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Abstract: Campylobacter is a major cause of acute human diarrheal illness. Broiler chickens constitute a
primary reservoir for C. jejuni leading to human infection. Consequently, there is a need for developing
novel intervention methods. Antimicrobial peptides (AMP) are small proteins which have evolved in
most lifeforms to provide defense against microbial infections. To date, over 3000 AMP have been
discovered; however, few of them have been analyzed specifically for ability to kill campylobacters.
We selected and evaluated a set of 11 unique chemically synthesized AMP for ability to inhibit growth
of C. jejuni. Six of the AMP we tested produced zones of inhibition on lawns of C. jejuni. These
AMP included: NRC-13, RL-37, Temporin L, Cecropin–Magainin, Dermaseptin, and C12K-2β12. In
addition, MIC were determined for Cecropin–Magainin, RL-37 and C12K-2β12 against 15 isolates
of Campylobacter representing the three most common pathogenic strains. MIC for campylobacters
were approximately 3.1 µg/mL for AMP RL-37 and C12K-2β12. MIC were slightly higher for the
Cecropin–Magainin AMP in the range of 12.5 to 100 µg/mL. These AMP are attractive subjects for
future study and potential in vivo delivery to poultry to reduce Campylobacter spp. populations.

Keywords: antimicrobial peptides (AMP); Campylobacter; in vitro inhibition; minimum inhibitory
concentration (MIC); synthetic oligo-acyl-lysl (OAK) peptidomimetic

1. Introduction

Antimicrobial peptides (AMP) are small proteins which have been found in almost
every class of living organism where they have evolved as a host-defense mechanism
against invading microorganisms [1]. For this reason, they are sometimes referred to
as host-defense peptides and are considered key players in innate immunity [2]. AMP
represent a unique and diverse group of molecules which can be divided into subgroups
on the basis of their amino acid composition and structure [3]. They are generally short,
10–40 amino acids in length, cationic, amphipathic, and can be arbitrarily categorized
according to their secondary structure as alpha-helices, beta-sheet, extended helices, and
loops [4]. A growing number of AMP are being discovered and synthetic new ones are being
designed thanks to tremendous research efforts in response to the dramatic and continued
evolution of antibacterial-resistant strains of bacteria and the resulting international crisis in
health care [1]. For example, a 2004 database contained 523 known peptides, whereas a 2013
database held 3904 natural and 1643 synthetic ones [5,6]. More recently, a 2021 database
contains 22,259 entries which include 5891 general AMP, 16,110 patent AMP, and 77 AMP
currently in preclinical or clinical stages of drug development [7]. While it is reasonable to
expect that some of the AMP that have been discovered or designed de novo to kill a variety
of Gram (−) bacteria might also inhibit G (−) Campylobacter spp., there have been very few
reports in the literature describing effects of AMP on these specific pathogens, perhaps
due to the relative difficulty of culturing campylobacters under microaerobic conditions
necessary for its growth.
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Campylobacter is one of the most important human pathogens worldwide, being a
major cause of acute human diarrheal illness in the developed world [8–12]. Among
foodborne bacterial infections, disease caused by Campylobacter jejuni is the most prevalent
with approximately 1.5 million cases annually in the United States alone [13]. Commercial
broiler chickens serve as a major reservoir for C. jejuni with colonization levels as high as
1010 CFU per gram of wet feces in the chicken [14–16]. Consequently, commercial broiler
chickens constitute the primary reservoir for C. jejuni leading to human infections [15,17–19].
Common poultry-associated isolates are present in human clinical cases, providing evidence
that poultry is a major contributor to human infection [20]. In addition, an increase in AMR
among bacterial pathogens, due in part to the sub-therapeutic use of antibiotics in animal
feed, has the potential to compromise public health therapies and remains a concern among
scientists and the general public [21–24]. The current consensus of scientific and public
opinion is that antibiotic use by humans and in food animals selects for the development of
AMR among foodborne bacteria that can complicate public health therapies [25]. A major
issue is that antibiotic resistance may not only occur among disease-causing organisms
but may also become an issue for other organisms in the host and the environment [26].
Sub-therapeutic use of antibiotics as growth promoters has been discontinued in the
European Union [27–29]. These regulations are justified due to the increase in antibiotic
resistance among bacterial pathogens [21,30] including bacteria from healthy broilers [31].
Consequently, there is a need for developing novel intervention methods including narrow-
spectrum antimicrobials and probiotics that selectively target pathogenic organisms while
avoiding the killing of beneficial organisms [30].

