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Abstract: Biochar, derived from the pyrolysis of plant materials has the potential to enhance plant
growth in soilless media. Howevetar, little is known about the impact of biochar amendments to
soilless growth media, microbial community composition, and fate of chemical constituents in the
media. In this study, different concentrations of biochar were added to soilless media and microbial
composition, and chemical constituents were analyzed using metagenomics and gamma spectroscopy
techniques, respectively. Across treatments, carboxyl-C, phenolic-C, and aromatic-C were the main
carbon sources that influenced microbial community composition. Flavobacterium (39.7%), was the
predominantly bacteria genus, followed by Acidibacter (12.2%), Terrimonas (10.1%), Cytophaga (7.5%),
Ferruginibacter (6.0%), Lacunisphaera (5.9%), Cellvibrio (5.8%), Opitutus (4.8%), Mucilaginibacter (4.0%)
and Bryobacter (4.0%). Negative relationships were found between Cytophaga and 226Ra (r = −0.84,
p = 0.0047), 40K (r = −0.82, p = 0.0069) and 137Cs (r = −0.93, p = 0.0002). Similarly, Mucilaginibacter
was negatively correlated with 226Ra (r = −0.83, p = 0.0054) and 137Cs (r = −0.87, p = 0.0021). Overall,
the data suggest that high % biochar amended samples have high radioactivity concentration levels.
Some microorganisms have less presence in high radioactivity concentration levels.
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1. Introduction

The use of soilless substrate as plant growth media over the past five and half decades
has attracted high attention globally [1]. Organic (peat, compost, coir, bark, and wood
fiber) and inorganic (Rockwool volcanic rock, tuff, expanded clay granules, vermiculite,
zeolite, and pumice) materials have been utilized as soilless substrates, individually and
in combination, and with additives such as fertilizers [2]. In the past, peat has been the
major material used in container agriculture. But recent concerns about its economic cost
and environmental implications [3], have led to renewable organic materials being used
as substitutes. Some common renewable materials currently used as soilless substrates
documented in the scientific literature are coconut (Cocos nucifera L.) husk fiber (coir),
ground pine (Pinus taeda L.) bark and logs, rice (Oryza sativa L.) hulls, and switchgrass
(Panicum virgatum L.) [1]. The physical and chemical properties of substrates can be affected
by their inherent components [4], and these physicochemical properties can be manipulated
with the use of additives such as biochar.

Biochar is a carbon (C) rich charred organic product derived from the pyrolysis of waste
biomass in the absence of, or little oxygen [5]. Extensive studies and reviews have been
conducted on biochar amendment to traditional or mineral soil [6]. The type of biomass,
pyrolysis temperature, and storage conditions influence the physicochemical properties of
biochar [7]. Biochar influences the physicochemical properties of soil by increasing soil pH
to improve soil fertility, changing soil bulk density, and improving organic C and cation
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exchange capacity [8]. Additional benefits of biochar are soil water retention, improved
nutrient retention to increase crop yield, and altered microbial populations and functions in
soil [5]. The resistance of biochar to microbial degradation has been highlighted by [9]; this
limits the release of C in the form of CO2 into the atmosphere to mitigate climate change.

Various environmental factors such as moisture content, temperature, and organic
matter determine the abundance and activities of microorganisms in soil [10]. Soil micro-
bial communities play a vital role in nutrient acquisition [11]. Microbial communities are
considered important biological indicators of terrestrial ecosystem stress because of their
sensitivity to abiotic changes, soil quality, and plant cover [10]. Understanding the compo-
sition and diversity of microbial communities in relation to environmental parameters is
very important [12] and soil microbial community structure and activity, can be altered and
enhanced to improve soil properties by biochar amendment [13].

Radionuclides can either be natural or anthropogenic [14]. The three major primordial
radionuclides are 238U and 232Th, and 40K, and these occur naturally in minute concen-
trations depending on the geological, and geographical nature of the parent rock and
soil [14,15]. Atmospheric nuclear weapons testing, nuclear accidents such as Chernobyl and
Fukushima, and mining activities have been the primary sources of global anthropogenic
radioactive contaminants in the environment for the past seven and half decades [16–18].

The release of radioactive materials into the environment leading to exposure to the
population has stimulated intense public concern and has substantially led to research
on the fate of major radionuclides in the environment [19,20]. Radionuclides in growth
media for agriculture and horticulture crop production can potentially be a long-term
source of radiation exposure to humans and the environment due to their accumulation by
plants [21].

Literature has shown that the mobility and interaction of a range of radionuclides
in both natural and engineered environments are influenced by microorganisms [20].
Microbial communities, since the origin of cellular life, have periodically been exposed
to contaminated environments [22]. While there have been numerous studies of microbe-
radionuclide interactions in agricultural soils [15,23–25], to our knowledge, there have not
been any studies in biochar-amended soilless growth media on the relationships among
microbial community diversity and the activity of radionuclides.

