and the corresponding zero-inflated and hurdle
models [49].

In order to test whether a specific feature follows any specific discrete or continuous
distribution such as an exponential or zero-inflated negative binomial, there are some R
packages available from the Comprehensive R Archive Network (CRAN, https://cran.r-
project.org/, accessed on 15 December 2022). The most recent R package is “AZIAD” [50],
which covers 27 discrete and continuous distributions. The AZIAD package provides
maximum likelihood estimates for model parameters, likelihood ratio tests (LRT) for
model selection, Kolmogorov–Smirnov tests (KS tests), the Fisher information matrix, and
confidence intervals for parameter estimates.

3.2. Regression Analysis

In the previous section, we discussed the probabilistic models used for snapshot
microbiome studies without covariates. Now, suppose the response variable is the number
of counts of any specific feature, and there are some given covariates such as subject group.
This is a regression problem. In this section, we discuss some of the well-known regression
analysis models for microbiome data.

3.2.1. Generalized Linear Models

Generalized linear models (GLM), such as Poisson and negative binomial (NB) models,
can be applied to count data [51]. The Poisson model is one of the most popular regression
models for count data. The Poisson distribution is as fundamental to the analysis of count
data as the normal is to continuous responses [52]. It has the simple probability mass
function [51]:

P(Yi = y | Xi) =
exp(−µi)µ

y
i

y!
.

The Poisson model assumes that the number of read counts Yi is sampled from a
Poisson distribution. The dependence of µi = E(Yi) on the covariate vector Xi is usually
written in the logarithmic form

log µi = ηi = βTXi; i = 1, . . . , n.

Note that the variance of the Poisson model is equal to the mean.

https://cran.r-project.org/
https://cran.r-project.org/
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Negative binomial (NB) regression is used for modeling count variables, usually
for over-dispersed count outcome variables. This suggests it might serve as a useful
approximation for modeling counts with variability different from its mean. The variance
of a negative binomial distribution is a function of its mean and has an additional parameter,
θ, called the dispersion parameter. Suppose a random variable Y is counted from a negative
binomial distribution, then the variance of Y is

var(Y) = µ + µ2/θ.

As the dispersion parameter becomes larger and larger, the negative binomial turns
into a Poisson distribution.

The NB model is given with the following density function:

P(Yi | Xi) =
Γ(Yi + θ)

Γ(Yi + 1)Γ(θ)

(
θ

θ + µi

)θ( µi
θ + µi

)Yi

.

The generalized linear model is based on the exponential family of distribution and
unifies linear and nonlinear regression models. To use the GLM, it assumes that the
distribution of the study variable is a member of the exponential family of distribution.

3.2.2. Vector Generalized Linear Models

When the count data are sparse with a significant percentage of zeros, GLM is not rec-
ommended because the proportion of zeros (φi) must be linked to some distributions [53].
Although GLMs have been widely used, they have largely been confined to single parame-
ter distributions belonging to the exponential family. Since there are many situations where
the distribution is not a member of the exponential family, we need more flexible models
than GLMs.

Yee (2015) [54] described a larger and more flexible statistical framework to extend
GLMs, called Vector Generalized Linear Models (VGLMs). To fit a regression model with
parameters θj’s, VGLMs model each parameter as a linear combination of the explanatory
variables after a (monotone) transformation. That is,

gj
(
θj
)
= ηj = βT

j x = β(j)1x1 + · · ·+ β(j)pxp, j = 1, . . . , M,

where gj is a parameter link function such as a logarithm or logit. Note that potentially
every parameter is modeled using all explanatory variables xk and the parameters need
not be a mean such as for GLMs.

Aldirawi (2020) extended VGLMs and modeled zero-inflated and hurdle regression
models as follows [55]:

g(φi) = GT
i γ, i = 1, . . . , n

hj(θij) = BT
ij βj, i = 1, . . . , n; j = 1, . . . , b,

where g and h1, . . . , hb are known link functions, γ, β1, . . . , βb are regression coefficients,
Gi = (r1(xi), . . . , rs(xi))

T ∈ Rs and Bij = (qj1(xi), . . . , qjtj(xi))
T ∈ Rtj are the correspond-

ing predictors, ri’s and qji’s are known functions.
Examples include Gi = Bij = (1, xi1, . . . , xid)