Eliminating or dramatically reducing Campylobacter spp. contamination during poultry
production will reduce foodborne infections [32–34]. Despite various intervention efforts
against pathogens including campylobacters and salmonellae by poultry producers, pro-
cessors, and regulatory agencies, the number of human foodborne diseases caused by these
pathogens has not drastically declined [35,36]. There are currently no applicable, on-farm
interventions for significantly reducing the colonization of poultry with C. jejuni. There is
a need for effective interventions that may be practically applied in the poultry industry
to reduce the colonization of poultry with C. jejuni and, subsequently, reduce consumer
exposure to this pathogen [37]. A proposal for on-farm control measures for Campylobacter
by the EU and implementation of in-plant performance standards for the pathogen by
FSIS [38] highlight the urgent need for effective intervention methods. Hence, the objective
of this study was to chemically synthesize representative AMP and screen them for ability
to kill campylobacters in vitro with the long-term goal of potentially developing novel,
practical intervention methods for reduction of these foodborne pathogens in poultry.

2. Materials and Methods

We selected and evaluated a set of 11 unique chemically synthesized and commercially
available AMP (Tables 1 and 2) for ability to inhibit growth of C. jejuni isolates 11,168
and 81–176 and seven additional pathogenic bacterial isolates including two Clostridium
perfringens isolates, two Salmonella isolates, two Listeria monocytogenes isolates, and one E.
coli O157:H7 in a spot-on-lawn assay. Peptides were synthesized using standard solid-phase
(Fmoc) chemistry with a peptide synthesizer (CPC Scientific Inc., Sunnyvale, CA 94089,
USA, C12K-2β12; AnaSpec, Fremont, CA 94555, all other AMP).
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Table 1. Sources and characteristics of antimicrobial peptides evaluated in this study.

AMP Source AA # Structure and Characteristics Reference

Apidaecin 1B Honeybee lymph 18
Cationic, no α-helix formation, high proline

content, stable at high temp and low pH, small
mol wt 2100

[39]

C12K-2β12
Synthetic

oligo-acyl-lysyl (OAK)
hexamer

8 Peptidomimetic, stable at high temp and low pH [40]

Carnobacteriocin B2 Carnobacterium piscicola 48
Class II bacteriocin, cationic, single alpha-helices

involved in coiled-coils or other helix–helix
interfaces

[41]

Cecropin A–Magainin 2
hybrid

Cecropia moth/African
clawed frog 20 Cationic, short helix–flexible–amphipathic helix,

antibacterial as well as antitumor activity [42]

Dermaseptin Skin of frog
(Phyllomedusa) 34 Cationic, amphipathic α-helix [43]

Dermcidin DCD Human sweat glands 48 Forms cation-stabilized oligomeric ion channels
in lipid bilayers [44]

NRC-13 Pleurocidin American plaice-winter
flounder 23 Amphipathic α-helix [45]

Parasin I
Skin mucus of

wounded catfish
(Parasilurus asotus)

19 Amphipathic α-helix [46]

Pyrrhocoricin
European sap-sucking

bug (Pyrrhocoris
apterus)

20 Cyclic, proline-rich peptide [47]

RL-37
Bone marrow of Rhesus

monkey (Macaca
mulatta)

37 Cathelicidin, α-helix [48]

Temporin L European red frog skin
(Rana temporaria) 13 Stable α-helix, secondary amphipathicity,

shortest natural AMP found to date [49]

Table 2. Proposed modes of action, amino acid sequences, and hemolysis reactions of AMP employed
in this study.