With fixed land area and a growing population worldwide, the causes and effects of
the deterioration of agricultural land have been debated elsewhere [26]. Globally, anthro-
pogenic activities are converting natural land cover into human-dominated ecosystems [27].
It has been reported that approximately 13 million hectares of natural land cover were
converted to other land uses each year between 2000 and 2010 [27,28]. However, as a
potential mitigation strategy for the deterioration of agricultural lands, soilless-biochar
amendment systems for agriculture are gaining increasing attention globally [29,30].

However, studies involving relationships among C composition, microbial commu-
nities, and radionuclides in soilless growth media amended with biochar are in their
infancy. For this reason, we examined C composition, bacteria composition, and radionu-
clide activities in soilless growth media amended with biochar samples collected from
Florida Agriculture and Mechanical University Research and Extension Center (FAMU-
REC) located in Quincy, Florida (FL). The aim of the present study was to determine the
relationships among (i) C composition and thermal stability (R400) and microbial diversity,
and (ii) microbial diversity and radionuclides activity levels, in growth media amended
with biochar samples. The present study is the first to provide baseline data among these
parameters in biochar-amended growth media, not only for FAMU-REC, but for Florida,
the country, and the world.

2. Materials and Methods
2.1. Samples Collection Site Description

The study site where samples were collected was the FAMU-REC in Quincy, Gadsden
County, FL in the USA. The site on the Florida-Georgia State line (30◦67′ N and 84◦61′ W)



Appl. Microbiol. 2022, 2 664

is approximately 30 miles from the main university campus in Tallahassee, FL. The FAMU-
REC consists of more than 100 acres of farmland, pines forest, lakes and animal research
facilities, and laboratories. It has annual high and low average temperatures of 26.1 ◦C
(79.0◦ F) and 12.9 ◦C (55.3◦ F), respectively, with an annual average temperature of about
19.5 ◦C (67.2◦ F), annual precipitation of 59.67 inches, and humidity level of approximately
94.0%.

2.2. Media Composition

A soilless growth media consisting of a mixture of 60% coconut coir and 40% fine pine
bark was used to prepare 8 biochar treatments containing 1%, 2%, 3%, 4%, 6%, 8%, 10%,
and 12% biochar, respectively, plus a control, without biochar. Compressed coconut coir
bricks of 8 × 4 × 2-inches were expanded and rehydrated by soaking in water, expanding
volume to 5–7 times the original size. A cement mixer was used to mix the soilless media
treatment and biochar amendments, which were dispensed into 3-gallon plastic containers
to give 3 replicates per treatment. Triplicates of each treatment were collected for analysis
and the means were reported.

2.3. Sample Analysis
2.3.1. pH Determination

1 g of sample was placed in 20 mL of deionized water (DI), shaken for 1.5 h, and then
left for 5 min to equilibrate before measuring pH with a Fisher Scientific Accumet Basic
AB15 pH meter [31–33].

2.3.2. Nuclear Magnetic Resonance Analysis (NMR)

Nuclear magnetic resonance technique was used to evaluate the carbon composition
of the soilless media’s carbon functional groups. Finely milled powder samples of soilless
media amended with various percentages of biochar by weight were analyzed using the
magic angle spinning 13C solid-state nuclear magnetic resonance (MAS 13C SSNMR) tech-
nique, as previously employed by [31,34] using a Bruker 300 MHz DR NMR spectrometer
equipped with a Bruker 4.0 mm double resonance NMR probe.

2.3.3. Multi-Elemental Scanning Thermal Analysis (MESTA)

Sample total C content was determined using the multi-elemental scanning thermal
analysis (MESTA) technique previously employed by [31,35,36]. Carbon thermograms
were created using C content. Due to the high C concentration in biochar [31], a dilution
consisting of a 1:5 mixture of sample: talc by weight was applied before the MESTA analysis
to improve thermogram resolution. The analyses were performed using Antek 9000HN
Series Nitrogen Analyzer by SpectraLab Scientific Inc., Markham, ON Canada.

Low and high carbon stability were examined for C recovered at temperatures of
<400 ◦C and >400 ◦C, respectively [31]. R400 is the region identified below 400 ◦C normal-
ization divided by the total surface area [37]. Using Equation (1) below, R400 was computed
as the fraction of low thermal stability to total C of samples based on the data acquired
from the low C thermal stability (<400 ◦C):

“R400” =
(C recovered at < 400 degree)

TC
(1)

2.3.4. DNA Extraction, Quantification, and Purity, Metagenomics

Samples’ genomic DNA was extracted using DNeasy Powersoil Kit (QIAGEN Inc.,
Germantown, MD, USA) per the manufacturer’s instruction. A NanoDrop 1000 (Nan-
oDrop Technologies, Wilmington, DE, USA) was used to quantify the total DNA of the
extracted samples by measuring the concentrations (ng/µL) by absorbance at A260/280,
and A260/230 ratios [38]. Sequence libraries were prepared using universal primers 345F
(GTGCCAGCMGCCGCGGTAA) and 371R (CCGYCAATTYMTTTRAGTTT) to perform the
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amplification of the16S r RNA metagenomics. A mid-output kit with 2 × 150 paired-end
sequencing was utilized using Illumina MiSeq437 equipment to do the sequencing [39].