T for a main-effects model and Gi =

Bij = (1, xi1, . . . , xid, xi1xi2, . . . , xi,d−1xid)
T for a model with both main effects and order-2

interactions.
Zero-inflated and hurdle regression models are widely used for modeling microbiome

data. For example, Hu et al. (2018) introduced a zero-inflated beta-binomial (ZIBB) re-
gression model to model the distribution of microbiome count data and to determine
the association with a continuous or categorical phenotype of interest [56]. They found
that their proposed ZIBB framework performs well in real data analysis and simulation
studies. The proposed ZIBB method effectively controls type I errors and has higher power
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than BBSeq, ZINB, and edgeR. An R package, ZIBBSeqDiscovery, is available on R CRAN.
Xu et al.’s (2015) [57] study on modeling the gut microbiome of 400 independent subjects
compared the performance of different methods for modeling microbiome data. These
methods include some standard parametric and non-parametric models, zero-inflated
models, and hurdle models. They compared some criteria such as the power, type I error,
goodness of fit, and efficiency of parameter estimation. They used the Akaike information
criterion (AIC) for model selection. Based on a real application of microbiome data, their
method showed that zero-inflated and hurdle models have higher power, better-controlled
type I errors, better goodness-of-fit, and more accurate parameter estimation. In addi-
tion, they found that the zero-inflated and hurdle models have some similar results in
terms of goodness-of-fit and parameter estimation. Van den Elskamp et al. (2009) [58]
discussed the statistical distributions used for modeling lesion counts in patients with
multiple sclerosis (MS). The AIC model selection criteria on six different models showed
that the negative binomial distribution provided the most optimal fit, followed by the
Poisson-Inverse Gaussian and Poisson-Lognormal distributions.

3.2.3. Bayesian Models

Bayesian Models have been widely used for modeling microbiome data. As mi-
crobiome data are high dimensional and sparse in general, sometimes the GLM and
VGLM models do not fit the data very well. To overcome these challenges, some Bayesian
models were proposed. For example, Wadsworth et al. (2017) [59] proposed a Dirichlet-
multinomial Bayesian variable selection (DMBVS) model that uses spike-and-slab priors
for the selection of significance between covariates and microbiome feature. They applied
the proposed model to both simulated data and publicly available data. The results showed
the connection between a specific microbiome feature and particular metabolic pathways.
Koslovsky et al. (2020) [60] proposed a Dirichlet-multinomial linear model with Bayesian
variable selection (DMLMbvs) using spike-and-slab priors. Their approach can handle high-
dimensional compositional data as well as clinical data. In addition, it can accommodate
taxa heterogeneity when predicting phenotypic responses.

3.3. Longitudinal Microbiome Data

Longitudinal studies of the microbiome can uncover information involving the con-
tributing factors, microbe interactions, and long-term effects of various health concerns.
Recent studies have branched out into child development and factors of variation in adults
with and without chronic diseases [61]. When studying the microbiome, longitudinal stud-
ies have proven to be useful. Observing individual features of a microbiome over a period
of time yields information that could be important when discussing the interactions, or how
the microbiomes interact with each other. Since these communities are continuously fluc-
tuating and evolving, the time taken to conduct the study can be useful when comparing
factors such as weather, disease progression, and the consistency of microbiomes [62].

Modeling sparse longitudinal microbiome data is challenging for a few reasons. First,
the microbiome data are non-normally distributed. Therefore, methods with normal
distributional assumption are not expected to perform well [63]. Second, microbiome
data are sparse with a large proportion of zeros, which causes heterogeneity issue in the
data. Third, longitudinal studies in general suffer from all forms of variability such as a
different number of samples per subject, a different number of subjects per group, and
samples not collected at consistent time points. Fourth, the repeated measurements in
longitudinal data are correlated; therefore, taking into account the correlations among
repeated measurements is necessary. Based on the above limitations, univariate tests (such
as the t-test) and standard longitudinal models such as the generalized estimating equations
(GEEs) are not recommended.

Below is a list of some common longitudinal models used in snapshot microbiome studies.
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1. MetaDprof [64] is a smoothing spline-based method, and a well-known method for
modeling longitudinal data [65,66]. MetaDprof is used for detecting differentially
abundant features from metagenomic samples by comparing different conditions
across time. There is a major limitation of the MetaDprof method. It assumes consis-
tency in longitudinal microbial samples. For example, the same number of subjects
per phenotypic group, the same number of samples from each subject, and the same
time points [62].