AMP AA Sequence Net
Charge Proposed Modes of Action Hemolysis

Apidaecin 1B GNNRP VYIPQ PRPPH PRL 3.1

binding and irreversible
combination with a periplasmic

receptor/docking molecule, devoid
of pore-forming activity

non-hemolytic

C12K-2β12 C12K-KIK-KIK (C12 represents dodecanoic acid) 4 rapid membrane depolarization and
cell permeabilization

non-hemolytic at 1:64
(1.56 mcg/mL)

Carnobacteriocin B2 VNYGN GVSCS KTKCS VNWGQ AFQER YTAGI
NSFVS GVASG AGSIG RRP 3.9 cationic membrane-permeabilizing

bacteriocin (Class II) not expected

Cecropin A–Magainin 2
hybrid KWKLFKKIGIGKFLHSAKKF 7.1

trp2 insertion, Lys binding,
alpha-helix membrane spanning due

to flexible hinge

moderate 1:2 (50
mcg/mL) to 1:32
(3.125 mcg/mL)

Dermaseptin ALWKT MLKKL GTMAL HAGKA ALGAA ADTIS
QGTQ 3.1

forms amphipathic helices when
integrated with membrane lipid

bilayer
yes

Dermcidin DCD SSLLE KGLDG AKKAV GGLGK LGKDA VEDLE
SVGKG AVHDV KDVLD SVL −1.9

transmembrane potential formed
with nanopore formation upon

insertion
not expected

NRC-13 Pleurocidin GWRTLLKKAEVKTVGKLALKHYL 5.1

forms ion channels (probable
toroidal pore) in planar lipid

bilayers. Inhibits nucleic acid and
protein synthesis

moderate 1:2
(50 mcg/mL) to 1:256

(0.39 mcg/mL)

Parasin I KGRGK QGGKV RAKAK TRSS 8

binds to DnaK, inhibiting its major
two functions: ATPase activity and

misfolding proteins with
inactivation by acting on internal

targets

non-hemolytic
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Table 2. Cont.

AMP AA Sequence Net
Charge Proposed Modes of Action Hemolysis

Pyrrhocoricin VDKGS YLPRP TPPRP IYNRN 3 binds to 70 kDa heat-shock protein
DnaK, inhibiting protein folding undetermined

RL-37 RLGNFFRKVKEKIGGGLKKVGQKIKDFLGNLVPRTAS 8 amphipathic alpha-helical structure,
pore formation no

Temporin L FVQWF SKFLG RIL 2

allows Temporin A and B to bypass
LPS and access the cytoplasmic
membrane by preventing their

oligomerization to LPS

yes

Target bacterial cultures, C. jejuni 11168 and 81–176 were propagated on Brucella
agar with blood (BAB) overnight at 42 ◦C in a microaerobic gas atmosphere (5% O2,
10% CO2, 85% N2). Cells were aseptically harvested from the plates and suspensions
were made in PBS equivalent to No. 1 McFarland standard. Approximately 200 µL
of bacterial suspensions were applied to the surface of BAB plates containing 1.5% low
electroendosmosis (EEO) agarose [50] (Sigma-A6013) using a swab dipped in the suspension
once for the first half the plate, and again for the second half. The inoculated plates were
air-dried for approximately 10 min and were then spotted with 10 µL of each antimicrobial
peptide or sterile water (control). All AMP solutions were prepared as 1 mg/1 mL; therefore,
a 10 µL spot equates to 10 µg. Plates with AMP spots were allowed to dry for approximately
5 min, then were incubated at 37 ◦C under microaerobic conditions. AMP efficacy was
determined as visible zones of inhibition of growth at 24 h.

Six of the AMP we tested produced zones of inhibition on lawns of C. jejuni. Three
AMP were chosen for further investigation on the basis of anti-Campylobacter activity, water
solubility, and reported reduced cytotoxicity to mammalian cells. Cecropin-Magainin,
RL-37, and C12K-2β12 were tested for ability to produce zones of inhibition in spot-on-lawn
assays against 24 different bacteria including C. jejuni, C. coli, and C. lari isolates as well
as two strains of Salmonella, Clostridium perfringens, Listeria monocytogenes, Lactobacillus,
and E. coli O157:H7. The spot-on-lawn assay was conducted as described earlier with
the addition of Brain Heart Infusion agar with 1.5% EEO agarose for salmonellas, E. coli,
clostridia, and Listeria. Lactobacillus MRS agar with 1.5% EEO agarose was utilized for
lactobacilli. Campylobacter and lactobacilli were incubated in a microaerobic atmosphere
(10% CO2, 5% O2, 85% N2) at 37 ◦C, and ambient air cultivation at 37 ◦C was utilized for
Salmonella, E. coli, and Listeria. An anaerobic environment (5% CO2, 5% H2, 90% N2) at
37 ◦C was used for incubation of C. perfringens.