PEAR was used to integrate forward and backward reads [40]. Based on a quality
threshold of p = 0.01, combined readings were edited to remove ambiguous nucleotides
and primer sequences. Any reads with sequences shorter than 300 bp or without a primer
sequence were eliminated. Using the USEARCH algorithm and a comparison to the Silva
v132 reference sequence database, chimeric sequences were found and eliminated [41,42].

To produce taxonomy summaries utilizing a sub-OTU resolution of the sequence
collection, the conventional QIIME pipeline was modified [43,44]. The generated sequence
files were then quickly combined with the sample data. The list of unique sequences was
then produced by dereplicating each sequence. All sequences with at least 10 counts of
abundance were referred to as seed sequences. The next step was to use USEARCH to locate
the closest seed sequence for any non-seed sequence that met the 97% minimum identity
requirement. If a non-seed sequence matched a seed sequence, its counts were combined
with the counts from the seed sequence, and if it didn’t, it remained an independent
sequence [41].

With a minimum similarity threshold of 90%, taxonomic annotations for seed and
mismatched non-seed sequences were assigned using the USEARCH and Silva v132 ref-
erence [41,42]. The usual QIIME assignment algorithm was changed to only consider
hits at each taxonomic level with an assigned name to increase the depth of annotation.
When assigning the taxonomic kingdom through the family, a reference annotated as “k
Bacteria; p Firmicutes; c Clostridia; o Clostridiales; f Ruminococcaceae; g; s_” would be
considered, but it would not be used when assigning the genus or species. Additionally,
to be considered for genus or species level designation, any hits in the reference database
must have a minimum identity of 97% or 99%, respectively. Then, sequence abundance
data and taxonomic annotations were combined into a single sequencing table.

2.3.5. Radionuclides Sample Preparation and Analysis

Samples of the soilless media with the various biochar amendments were dried at
110 ◦C for 48 h in an electric oven to remove moisture content [45]. The dried samples were
transferred into 500 mL Marinelli beakers of the same geometry as the reference material,
covered, sealed with parafilm to limit any possible escape of radon, and relabeled as above.
The prepared samples were left for at least 30 days to reach secular equilibrium with radon
and its daughters [45–47]. Each sample was handled carefully, and proper measures were
taken to prevent cross-contamination.

Gamma spectrometry analyses were performed using high purity germanium (HPGe);
detector by Canberra Industries/Merion Inc., Meriden, CT. The detector was shielded with
a thick lead shield with Cu inner layer to reduce the detection of background radiation.
The HPGe detector was coupled with a Canberra DSA-2000 data acquisition system and
connected directly with a PC equipped with Canberra Genie 2000 software in which
measured gamma spectra were stored and analyzed. The software internally calculates
activity concentrations of radionuclides from all prominent gamma lines with background
subtraction [48]. The instrument has an energy resolution of 0.5keV full width at half of
the maximum (FWHM) for a 1332 keV channel (using Co-60) and a relative photopeak
efficiency of 35%. The instrument was calibrated for energy and efficiency over the photon
energy range of 2 to 2000 keV using a National Institute of Standards and Technology
(NIST) traceable mixed gamma standard. Each sample was counted for a period of 86,400 s.

2.3.6. 235U, 226Ra, 232Th, 40K and 137Cs

The activity concentrations of the natural radionuclides 235U and 40K, and the anthro-
pogenic radionuclide 137Cs were determined directly from their photopeak energies lines
of 185.7 (54.0%) 1460.8 (10.7%), and 661.7 (85.1%) keV, respectively [45]. The weighted
mean photopeak energy lines of 214Pb (295.2 and 351.9) and 214Bi (609.3 and 1120.3 keV)
were used to estimate the activity concentration value of 226Ra. The weighted mean pho-
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topeak energies lines of 212Pb (238.6 keV), 212Bi (727.2 keV), and 228Ac (338.3, 911.6, and
969.1 keV) were used to determine the activity concentration value of 232Th [46,49]. Using
the weighted mean photopeak procedure for multiple energy lines gives more accurate
results with lower errors than using only one of the photopeak lines [50]. The measured
and estimated activity concentration values of the radionuclides are reported in Bqkg−1.

2.3.7. Metagenomic Sequence Accession Numbers

The 16S metagenomic sequences obtained from this study are available from NCBI’s
Sequence Read Archive under Bioproject accession # PRJNA773140.