2. MetaLonDA [62] is an R package that is capable of identifying significant time intervals
of differentially abundant microbial features. It can be applied to any longitudinal
count data such as metagenomic sequencing, 16S rRNA gene sequencing, or RNAseq.
MetaLonDA relies on two modeling components. The NB distribution for modeling
the features reads counts and the semi-parametric SS-ANOVA technique for modeling
longitudinal profiles associated with different phenotypes. MetaLonDa is able to
handle the metaDprof limitations. For example, it does not require the same number
of subjects per group. The elapsed time between adjacent time points is flexible. One
limitation of MetaLonDA is that when samples are sparse over time intervals, the
fitted smoothing spline has a large variation.

3. Zero-inflated Beta regression model with random effects (ZIBR) model [63]. Chen
and Li (2016) proposed a two-part zero-inflated beta regression model with random
effects (ZIBR) for testing the association between microbial abundance and clinical
covariates for longitudinal microbiome data. The proposed model includes a beta re-
gression component to model non-zero microbial abundance, and a logistic regression
component to model the presence/absence of a microbe in the samples. Each com-
ponent includes a random effect to account for the correlations among the repeated
measurements on the same subject. Based on a real microbiome data application,
the ZIBR model performed better than the commonly used models such as binomial,
zero-inflated Poisson, and negative binomial regression models.

4. Zero-inflated negative binomial mixed-effects (ZINBMM) model [15]. Romero et al.
(2014) proposed a longitudinal vaginal microbiome study for comparing the vaginal
microbiome feature (Lactobacillus) between two groups of women (pregnant and
non-pregnant women). The zero-inflated negative binomial mixed-effects (ZINBLME)
model was applied to model the read counts on the pregnancy status. In addition,
negative binomial linear mixed effects (NBLME) and Poisson linear mixed effects
(PLME) models were used in the model comparison. Based on their proposed method,
the ZINBLME model provided the best fit based on AIC values. One limitation of
Romero et al.’s (2014) model is that it can only be applied to count data [63].

5. Long Short Term Memory Networks (LSTM) [67]. Recently, Sharma and Xu (2021) pro-
posed a deep learning framework for the feature extraction and analysis of temporal
dependency in longitudinal microbiome sequencing data along with the host’s envi-
ronmental factors for disease prediction. The proposed methodology and an extensive
analysis and comparison were applied to 100 simulated datasets across multiple time
points and were applied to two real longitudinal human microbiome studies. The
analysis showed that the proposed model significantly improves predictive accuracy.

4. Multivariate Microbiome Analysis

The structure and function of microbiomes are influenced by the interactions between
microbes and the interaction between the microbe and some other factors such as host, drug,
and environment. Those interactions have implications for the progression of diseases
and clinical outcomes. Understanding these microbial communities and interactions is
important for the recognition of microbiome association with host health, development,
dysbiosis, and polymicrobial infections [1]. A microbiome can form a complex network of
interacting bacteria, archaea, and fungi. Therefore, to understand the interactions between
these microbes with a justified method, we have to be careful about the compositional
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nature of such data, not having enough samples with respect to the number of features,
and a lack of microbiome networks with known interactions.

4.1. Microbiome–Microbiome Interaction

Microbiome–microbiome interactions require knowledge of microorganism taxa, en-
vironment, and interactions with other microorganisms to understand the functionality
of the microbiome [5]. One of the most common microbiome–microbiome interactions is
the transference of molecular and genetic information between microorganisms [5]. This
method of communication within microbiomes is yet to be completely understood, but
knowledge of regulation, maintenance, and communication within these microbial systems
can advance research in understanding pathogen development, antimicrobial drugs, and
human health [68]. Further, certain microbiome–microbiome interactions cause imbalances
in the microbiome which have implications for certain diseases. Therefore, analyzing the
data of these microbiome interactions can contribute to therapies for certain diseases caused
by imbalance, and disease prediction [69]. The following is a list of modeling techniques
that can be used to study the microbiome–microbiome interactions.

1. Bayesian Network (BNs): BNs are directed probabilistic graphical models that rep-
resent a probabilistic relationship between multiple species via a directed acyclic
graph. The nodes in BN correspond to random variables, and the directed edges corre-
spond to conditional dependencies between them. The absence of an edge connecting
two nodes indicates independence or conditional independence between them. The
Bayesian network is an appropriate tool for modeling the interactions of many micro-
bial taxa. It has been used in microbiome studies. For example, Bennett’s (2016) [70]
study analysis is based on the construction of a Bayesian network using Dirichlet
distributions to model the conjugate probabilities of the most common bacterial con-
stituents in a stool sample. The results indicate that the Bayesian network adjusts the
prior bacterial population distribution to more accurately reflect the transcriptionally
active bacterial population.