In addition, a modification of the CLSI M26A [51] and Wu and Hancock [52] as-
says were utilized to determine minimum inhibitory concentrations (MIC) for the AMP
Cecropin–Magainin, RL-37, and the oligo-acyl-lysyl (OAK) C12K-2β12 against 15 isolates
of campylobacter in microtiter plates. Briefly, target campylobacter cultures were grown
in Brucella broth for 18 h in 25 cm2 vented tissue culture flasks in a microaerobic gas
environment (5% O2, 10% CO2, 85% N2) at 37 ◦C. Visual adjustment of suspensions equiv-
alent to a 0.5 McFarland standard for 1.5 × 108 cfu/mL baseline were made using fresh
Brucella broth. The standardized suspensions were further diluted in fresh Brucella broth
1:1000 for an inoculum of 1.5 × 105. Enumeration of inoculum levels was assessed on BAB.
Cecropin-Magainin, RL-37, and C12K-2β12 antimicrobial peptides were serially diluted in
polypropylene strip tubes using 0.2% bovine serum albumin and 0.1% acetic acid diluent.
An amount of 10 µL of each peptide dilution was added to 90 µL of bacterial inoculum
culture in Greiner 96-well V-bottom polystyrene tissue culture-treated microtiter plates in
triplicate for targets. One well was inoculated for each target with 10 µL 0.2% bovine serum
albumin and 0.1% acetic acid diluent with 90 µL of bacterial inoculum as positive control.
One well was inoculated with 10 µL 0.2% bovine serum albumin and 0.1% acetic acid
diluent with 90 µL of Brucella broth as negative control. Plates were placed in gallon-sized
zip-lock freezer bags (SC Johnson, Racine WI 53403, USA), flush-filled with the microaer-
obic gas mixture, and incubated for 40 h with gas replacement at 24 h. MIC was defined
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as the minimum concentration that prevented growth based on visual observation using
mirrored white light.

3. Results

A set of 11 unique AMP were chemically synthesized and evaluated for ability to lyse
C. jejuni in a spot-on-lawn assay (Figure 1). Table 3 shows the initial screening results for the
11 AMP against two isolates of C. jejuni as well as additional human foodborne pathogens
including isolates of Clostridium perfringens, Salmonella, Listeria, and enterotoxigenic E. coli.
Six of the selected AMP produced obvious zones of inhibition against growth of C. jejuni
isolates. These antimicrobial peptides included: NRC-13 Pleurocidin, RL-37, Temporin L,
Cecropin–Magainin, Dermaseptin, and C12K-2β12. Interestingly, these same six AMP were
also able to lyse most of the other pathogenic bacteria tested.
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Figure 1. “Spot-on-lawn” zone assay demonstrating inhibition of C. jejuni by selected antimicrobial
peptides: (Counter-clockwise from top) RL-37, Cecropin A–Magainin 2 hybrid, the synthetic OAK
C12K-2β12, ampicillin (positive control), and sterile water (negative control, no zone of inhibition).

Cecropin–Magainin, RL-37, and C12K-2β12 were chosen for further investigation
on the basis of anti-Campylobacter activity, water solubility, and limited cytotoxicity to
mammalian cells and were tested for ability to produce zones of inhibition in spot-on-
lawn assays against 24 different bacteria including 15 unique C. jejuni, C. coli, and C. lari
isolates as well as two strains of Salmonella, Clostridium perfringens, Listeria monocytogenes,
Lactobacillus, and E. coli O157:H7. These three active AMP produced obvious zones of
inhibition on all 15 of the campylobacter isolates tested, regardless of the strain (Table 4).
They also inhibited the other pathogens tested with the only exceptions being the lack of
zone formation by the Cecropin–Magainin and RL-37 AMP on Lactobacillus helviticus and
Clostridium perfringens 39.

MIC of C12K-2β12, Cecropin–Magainin, and RL-37 against 15 different C. jejuni, C.
coli, and C. lari isolates are presented in Table 5. MIC for C12K-2β12 ranged from 1.6 to 3.1
µg/mL with no discernable differences between strains of campylobacter. MIC for RL-37
varied from 1.6 to 6.3 µg/mL also with no obvious differentiation between campylobacter
strains. The MIC for the Cecropin–Magainin hybrid were significantly higher, ranging from
12.5 to 100 µg/mL. No significant differences between campylobacter stains were observed
in response to the Cecropin–Magainin AMP.
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Table 3. Formation of zones of inhibition by selected AMP against bacterial isolates.