2.3.8. Statistical Analysis

JMP software (version 13.2.1, SAS, Cary, NC 27513, USA) was used to conduct ANOVA
and Pearson correlation analysis for this study. Data are reported as means and standard
error of the mean (SEM). Analysis of variance using post-hoc Turkey HSD tests, where
α = 0.05, was used to determine significant differences among treatment variables. Sigma
plot (version 12.0) was used to plot correlations between variables.

3. Results
3.1. Samples’ Basic Physicochemical Characteristics

Physicochemical characteristics of growth media samples from control (0% biochar)
and different percentages of biochar amendments are reported in (Table 1). pH increased
with an increasing percentage of biochar amendments, with values ranging between
6.02–6.84. (Table 1). Similarly, TC, C composition; carboxyl-C, phenolic-C, and aromatic-C,
increased with the increasing percentage of biochar amendments to growth media. TC,
carboxyl-C, phenolic-C, and aromatic-C, concentration values ranged between 443.03 to
514.47, 14.58 to 38.29, 32.17 to 56.11, and 65.66–95.59 g kg−1, respectively (Table 1).

Table 1. Samples’ physicochemical and C composition properties with TC, carboxyl-C, phenolic-C,
and aromatic-C in g kg−1.

Biochar pH TC Aromatic Phenolic Carboxyl R400

0% 6.15 443.67 67.76 32.17 14.89 0.61
1% 6.02 447.80 67.96 39.82 17.48 0.70
2% 6.03 443.03 65.66 34.72 14.58 0.65
3% 6.23 454.60 73.98 42.32 27.72 0.67
4% 6.47 470.17 78.04 42.40 23.06 0.65
6% 6.46 459.97 73.88 42.24 20.59 0.62
8% 6.68 478.40 82.16 48.34 25.40 0.60
10% 6.76 492.43 92.60 53.34 26.38 0.59
12% 6.84 514.47 95.59 56.11 38.29 0.50

TC = total carbon.

The R400 value for the growth media without added biochar was 0.61. with added
biochar, the R400 values ranged from 0.50 to 0.70. However, the 1% biochar amended
growth media recorded the highest R400 value: 0.7. The values then tend to decrease with
an increasing percentage of biochar amendments (Table 1). Generally, R400 exhibited a
declining trend with increasing biochar percentage amendments, decreasing from 0.7 for
1% biochar to 0.5 for 12% biochar (Table 1).

Cluster analysis revealed close similarity among M03, M04, M12, M08, and M10,
representing 3%, 4%, 12%, 8%, and 10% biochar amendments, respectively (Figure 1).
M0, M1, M2, and M6, representing biochar amendments of 0, 1, 2, and 6%, respectively,
clustered independently. These findings indicate that biochar modifications had an impact
on media qualities.
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Figure 1. Cluster analysis without considering biochar media amendments as a variable.

3.2. Media Microbial Composition

Sample microbial composition and diversity were evaluated by 16S rRNA gene
sequencing-based metagenomics. Proteobacteria (41.6%), Bacteroidetes (27.0%), Verrucomicro-
bia (7.9%), Acidobacteria (5.9%), Planctomycetes (3.9%), Actinobacteria (2.9%), Chloroflexi (2.2%),
Cyanobacteria (1.4%) and Patescibacteria (1.3%) were the 9 predominant bacteria phyla in
all samples. The phyla level bacteria relative abundance is reported in Figure S1. At the
genera level, Flavobacterium (39.7%) was the dominant bacteria identified in the samples,
followed by Acidibacter (12.2%), Terrimonas (10.1%), Cytophaga (7.5%), Ferruginibacter (6.0%),
Lacunisphaera (5.9%), Cellvibrio (5.8%), Opitutus (4.8%), Mucilaginibacter (4.0%) and Bryobacter
(4.0%), with their relative abundance shown in Figure 2.

Appl. Microbiol. 2022, 2, FOR PEER REVIEW  7 
 

 

 

Figure 2. Relative abundance of dominant bacteria genera in different % biochar amended soilless 

growth media. 

3.3. Radioactivity Measurements 

Radionuclide activities are summarized in Table 2. 235U, 226Ra, 232Th, and 40K were de-

tected as natural radionuclides, as was anthropogenic 137Cs. The natural radionuclide with 

the highest recorded activity concentration (Bq kg−1) was 40K, followed by 226Ra, 232Th, and 
235U in that order. Interestingly, even though 40K recorded the highest activity concentra-

tion in the analyzed samples, its presence was not detected in the control and 1% biochar 

amended samples. The activity concentrations for 235U, 226Ra, 232Th, 40K and 137Cs ranged 

between 0.81–0.99, 2.54–4.14, 0.57–1.05, 19.57–24.23 and 0.19–0.55 Bq kg−1, respectively 

(Table 2). Activity concentrations of 226Ra and 137Cs increased with an increasing percent-

age of biochar amendment to control media. Correlation analysis of radionuclides con-

tents indicated that 226Ra and 40K concentrations correlated significantly (r = 0.67, p = 

0.0497), suggesting 226Ra and 40K have dissolution similarities in media (Table 3). Similarly, 
226Ra and 137Cs (r = 0.83, p = 0.0052), 40K and 137Cs (r = 0.74, p = 0.0231) concentrations sig-

nificantly correlated (Table 3). However, 235U and 232Th were not significantly correlated 

with the other radionuclides (Table 3). 