2. Graphical Gaussian models (GGMs) are undirected probabilistic graphical models
that identify the conditional independence relations among the nodes, where the
nodes correspond to multivariate normal distributed variables, and edges between
these variables represent conditional dependencies. Zhao and Duan (2019) used GGM
to learn the gene interactions in 15 specific types of human cancer [71]. The networks
reveal conditional dependencies among the genes, and the weights of edges indicate
the strength of the dependencies. The GGM networks reveal stable conditional
dependences among the genes and confirm the essential roles played by the genes
that encode proteins involved in the two key signaling pathways—PI3K/AKT/mTOR
and Ras/Raf/MEK/ERK—in human carcinogenesis.

3. SparCC: Sparse Correlations for Compositional data (SparCC) was developed by
Friedman and Alm (2012) [72]. The method is capable of estimating correlation values
from compositional data. SparCC estimates the linear Pearson correlations between
the log-transformed components. Since these correlations cannot be computed exactly,
SparCC utilizes an approximation that is based on the assumption that the number of
OTUs is large and most OTUs are not strongly correlated with each other. In Friedman
and Alm’s (2012) [72] study, they infer a rich ecological network connecting hundreds
of interacting species across 18 sites on the human body. SparCC shows that it can
infer correlations with high accuracy even in the most challenging datasets.

4. FastSpar was proposed recently by Watts et al. (2019) as a fast and parallelizable
implementation of the SparCC algorithm with an unbiased P-value estimator [73].
One drawback of SparCC is the overestimated and biased p-value in some cases [74].
FastSpar produces equivalent OTU correlations as SparCC while greatly reducing
run time, handling large datasets, and more accurate p-values. FastSpar has been
used recently for modeling microbiome data. For example, Qiu et al. (2022) applied
the FastSpar algorithm to analyze the soil and plant rhizosphere microbiome of
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cotton plants in the presence of some cotton-specific fungal pathogen [75]. Their
statistical analysis found that Fusarium oxysporum f.sp. vasinfectum (FOV) directly
and consistently changed the rhizosphere microbiome. However, the biocontrol agents
enabled microbial assemblages to resist pathogenic stress. Their study is essential for
understanding core microbiome responses and the existence of plant pathobiomes,
which provides an excellent framework for better plant disease management.

5. SPIEC-EASI: SParse InversE Covariance Estimation for Ecological Association In-
ference (SPIEC-EASI) was proposed by Kurtz et al. (2015). It relies on algorithms
for sparse neighborhood and inverse covariance selection [76]. It can handle some
technical challenges related to microbiome data analysis. For example, the abun-
dances of OTUs are compositional (Because the Counts are normalized). Thus, micro-
bial abundances are not independent, and traditional statistical metrics such as the
correlation-based methods for the detection of OTU-OTU relationships can lead to
misleading results. Moreover, microbiome data are high dimensional data in general
(the number of OTUs (p) is greater than the number of samples n); thus, inference of
OTU-OTU association networks is required for an accurate inference. SPIEC-EASI
can address both of these issues. Kurtz et al.’s (2015) application to gut microbiome
data using SPIEC-EASI produced more consistent and sparser interaction networks
than SparCC and CCREPE [76].

6. CCLasso: Correlation inference for Compositional data through Lasso (CCLasso)
is Similar to SparCC. CCLasso explicitly considers the compositional nature of the
metagenomic data in correlation analysis, and it has the advantage that the estimated
correlation matrix for compositional data is positive definite [77]. The performance
of CCLasso is compared with SparCC through some simulation studies and a real
microbiome example from the Human Microbiome Project (HMP). The results show
that CCLasso gives a more accurate estimation for the correlation matrix than SparCC
as well as better edge recovery.

7. Relevance Networks (RN): Relevance networks is an unsupervised learning methodol-
ogy used in functional genomics and microbiome data with the principal advantages
being the ability to (1) include features of more than one data type, (2) represent multi-
ple connections between features, (3) capture both negative and positive correlations,
and (4) handle missing data [78]. In the RN method, each set of p edges completely
connects the n nodes, and each pair of nodes is connected by a single edge with a
score. A study by Werhli et al. (2006) [79] compared three different modeling and
inference paradigms, relevance networks (RNs), graphical Gaussian models (GGMs),
and Bayesian networks (BNs). The result shows that on Gaussian observational data,
BNs and GGMs were found to outperform RNs. There was not a significant difference
between BNs and GGMs on observational data in general. However, for interventional
data, BNs outperform GGMs and RNs.