AMP Cj1 Cj2 Cp1 Cp2 S1 S2 Lm1 Lm2 Ec

Apidaecin 1B - - - - + + - - +
C12K-2β12 + + + + + + + + +

Carnobacteriocin B2 - - - - - - - - -
Cecropin A–Magainin 2

hybrid + + - + + + + + +

Dermaseptin + - + + - + + + +
Dermcidin DCD - - - - - - - ± -

NRC-13 Pleurocidin + + - + ± + + + +
Parasin I - - - - - - - - -

Pyrrhocoricin - - - - - - - - -
RL-37 ++ ++ - + + + + + +

Temporin L + + + ++ + + + + +
Ampicillin (control) - - ++ ++ + + + ++ ++
Acetic acid (control) - - + + + + + + +

Key to bacterial target isolates: Cj1 = Campylobacter jejuni 11168; Cj2 = Campylobacter jejuni 81–176;
Cp1 = Clostridium perfringens CP39; Cp2 = Clostridium perfringens CP509; S1 = Salmonella enteritidis serovar Ty-
phimurium 14028; S2 = Salmonella enteritidis serovar Heidelburg 130NR; Lm1 = Listeria monocytogenes A49594 (4b);
Lm2 = Listeria monocytogenes 311-WT; Ec = Escherichia coli O157:H7 (233_RC1-WT). Key to table symbols: - no
inhibition; ±presence of satellite colonies within zone of inhibition; + 5 mm mean zone diameter; ++ 13.5 mm
mean zone diameter.

Table 4. Formation of zones of inhibition by selected AMP against various target bacteria.

Target Bacteria C12K-2β12 Cecropin A–Magainin 2 RL-37

Campylobacter jejuni 14118 ++ + +++
Campylobacter jejuni 81-116 ++ + ++

Campylobacter jejuni 81-176 a ++ + ++
Campylobacter jejuni 11168 ˆa ++ + ++

Campylobacter jejuni RM1221 a +++ + +++
Campylobacter jejuni A74C +++ + ++

Campylobacter jejuni A49943 * ++ + ++
Campylobacter jejuni A33250 * ++ + ++
Campylobacter jejuni A29428 * ++ + ++
Campylobacter coli Epi 33-WT +++ + +++
Campylobacter coli A49941 * +++ + +++
Campylobacter coli A33559 * ++ + +++
Campylobacter lari RM2100 +++ + +++
Campylobacter lari A35221 * ++ + ++

Campylobacter lari “slaughter beach” ++ + ++
Salmonella enterica serovar

Typhimurium Epi 3 ++ + +

Salmonella enterica serovar
Heidelberg Epi 42 ++ + +

Lactobacillus acidophilus-WT ++ + +
Lactobacillus helveticus-WT ++ - -
Clostridium perfringens 39 + - -
Clostridium perfringens 509 + + +

Listeria monocytogenes A49594 (4b) + + +
Listeria monocytogenes 311 WT + + +

Escherichia coli O157:H7 + + +
a Alternate ATCC designations; ˆ National Collection of Type Cultures (NCTC) isolate; * American Type Culture
Collection (ATCC) isolate. Key to table symbols: - no zone of inhibition; + 5 mm mean zone diameter; ++ 13.5 mm
mean zone diameter; +++ 18 mm mean zone diameter.
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Table 5. Minimum inhibitory concentrations (MIC) of selected AMP against Campylobacter jejuni, coli,
and lari isolates.