Table 2. Activity Concentration of Radionuclides (Bq kg−1) from FAMU-RCE growth media. 

Biochar 235U 226Ra 232Th 40K 137Cs 

0% 0.92 ± 0.05 2.93 ± 0.12 1.01 ± 0.04 0.00 0.21 ± 0.02 

1% 0.92 ± 0.05 2.54 ± 0.11 0.68 ± 0.08 0.00 0.19 ± 0.02 

2% 0.99 ± 0.05 2.94 ± 0.12 1.02 ± 0.11 22.54 ± 0.54 0.22 ± 0.02 

3% 0.94 ± 0.05 3.10 ± 0.13 0.98 ± 0.18 21.10 ± 0.52 0.39 ± 0.03 

4% 0.92 ± 0.05 3.78 ± 0.14 0.57 ± 0.09 21.37 ± 0.53 0.37 ± 0.03 

6% 0.81 ± 0.04 2.89 ± 0.13 0.90 ± 0.04 19.57 ± 0.51 0.39 ± 0.03 

8% 0.90 ± 0.05 3.63 ± 0.14 0.88 ± 0.10 22.18 ± 0.54 0.48 ± 0.03 

10% 0.96 ± 0.05 3.93 ± 0.14 1.05 ± 0.10 24.23 ± 0.57 0.45 ± 0.02 

12% 0.94 ± 0.10 4.14 ± 0.29 1.02 ± 0.22 23.70 ± 1.13 0.55 ± 0.06 

  

Figure 2. Relative abundance of dominant bacteria genera in different % biochar amended soilless
growth media.



Appl. Microbiol. 2022, 2 668

3.3. Radioactivity Measurements

Radionuclide activities are summarized in Table 2. 235U, 226Ra, 232Th, and 40K were
detected as natural radionuclides, as was anthropogenic 137Cs. The natural radionuclide
with the highest recorded activity concentration (Bq kg−1) was 40K, followed by 226Ra,
232Th, and 235U in that order. Interestingly, even though 40K recorded the highest activ-
ity concentration in the analyzed samples, its presence was not detected in the control
and 1% biochar amended samples. The activity concentrations for 235U, 226Ra, 232Th, 40K
and 137Cs ranged between 0.81–0.99, 2.54–4.14, 0.57–1.05, 19.57–24.23 and 0.19–0.55 Bq
kg−1, respectively (Table 2). Activity concentrations of 226Ra and 137Cs increased with
an increasing percentage of biochar amendment to control media. Correlation analysis
of radionuclides contents indicated that 226Ra and 40K concentrations correlated signif-
icantly (r = 0.67, p = 0.0497), suggesting 226Ra and 40K have dissolution similarities in
media (Table 3). Similarly, 226Ra and 137Cs (r = 0.83, p = 0.0052), 40K and 137Cs (r = 0.74,
p = 0.0231) concentrations significantly correlated (Table 3). However, 235U and 232Th were
not significantly correlated with the other radionuclides (Table 3).

Table 2. Activity Concentration of Radionuclides (Bq kg−1) from FAMU-RCE growth media.

Biochar 235U 226Ra 232Th 40K 137Cs

0% 0.92 ± 0.05 2.93 ± 0.12 1.01 ± 0.04 0.00 0.21 ± 0.02
1% 0.92 ± 0.05 2.54 ± 0.11 0.68 ± 0.08 0.00 0.19 ± 0.02
2% 0.99 ± 0.05 2.94 ± 0.12 1.02 ± 0.11 22.54 ± 0.54 0.22 ± 0.02
3% 0.94 ± 0.05 3.10 ± 0.13 0.98 ± 0.18 21.10 ± 0.52 0.39 ± 0.03
4% 0.92 ± 0.05 3.78 ± 0.14 0.57 ± 0.09 21.37 ± 0.53 0.37 ± 0.03
6% 0.81 ± 0.04 2.89 ± 0.13 0.90 ± 0.04 19.57 ± 0.51 0.39 ± 0.03
8% 0.90 ± 0.05 3.63 ± 0.14 0.88 ± 0.10 22.18 ± 0.54 0.48 ± 0.03
10% 0.96 ± 0.05 3.93 ± 0.14 1.05 ± 0.10 24.23 ± 0.57 0.45 ± 0.02
12% 0.94 ± 0.10 4.14 ± 0.29 1.02 ± 0.22 23.70 ± 1.13 0.55 ± 0.06

Table 3. Correlation matrix of detected radionuclides in analyzed samples.