8. Local Similarity Analysis (LSA): There are many techniques for identifying the rela-
tionship between species and associations between species and environmental factors
such as Pearson Correlation Coefficient (PCC), and canonical correlation analysis
(CCA) analysis. LSA is a novel technique that can identify more complex dependence
associations among species as well as associations between species and environmental
factors without requiring significant data reduction [80]. Based on a marine micro-
bial observatory dataset application, LSA identified unique, significant associations
that were not detected by PCC analysis. LSA can be extended for time series data
with replicates.

4.2. Host/Drug–Microbiome Interaction

The microbiome can impact the host depending on the condition and environment.
Drug–microbiome interactions focus on how different drugs affect microbiomes, and host–
microbiome interactions focus on how microbiomes affect the host [5,81]. Drug–microbiome
interactions indicate that the effect of drugs on microbiomes depicts disturbances and
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functional alterations. Antibiotics have been found to disrupt the microbial balance, creating
resistant bacteria which can make future treatments more difficult to deal with because
of antibiotic resistance [6]. Further, non-antibiotic drugs have been found to change the
composition and function of the microbiome [81]. Microbiome interaction with the host
begins with identifying what type of microbiome is affecting the host, and how beneficial
or harmful it is to the host [5].

Understanding what kind of changes can influence the microbiome, and how, could
lead to further studies on ways to make the microbiome stronger by improving the effects
of certain treatments [5]. Therefore, modeling the host/drug–microbiome interaction
is important for understanding the significance of the interactions and implications for
different drugs and microorganism taxa. For example, Maier et al. (2018) [82] discussed
the extensive effects of non-antibiotic drugs on the gut microbiome. In their study, more
than 1000 marketed drugs were screened against 40 representative gut bacterial strains,
and they found that 24% of the drugs with human targets inhibited the growth of at
least one strain. Particular classes, such as the chemically diverse antipsychotics, were
overrepresented in this group. The effects of human-targeted drugs on gut bacteria are
reflected by their antibiotic-like side effects in humans. Therefore, the study explains
the necessity of accounting for potential medication-related confounding effects in future
microbiome disease association studies.

4.3. Multivariate Longitudinal Data

Multivariate longitudinal data analysis provides significantly more information on the
dynamics of the microbiome interaction networks than univariate longitudinal methods. It
is very important to understand the relationships among taxa over time. These relationships
can have a positive, negative, or no impact on the taxa involved. In this section, we review
two strategies to identify the associations between longitudinal microbiome data.

1. Dynamic Bayesian Network: A Dynamic Bayesian Network (DBN) is “a Bayesian net-
work extended with additional mechanisms that are capable of modeling influences
over time” [83]. DBN has been used recently for modeling multiple features jointly for
longitudinal data. For example, Lugo-Martinez (2019) [84] proposed a study based
on DBN for analyzing longitudinal microbiome data. They applied their approach
to three different microbiome datasets including infant gut, vaginal, and oral cavity
microbiomes. The results provide evidence that microbiome alignments coupled with
DBN improve predictive performance over previous methods and enhance our ability
to infer biological relationships within the microbiome and between taxa and clinical
factors. In McGeachie et al.’s (2016) [85] study, DBN was applied to longitudinal
infant gut microbiomes and the predictive performance was analyzed. The DBN
model explicitly captured specific relationships and general trends in the data by
increasing amounts of Clostridia, residual amounts of Bacilli, and increasing amounts
of Gammaproteobacteria. The prediction performance of DBNs with fewer edges
was accurate. DBN provided quantitative likelihood estimates for rare abruptions
events. DBN was able to identify important relationships between microbiome taxa
and predict future changes in microbiome composition.

2. Multivariate Granger causality. The Granger causality network model was proposed
by Granger (1969) [86], which was originally developed for economics but has now
been used extensively in neuroscience and microbiome data analysis [87]. Variable
X is the “Granger cause” of variable Y if the histories X and Y together predict
the current value of Y better than the history of Y alone [88]. Several multivariate
extensions of Granger causality have been developed recently [89–93]. For example,
Mainali et al. (2019) [92] show the superiority of multivariate Granger causality over
the traditional correlation methods, showing a weak negative relationship between
correlation and causality, and a strong positive relationship, whereas almost all strong
negative interactions. One limitation of this method is that it does not take into
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consideration the clinical or demographic variables when building the interaction
network [94].