Target Campylobacter spp. Isolate C12K-2β12
MIC (µg/mL)

Cecropin A–Magainin 2
MIC (µg/mL)

RL-37
MIC (µg/mL)

Campylobacter jejuni 14118 3.1 50 1.6
Campylobacter jejuni 81-116 1.6 12.5 3.1

Campylobacter jejuni 81-176 a 3.1 50 3.1
Campylobacter jejuni 11168 ˆa 3.1 25 3.1

Campylobacter jejuni RM1221 a 1.6 50 1.6
Campylobacter jejuni A74C 1.6 50 3.1

Campylobacter jejuni A49943 * 3.1 25 3.1
Campylobacter jejuni A33250 * 3.1 100 3.1
Campylobacter jejuni A29428 * 3.1 100 6.3
Campylobacter coli Epi 33-WT 1.6 50 1.6
Campylobacter coli A49941 * 1.6 100 1.6
Campylobacter coli A33559 * 3.1 100 1.6
Campylobacter lari RM2100 1.6 25 1.6
Campylobacter lari A35221 * 3.1 100 3.1

Campylobacter lari “slaughter beach” 3.1 100 3.1
a Alternate ATCC designations; ˆ National Collection of Type Cultures (NCTC) isolate; * American Type Culture
Collection (ATCC) isolate.

4. Discussion

AMP display tremendous chemical diversity in nature, causing difficulty in their
classification [53,54]. Amino acid sequence, net charge, secondary structural motif, and the
abundance of specific amino acids may all differ between types of AMP [55]. However,
AMP also maintain some common features, and classification of AMP may be based on
source, activity, structural characteristics, and amino acid-rich species [54]. For example,
most AMP are cationic in nature with net charges ranging from +2 to +9. This gives an
electrostatic advantage to the AMP in binding to the negatively charged bacterial mem-
branes [56]. Many AMP are membrane-acting peptides and have an amphipathic structure
with hydrophobic and hydrophilic regions which play an integral part in interactions with
target bacterial membranes, leading to cell lysis through a variety of proposed mechanisms
including the toroidal pore or wormhole model, the barrel-stave model, or the carpet-like
model [57,58]. Indeed, some AMP are non-membrane-acting and do not cause cell lysis,
but rather pass through the intact bacterial lipid bilayer through endocytosis and, once in
the cytoplasm, inhibit nucleic acid biosynthesis, protease activity, or DNA replication [51].
A number of peptide databases exist and are available for mining [5,59,60]. We initially
chose 11 AMP for evaluation representing a variety of different sources, modes of action,
and activities frequently discussed in the literature (Table 1). The selected AMP represent
examples from insects, bacteria, amphibians, fish, mammals, and a case of de novo synthetic
AMP. They also represent membrane-acting and non-membrane-acting peptides.

While very few reports exist in the literature specifically describing inhibition of
campylobacters by AMP, C. jejuni has been reported to be highly susceptible to chicken
host-defense peptides such as cathelicidin [61]. We therefore chose to evaluate RL-37, a
37-residue AMP of the cathelicidin family which is expressed in bone marrow of the rhesus
monkey and utilizes an amphipathic α-helical structure to form pores and destabilize
the membrane lipid bilayer of target bacteria. RL-37 is reported to inhibit Gram-negative
organisms such as E. coli and Pseudomonas [48] and we found it to be quite efficacious against
the Gram (−) campylobacters we tested, achieving MIC ranging from 1.6 to 6.3 µg/mL
(Table 5). It was also reported to inhibit Gram (+) organisms such as Listeria monocytogenes
and this was observed in our study as well (Table 4). We chose several additional α-helical
AMP for evaluation including dermaseptin, NRC-Pleurocidin, Paracin I, and Temporin L.
Dermaseptin, a 34-residue peptide isolated from frog skin (Phyllomedusa), demonstrates
broad-spectrum lytic activity against Gram-positive and Gram-negative bacteria, yeast, and
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protozoa [43,62]. We found it to inhibit some, but not all, of our test isolates (Table 3). Since
it did not inhibit both of our initial campylobacter isolates used for screening, we did not
include it in further MIC evaluations. NRC-Pleurocidin, a 23-residue peptide isolated from
the American plaice winter flounder has been reported to rapidly kill G (−) Pseudomonas
aeruginosa and G (+) Methicillin-resistant S. aureus (MRSA) [45]. We found it capable of
lysing all our test isolates except for C. perfringens 39. However, it was excluded from
further analysis due to its moderate cytotoxicity. Paracin I is a 19-residue peptide isolated
from catfish skin and has been reported to inhibit G (+) and G (−) organisms including
E. coli and Salmonella [46] However, in the concentrations tested in our assay, Paracin I
failed to inhibit any of our test isolates. Temporin L is a 13-residue peptide from European
red frog skin and is among the shortest natural AMP known [49,63]. We found it to be
efficacious against all our test organisms but because it is reported to be hemolytic and
requires dimethylsulfoxide (DMSO) as a solvent rather than water, we did not think it
practical for our purposes and did not include it in further analysis.