235U 226Ra 232Th 40K 137Cs
235U 1.00 0.16 0.13 −0.15

226Ra 0.23 1.00 −0.13 0.67 0.83
232Th 0.16 −0.13 1.00 0.17 0.11

40K 0.13 0.67 0.17 1.00 0.74
137Cs −0.15 0.83 0.11 0.74 1.00

3.4. Media Physicochemical Properties Relationship with Bacterial Composition and Radionuclides
Activity Concentrations

Figure 3 shows that pH was related both positively and negatively to the percentage
of various bacteria phyla in treatments. Specifically, media pH positively correlated with
Chloroflexi (r = 0.73, p = 0.0268) and negatively correlated with Cyanobacteria (r = −0.70,
p = 0.0368) (Figure 3a,b, respectively). At the bacterial genera level, there were significant
negative correlations between pH and the genera Cytophaga (r = −0.91, p = 0.0007) and
Mucilaginibacter (r = −0.90, p = 0.0008) (Figure 3c,d, respectively). Similarly, Figure 3e,f,
respectively, show that pH was positively correlated with radionuclides 226Ra (r = 0.89,
p = 0.0012) and 137Cs (r = 0.93, p = 0.0002).
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Additionally, C composition showed relationships with bacterial composition. As
reported in Figure S2, TC, phenolic-C, and aromatic-C and bacterial phyla Acidobacteria,
Chloroflexi and Cyanobacteria exhibited positive and negative relationships. Acidobacteria
exhibited a significant negative relationship with aromatic-C (r = −0.67, p = 0.0461) and
phenolic-C (r = −0.68, p = 0.0436) (Figure S2a,b, respectively). In contrast to Acidobacte-
ria, the bacteria phylum Chloroflexi was positively correlated with aromatic-C (r = 0.73,
p = 0.0261), and TC (r = 0.94, p = 0.0225) (Figure S2c,d, respectively). Like Acidobacteria, there
was a significant negative relationship between Cyanobacteria and phenolic-C (r = −0.70,
p = 0.0369) (Figure S2e).

Furthermore, the genus Cytophaga was negatively correlated with carboxyl-C (r =−0.77,
p = 0.0154) (Figure S3a), phenolic-C (r = −0.87, p = 0.0026) (Figure S3b) and aromatic-C
(r = −0.86, p = 0.0027) (Figure S3c). Similarly, the genus Mucilaginibacter was negatively
correlated with carboxyl-C (r = −0.79, p = 0.0114), phenolic-C (r = −0.84, p = 0.0045), and
aromatic-C (r = −0.87, p = 0.0021) (Figure S3d–f, respectively). Aromatic-C and phenolic-C
were correlated with the bacteria genera Terrimonas (r = 0.70, p = 0.0375) and Acidibacter
(r = −0.71, p = 0.0318), respectively (Figure S4a,b).

Significant relationships among C composition and radionuclides were positive corre-
lated between carboxyl-C and 226Ra (r = 0.78, p = 0.0129), phenolic-C and 226Ra (r = 0.81,
p = 0.0077), aromatic-C and 226Ra (r = 0.91, p = 0.0006) (Figure S5a–c). Carboxyl-C and 137Cs
(r = 0.90, p = 0.0009), phenolic-C and 137Cs (r = 0.90, p = 0.0009) and aromatic-C and 137Cs
(r = 0.89, p = 0.0011) again correlated positively (Figure S5d–f). Similarly, TC was positively
correlated with 226Ra (r = 0.91, p = 0.0008) and 137Cs (r = 0.89, p = 0.0012) (Figure S6a,b).
The results from this study indicated that higher values of C composition (carboxyl-C,
phenolic-C, and aromatic-C) are associated with higher activity concentration values of
226Ra and 137Cs, and vice versa (Tables 1 and 2).

Relating to C thermal stability, which was translated to R400, bacterial phyla Chloroflexi
(r = −0.92, p = 0.0004) and Patescibacteria (r = −0.71, p = 0.0335) both correlated negatively
with R400, respectively (Figure S7a,b). Additionally, R400 was negatively correlated with
the genera Terrimonas (r = −0.79, p = 0.0107) and Cellvibrio (r = −0.79, p = 0.0108) (Fig-
ure S7c,d). Similarly, R400 showed significant negative relationship with 226Ra (r = −0.74,
p = 0.0227) and 137Cs (r = −0.72, p = 0.0292) (Figure S7e,f).