4.4. Multivariate Regression Analysis

In Section 3.2, we review the regression models that model each feature independently
by modeling the mean counts or some transformation of the counts via a link function.
In this section, we discuss some regression analysis methods that focus on modeling
OTUs jointly (i.e, in a multivariate count fashion). Below is a review of the most common
multivariate regression models.

1. Zero-inflated generalized Dirichlet multinomial (ZIGDM) model [95]. The ZIGDM
is proposed for modeling multivariate taxon counts. The ZIGDM regression model
was proposed to link microbial abundances to covariates and develop a fast expecta-
tion–maximization (EM) algorithm to efficiently estimate the parameters. Based on
some simulation studies and an application related to the gut microbiome dataset,
the ZIGDM test is more powerful at detecting differential mean/dispersion and is
more robust to the underlying distribution if the counts are zero-inflated. If the taxon
counts are not zero-inflated, the generalized Dirichlet multinomial (GDM) tests are
more desirable. In addition, the GDM provides a superior fit to taxon counts com-
pared to the Dirichlet multinomial (DM), and the ZIGDM can further improve the
goodness-of-fit for taxa with many zero counts.

2. Bayesian nonparametric multivariate negative binomial regression with zero-inflation
(BNP-ZIMNR) model [96]. BNP-ZIMNR is used to analyze multivariate count re-
sponses of microbiome data. Zero-inflated negative binomial (ZINB) distribution is
used for modeling OTU counts under the assumption that OTU counts are either
equal to zero or follow a negative binomial distribution. Nonparametric regression
prior models were built on the probability of an OTU count being zero and the
mean count of an OTU to study the effects of covariates on microbial communities.
Based on some simulation studies and a real chronic wound microbiome dataset, the
proposed BNP-ZIMNR model yields superior parameter estimates and model fit in
various settings.

3. Bayesian Dirichlet-multinomial (BDM) regression model [59]. The proposed model
allows for the selection of significant associations between a set of covariates and
microbiome features. The statistical inference is conducted through a Markov Chain
Monte Carlo (MCMC) algorithm, and the selection of the significant covariates is
based on posterior probabilities of inclusions and the thresholding of the Bayesian
false discovery rate. The proposed model has been applied to simulated data and real
microbiome applications. Compared to some other methods, the BDM model is more
accurate and has the lowest false positive as well as false negative rates.

4. Logistic Normal Multinomial (LNM) Regression Model [97]. In order to select the co-
variates and estimate the corresponding regression coefficients, a penalized likelihood
estimation method was developed for variable selection and estimation. The Monte
Carlo Expectation-Maximization algorithm was applied to implement the penalized
likelihood estimation. Compared to the commonly used Dirichlet-multinomial regres-
sion model for count data, the LNM model provides a more flexible way of modeling
the dependency of the bacterial composition.

5. Dirichlet-multinomial (DM) regression model [98]. Because microbiome data are
high dimensional data, a penalized likelihood approach was developed to estimate
the regression parameters and to select the variables by imposing a sparse group
l1 penalty to encourage both group-level and within-group sparsity. A variable
selection procedure and an efficient block-coordinate algorithm were developed to
solve the optimization problem. Based on some extensive simulations and a real
application related to the human gut microbiome, the sparse DM regression can
result in better identification of the microbiome-associated covariates than models
that ignore overdispersion.
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5. Conclusions

Sparsity, skewness, and high dimensionality are some of the main challenges for
microbiome data analysis and have drawn considerable attention. Biases and lack of powers
may be introduced if the excessive zeros observed in the data are handled inappropriately.

In this paper, we discussed the microbiome data challenges and the data representation.
Then, we reviewed two types of statistical analysis of microbiome data; first, modeling
Univariate OTU or features separately and independently, and second, modeling multiple
OTUs or features simultaneously.

For the first type of analysis, we reviewed three types of analysis: (1) probabilistic
models (without covariates); (2) modeling longitudinal microbiome data where there are
multiple time points for each subject; and (3) regression analysis where the response
variable is the OTU count. The second type of analysis is based on modeling multiple
OTUs or features simultaneously. This kind of analysis may foster our understanding of
interactions between species, or building a network among species. We reviewed four
types of multivariate features: (1) microbiome–microbiome interactions; (2) host/drug–
microbiome interactions; (3) longitudinal data; and (4) regression analysis.
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