Some AMP contain a high content of certain amino acid residues such as proline,
tryptophan, glycine, or histidine. These AMP are frequently extended with no regular
structure [56]. Proline-rich AMP (Pr-AMPs) are cationic peptides which usually enter the
cell through translocation of the inner membrane using a transporter-mediated uptake
mechanism and do not lyse the cell. Pr-AMPs usually kill bacteria by targeting intracellular
components. Pyrrhocoricin is a 20-amino acid residue Pr-AMP isolated from the European
sap-sucking bug (Pyrrocoris apterus). Pyrrhocoricin interferes with protein biosynthesis in
target bacteria by binding to the 70S ribosomal subunit and inhibiting heat-shock proteins
such as DnaK, preventing protein folding [64]. In the concentrations tested in our assay,
Pyrrhocoricin failed to inhibit any of our test isolates. Apidaecin 1B is 18-residue Pr-AMP
isolated from honeybees. Apidaecin 1B is known to inhibit a large number of plant-
associated bacteria and human pathogens via a bactericidal pathway without cell lysis [39].
Apidaecin 1B inhibited Salmonella enteritidis serovars Typhimurium and Heidelburg and E.
coli O157:H7 in our assay, but did not kill Campylobacter jejuni, Clostridium perfringens, or
Listeria monocytogenes isolates.

Bacteriocins are AMP produced by bacteria. Carnobacteriocin B2 is a Class II cationic
bacteriocin which can form α-helices and lyse specific target bacteria [41]. Under the condi-
tions of our spot-on-lawn assay, none of our target bacteria were affected by Carnobacteri-
ocin B2. Dermcidin DCD is a 48-residue peptide isolated from human sweat glands. This
anionic AMP forms oligomeric ion channels in lipid bilayers of specific target bacteria. This
AMP was also unable to form any zones of inhibition against any of the bacteria utilized in
our assay.

Despite the large number of natural AMP identified, isolated, and characterized,
there are some inherent disadvantages associated with natural AMP. For example, the
limited quantities of AMP isolated from natural sources, the uneconomic synthesis of
longer AMP sequences, folding issues associated with natural AMP, short half-lives due
to protease degradability, and difficulties in site-directed delivery [56]. This has led to
a research emphasis on synthetic AMP in recent decades to overcome shortcomings of
natural AMP. Several approaches have been employed for the design of improved synthetic
AMP including template-based de novo synthesis based on natural AMP to improve activity
and proteolytic stability (often through truncation), biophysical modeling in hydrophobic
membrane environments, and virtual screening of peptide libraries to identify potential
AMP sequences [56].

Various chemical modifications of AMP have been utilized to improve potency while
decreasing cytotoxicity to mammalian cells, or improving peptide resistance to protease
digestion, high temperatures, and low pH. Cecropin A (from the Cecropia moth) and
Magainin 2 (from the African clawed frog, Xenopus Laevis) both individually exhibit po-
tent antimicrobial effects against a broad spectrum of bacteria [65]. Shin and co-workers
designed an engineered hybrid AMP composed of residues 1-8 of Cecropin A fused to
residues 1–12 of Magainin 2 [66]. Cecropin–Magainin had greater antimicrobial activity
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against bacteria than either of the AMP individually while maintaining low toxicity. It has
been suggested that the flexibility induced by Gly-Ile-Gly or Pro residues in the central part
of Cecropin–Magainin may be important in the electrostatic and hydrophobic interactions
of the N and C terminus with cell membrane surface and cell membrane, respectively [42].
We included Cecropin–Magainin in our spot-on-lawn assays and found it to inhibit all the
bacterial species in our test, including the 15 Campylobacter sps. isolates, but not L. helviticus
or C. perfringens 39 isolates.