3.5. Samples Bacteria Composition Relationship with Radionuclides Contents

Bacterial phylum Cyanobacteria was negatively correlated with 226Ra (r = −0.73,
p = 0.0270) (Figure 4a), 137Cs (r =−0.79, p = 0.0121) (Figure 4b) and 40K (r =−0.80, p = 0.0100)
(Figure 4c). In contrast, Chloroflexi was positively correlated with 137Cs (r = 0.67, p = 0.0468)
(Figure 4d). At the bacteria genera level, both Cytophaga and Mucilaginibacter negatively
correlated with radionuclide activity concentrations. Cytophaga was positively correlated
with 226Ra (r =−0.84, p = 0.0047), 40K (r =−0.82, p = 0.0069) and 137Cs (r =−0.93, p = 0.0002)
(Figure 5a–c). Similarly, Mucilaginibacter was positively correlated only with 137Cs (r = 0.87,
p = 0.0021) and 226Ra (r = −0.83, p = 0.0054) (Figure 5d,e). The negative correlations of
the above bacteria phyla and genera with the radionuclides suggested that greater counts
of these bacteria phyla and genera are associated with lower radionuclide content in the
samples. However, there were no significant correlations for sample physicochemical
parameters, and or for bacterial proportions with activity concentrations of 235U and 232Th.
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concentrations of (a) 226Ra, (b) 40K, and (c) 137Cs, and from the genus Mucilaginibacter with (d) 137Cs
and (e) 226Ra.

4. Discussion

The physiochemical factor pH strongly influences bacterial diversity in soils [51,52].
Microbial populations can be strongly influenced by media pH some bacteria can adapt
to extreme pH, although many enzymes and proteins can become denatured and inacti-
vated under high acidic (<4.0) and alkaline (>9.0) conditions, impairing many metabolic
processes [51]. Ref. [51] reported that most bacteria favor circumneutral pH conditions
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(between 6.5 and 7.5). Amending biochar to media changed the media pH which, in turn,
likely affected the bacterial community composition [53].

Despite the complex nature of environmental microbial communities, our results
show patterns characterizing microbial abundance of Proteobacteria phylum in the biochar
amended growth media. Literature has indicated the consistent abundance of Proteobacteria
in many studied areas, and the relative abundance of Proteobacteria, regardless of the %
biochar added to the growth media, was high compared to other bacterial phyla. Pro-
teobacteria have been recognized as plant growth-promoting bacteria and facilitate nutrient
acquisition and disease protection [54]. For that reason, a low relative abundance of Pro-
teobacteria [54], can have a major effect on the plant productivity and media health in an
agricultural environment. Proteobacteria are globally recognized for their important role
in carbon cycling [55], consistent with the high abundance of Proteobacteria because of the
high carbon concentration of biochar.

In agricultural systems, Bacteroidetes are abundant and noted for their ability to me-
tabolize organic matter exploitation [56]. In the present study, the high abundance of
Bacteroidetes, which was second only to Proteobacteria, regardless of the percentage of
biochar added to growth media, agreed with previous findings [56]. According to [57,58],
Bacteroidetes promote plant growth and plants’ resistance to environmental stress. Other au-
thors reported that Bacteroidetes are enriched in environments with high C availability [59],
and hence their high abundance in biochar amendment media in the present study was not
a coincidence. Verrucomicrobia was third in abundance in all the samples analyzed, ranked
behind Proteobacteria and Bacteroidetes Based on their lower growth rates and adaptations
for growing on relatively recalcitrant forms of C, a major component of biochar, and a
major constituent of the growth media in the present study, Verrucomicrobia is classified as
an “oligotroph” [60].

Acidobacteria is also another diverse group of bacteria found in soil [61,62] and has
been affiliated with the biogeochemical cycling of C, a major constituent of biochar [63].
Additionally, Acidobacteria has been associated with the degradation of recalcitrant poly-
mer and is considered an important phylum ecologically in the turnover of soil organic
matter [61,64]. Therefore, its presence in the biochar-amended media in this study can
be attributed to its association with recalcitrant C compounds (the main constituent of
biochar) [63]. Similarly, previous research suggested that Acidobacteria prefer an acidic
environment [65]. This was consistent with the high abundance of Acidobacteria in lower
pH samples in this study. Furthermore, Acidobacteria exhibits an oligotrophic lifestyle [66]
consistent with our study because of their negative correlation with carbon composition as
previously suggested [66].

In an agricultural setting, Actinobacteria enhance plant growth and improve plant nu-
trition. They provide direct plant growth-promoting mechanisms such as nitrogen fixation
to improve plant nutrition [67]. Actinobacteria are found widely in different environments
and play a critical role in organic matter decomposition [55,68]. This is in line with its nega-
tive relationship with R400 observed in this study. Also, Actinobacteria are known for the
production of antibiotics and other secondary metabolites to suppress other bacteria [69].