Many naturally occurring AMP have rather long AA sequences which can limit their
application as commercial drugs due to the high cost of producing them on an industrial
scale [67]. Shorter synthetic AMP could potentially lower cost of synthesis and may be
more resistant to proteolysis. Shorter synthetic AMP also could be less cumbersome to
express in natural production vectors such as E. coli or Bacillus subtilis [68,69]. Oligomers of
acylated lysines (OAKs) constitute a novel class of synthetic AMP made up of alternating
amino acyl chains and cationic amino acids arranged in such a way as to create an optimal
molecular charge and hydrophobicity for increased potency [70–72]. The synthetic OAK
hexamer C12K-2β12 exhibits inhibitory activity in vitro against Gram-negative bacteria
such as the gastric pathogen Helicobacter pylori [40]. Because H. pylori has some structural
characteristics in common with campylobacters, we chose to evaluate C12K-2β12 in our
spot-on-lawn assay. C12K-2β12 was very active and inhibited growth of all target bacterial
isolates in our assay. The bactericidal effects of C12K-2β12 are exhibited by a dual mode
of action. The OAK causes pore formation and cell lysis at higher concentrations while,
at lower concentrations, it binds nucleic acids and proteins [55]. It demonstrated the
lowest MIC of any of the AMP we tested against 15 isolates of Campylobacter representing
jejuni, coli, and lari species, with a range of 1.6 to 3.1 ug/mL. C12K-2β12 is only 8 amino
acid residues in length and is reported to be stable at low pH and after exposure to
extreme temperatures [40]. These are all important considerations for an AMP to be
potentially administered to poultry. This AMP also inhibited other pathogenic bacterial
species associated with poultry (Salmonella, C. perfringens). These characteristics make
C12K-2β12 a strong candidate for further investigation and potential development into a
practical intervention for reduction of human foodborne pathogen populations associated
with broiler chickens.

It is interesting that the AMP investigated in this study and found to be efficacious
against Campylobacter spp. (NRC-13 Pleurocidin, RL-37, Temporin L, Cecropin–Magainin,
Dermaseptin, and C12K-2β12) are all cationic AMP hypothesized to form amphipathic
α-helical structures to initiate pore formation in target bacteria and subsequent cell lysis.
It is also interesting that Pyrrhocoricin, which is also a cationic, amphipathic α-helical
AMP, did not inhibit Campylobacter spp. There is evidence in the literature suggesting that
the selectivity and potency of a specific AMP is determined primarily by the chemical
composition of the target membrane [1]. It has likewise been hypothesized that differences
in membrane composition between different strains of bacteria are responsible for the
diversity in the potency and selectivity exhibited by a particular AMP against different
strains of bacteria [73].

One of the most important factors in reducing the burden of foodborne disease has
been identified as development of effective control measures [74]. By providing novel
alternatives to antibiotic usage in poultry, the overall impact of our long-term research
goals will be a reduction in bacterial pathogens associated with chickens and safer products
for human consumption. Our working hypothesis is that AMP that inhibit the growth of
Campylobacter spp. can be identified and subsequently utilized to reduce the Campylobacter
load among commercially produced chickens. Identifying non-hemolytic AMP, such as
C12K-2β12, RL-37, and Cecropin–Magainin, capable of killing campylobacters in vitro is a
positive first step toward this goal. An obvious second step will be producing efficacious
AMP in an economical fashion. Microbiological production of AMP through fermentation
is becoming a feasible and economic method of production. Recent studies have described
the development of a Bacillus subtilis culture expressing chicken NK-2 peptide [69]. Oral
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delivery of the B. subtilis culture can protect against Eimeria acervuline infection in broiler
chickens. We are currently working to similarly express effective AMP in a microbial vector
for in vitro analysis and subsequent oral delivery to chickens to protect against colonization
by Campylobacter spp.

5. Conclusions

Selected AMP produced obvious zones of inhibition against growth of C. jejuni isolates.
These AMP included: NRC-13 Pleurocidin, RL-37, Temporin L, Cecropin A–Magainin 2
hybrid, Dermaseptin, and C12K-2β12. MIC for C12K-2β12 ranged from 1.6 to 3.1 µg/mL
with no discernable differences between strains of campylobacter. MIC for RL-37 varied
from 1.6 to 6.3 µg/mL, also with no obvious differentiation between campylobacter strains.
The MIC for Cecropin–Magainin were significantly higher, ranging from 12.5 to 100 µg/mL.
No significant differences between campylobacter stains were observed in response to
the Cecropin–Magainin AMP. The most efficacious of the AMP tested, the synthetic OAK
C12K-2β12, is also heat- and acid-stable, making it an attractive subject for future study and
potential in vivo delivery to poultry.
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