An essential macronutrient limiting agricultural productivity, N, is the largest and most
costly input in agriculture [70]. Atmospheric and dissolved dinitrogen (N2) are abundant in
soil and water, yet unable for used by plants [70]. However, there is conclusive evidence that
N is made available for plants and other organisms through N fixation by Cyanobacteria [71]
Hence the presence of Cyanobacteria in this study was an important benefit in the biochar
amended growth media for use in agriculture. In this study, Chloroflexi increased with
increasing media parameters such as pH, carboxyl-C, phenolic-C, and aromatic-C, while
Cyanobacteria decreased with increases in the same media parameters. This scenario agrees
with an observation by [60] in agricultural systems of arid, continental, and temperate
regions. It was reported that Chloroflexi metabolic flexibility can be a disadvantage in
competition with Cyanobacteria for nutrient and physical space when they co-exist in the
same environment [72].
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Flavobacterium, the predominant bacterial genera found in samples collected from this
study, has been shown to be widely distributed in nature and functions in different types
of organic matter mineralization and rapid digestion of insoluble chitin [73,74]. The genus
Cellvibrio has previously been reported to produce hydrolytic enzymes [73]. Media biochar
amendment has been shown to stimulate the genera Flavobacterium and Cellvibrio. The
genus Cellvibrio has been reported to promote plant growth and act as an inducer of plant
systemic resistance [73]. This is in line with what resulted in this study where Cellvibrio
was negatively correlated with R400 (p = 0.0108), translating into the decomposition of
organic matter for available use in crops. The genus Cytophaga belongs to the phylum
Bacteroidetes and is known for its ability to degrade cellulose [75] and other high molecular
weight organic compounds [76].

In this study, increasing the percentage of biochar amendments increased pH, which
was positively correlated with 226Ra and 137Cs activity concentrations. Therefore, it can be
implied that pH has a great influence on radionuclides availability, a conclusion reported
in the literature [22]. Additionally, it has been reported that media chemical parameters
such as pH contributes to the various effect of radium mobility or adsorption [77,78], and
we observed that 226Ra concentrations in samples varied with pH. The very significant
correlations of the anthropogenic radionuclide 137Cs with C composition of the samples can
be attributed to 137Cs fixation by organic C, in agreement with what has been previously
reported [79]. The association of 40K with soil mineral fraction contributed to the lack of
significant correlation of this radionuclide with samples’ C composition [79].

The relative abundance of Proteobacteria (41.9–47.2%), Bacteroidetes (25.1–31.8%), Aci-
dobacteria (5.2–8.3%) and Actinobacteria (2.6–4.5%) in the biochar-amended growth media
reported in this study reflects their frequent presence in radionuclide contaminated environ-
ments [39,80–82]. For example, Bryobacter identified in our samples is known to withstand
extreme environments including uranium-contaminated samples [83,84]. However, the
above predominant bacteria phyla and genera did not have a significant correlation with
the detected radionuclides in the present study.

At the phyla level, Chloroflexi and Cyanobacteria were the two phyla that significantly
correlated with some of the detected radionuclides. The presence of Chloroflexi has been re-
ported in natural uranium ores [16,85] and uranium-contaminated sites [16,86]. Elsewhere,
Chloroflexi has been proposed to have the ability to degrade plant polymers, lignocellulosic
material, and tolerate uranium and its associated radioactive progenies [86]. However,
in our study, Chloroflexi was not correlated with any of the uranium progenies detected
in this study but was correlated with 137Cs. To our knowledge, this study is the first to
report a significant negative correlation between Cyanobacteria and radionuclides 226Ra,
40K, and 137Cs. But with respect to heavy metals, Cyanobacteria can produce polyphosphate
granules for Cu immobilization that could be adsorbed to transport heavy metals into cells
of Cyanobacteria [87,88].

The identified bacteria genera, Cytophaga and Mucilaginibacter significantly correlated
with the detected radionuclides in the present study. These two bacteria genera, Cytophaga
and Mucilaginibacter can be suggested to resist 226Ra, 40K, and 137Cs, and 226Ra and 137Cs
contaminants, respectively, due to their negative relationships. This is in line with previous
reports where Mucilaginibacter was identified as a metal-resistant bacterium [87].

5. Conclusions and Future Research

This study investigated the relationships among the physiochemical properties, carbon
composition, R400, and the indigenous microbial communities and radionuclide concentra-
tions in biochar-amended growth media. We concluded that the samples’ pH significantly
influences carbon composition, microbial composition, and the activity concentrations of
the radionuclides. Simultaneously, Acidobacteria, Chloroflexi, and Cyanobacteria significantly
correlated with carboxyl-C, phenolic-C, and aromatic-C. There were significantly negative
relationships of Cyanobacteria with 226Ra, 40K, and 137Cs, which indicated resistance be-
tween Cyanobacteria and the radionuclides. Chloroflexi had a significant positive relationship
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with 137Cs, suggesting tolerance. Like the phylum Cyanobacteria, the genera Cytophaga and
Mucilaginibacter had significant negative relationships with 226Ra, 40K, and 137Cs, and 226Ra
and 137Cs.

The relationships among C composition, microbial diversity, and radionuclide dis-
tributions from biochar-amended growth media might provide a better understanding
of the physiochemical properties of such media and the development of plant growth-
promoting growth media in the future. Further analyses are required for deeper knowledge
of other types of soilless media to ascertain their properties and behavior with respect to
radionuclides.
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