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Abstract: In 2016–2018, an experiment with Sida hermaphrodita L. Rusby (Virginia fanpetals) called
Sida was conducted in the system of random blocks on sandy and sandy loam soil. Each year, the
yields of dry aboveground mass and dried mass of roots were determined. Before sowing Sida and
after the end of the research, the composition of earthy fractions in the soils was determined. In
the stalks and roots of Sida, the percentage content was determined, and the mass of carbon was
calculated. When Sida was grown in sandy soil, the average dry mass yield (stalks and roots) in the
third year of cultivation (2018), was slightly above 13 t·ha−1, and in the sandy loam soil it was three
times higher (36 t·ha−1). In the third year of cultivation, the carbon sequestration in the stems and
roots exceeded 5 t·ha−1 (sandy soil), and 15 t·ha−1 (sandy loam). The carbon content in the stems
was 46.25%, and in the roots–42.67%. The results were statistically processed using ANOVA. It was
found that the cultivation of Sida caused a percent decrease in the sand fraction, an increase in the
floatable (fine) fraction in sandy soil, and an increase in humus content; the opposite changes were
noted in the sandy-loam soil.

Keywords: Virginia fanpetals; carbon farming; CO2 sequestration; humus; carbon-negative species

1. Introduction

Carbon dioxide emissions into the atmosphere continue to increase. The global forest
area, forest being the main “consumers” (sequestrants) of this gas, is systematically decreas-
ing, according to various data, by about five million hectares annually [1]. Although the
forest area in Poland is systematically growing, their ability to sequester CO2 is slow and
depends on age. An additional negative effect is the disappearance of coniferous forests,
which assimilate throughout the year (in Poland and Europe), caused by a huge invasion
of the European spruce bark beetle (Ips typographus). Consequently, the growing interest
in field plant species capable of rapid and intensive use of carbon dioxide for biomass is
growing. Carbon sequestration in the soil in the form of root biomass is important.

Research on Sida in Poland has been done for the last 40 years; most of it was per-
formed at the University of Life Sciences in Lublin [2–6]. In addition to the yield of
aboveground mass, this species-Sida-develops an extensive, strong root system. A lot of
attempts are also being conducted in other European countries and the USA [7,8]. Sida is
native to USA, and is listed as a rare and endangered species.

The assumed research hypothesis determines that Sida, in field cultivation, is capa-
ble of carbon sequestration in the root system and in the aboveground mass and has a
positive effect on the soil granulometric and physicochemical composition; unlike the
alternative hypothesis that the cultivation of this species does not significantly affect the
above-mentioned features. Hence, a three-year study of the Sida cultivation was conducted
to determine which of the hypotheses was true.
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2. Materials and Methods

Over the course of 2016–2018, an experiment was conducted with Sida, on sandy,
and sandy loam soil, at an individual farm in Brzeziny in the Świętokrzyskie Voivodeship
(21◦00′ E; 50◦36′ N, 300 m above sea level). The experiment was performed using the
randomized block method in triplicate. The factor of the experiment was the type of soil:
(a) sandy soil, or (b) sandy loam soil. The basic nutrients detected at the government
laboratory in Kielce, in both soils, were as follows: 1.4 P; 2.2 Mg; 4.2 K mg in 100 g of soil
samples. In both soils, pH was determined as 5.1. The area of plots to be harvested was
25 m2. The plots were selected randomly from two neighboring plantations of Sida, with a
total area of four hectares.

2.1. Agri-Technical and Rainfall Conditions

On May 10, 2016, seeds were sown on four hectares, at a quantity ensuring a density
of 70,000 plants per hectare. In the first year of cultivation, no fertilizers were used.
Weeds were removed mechanically. No plant protection (pesticides) was applied. The
harvest was collected by hand in plots, and the weight of the samples (all stems from each
randomly selected plot of twenty-five m2 were collected) was determined immediately
after the harvest in the field. In the second and third years, based on soil analysis, mineral
fertilization was applied, amounting to 100 kg of nitrogen, 50 kg of phosphorus and 90 kg
of potassium, as pure elements, per hectare. The total rainfall in 2016 was 234 mm plus
533 mm of winter snow and rain; in 2017 it was 400 mm plus 614 mm of winter snow and
rain; and in 2018 it was 355 mm plus 512 mm of winter snow and rain.

2.2. Soil Sampling

Soil samples were collected simultaneously with the excavation of the roots, each
year after the end of plant vegetation, at the end of November. Soil samples were taken
separately from two different plantations, collected from a layer 1 cm to 30 cm below the
surface, then mixed, and sent as one kg samples to the recommended laboratory. The
aboveground plant material from each plot was the same (all the shoots from the plot), was
weighed and then chopped, mixed and a two kg sample was then weighed and sent to the
certificated laboratory for analysis.

The chemical and physicochemical properties of the soil were determined at the
certified laboratory of the Regional Chemical and Agricultural Station in Kielce (Scope
of Accreditation for Testing Laboratory Nr/No AB 333), the determination of the soil
granulometric composition was done according to laser diffraction [9,10]; and organic
carbon content—Corg.—was determined by the Tiurin method [11,12]. Due to its simplicity,
the Tiurin method is commonly used in the assessment of organic matter content in cohesive
soils [11].

2.3. Sampling of Roots for Testing and Determination of Dry Matter

Roots from each twenty-five m2 plot were excavated manually from a layer up to
30 cm deep, then weighed and cut into 10 cm pieces. All the pieces were then mixed, and
two kg of the root mixture from each plot was assigned for analysis. The rest of the cut
pieces of the roots were planted in rows to restore the planting density. The roots were
harvested at the end of November. Dry matter was determined in the roots using the
drying method, following which the samples were ground and intended for chemical
analyses [13,14].

2.4. Sampling of Stems and Determination of Dry Matter

After harvesting the aboveground mass, 10% of the stems were sampled from each
plot. The dry matter content in the stems was determined using the drying method in
the laboratory at the Regional Chemical and Agricultural Station in Kielce [14], which is
located closest to the experimental field. On this basis, the dry weight of stems and roots
was calculated per unit area, converted to tons per hectare.
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2.5. Carbon Determination in Plant Material

At the Institute of Power Engineering in Warsaw, the carbon content in the Sida stems
was determined using the FTIR Gasmet DX-4000 analyzer (Gasmet Technologies Oy, Vantaa,
Finland). The carbon content in the roots was determined at the Wood Technology Institute
in Poznań using the FlashEA 1112 NC Analyzers (Thermo Fisher Scientific, Waltham, MA,
USA). Based on these determinations, the amount of carbon bound by Sida was calculated.

2.6. Statistical Calculations

The statistical processing of the results was performed using the variance model
(ANOVA) (SAS 9.2 2008) [15]. The significance of the sources of variation was verified
with the Fischer–Snedecor “F” test, while the value of LSD0.05 was estimated using the
Tukey test [16]. T-Tukey’s multiple comparison tests enabled a detailed comparative
analysis of means by isolating and designating statistically homogeneous groups of means
(homogeneous groups). The calculated p values determine the significance and extent of the
influence of the studied factors on the differentiation of the results of the analyzed variables,
comparing them with the most commonly accepted alpha significance levels (0.05). The
averaged letter indices define the so-called homogeneous (statistically homogeneous)
groups. The presence of the same letter index with means (at least one) indicates that there
is no statistically significant difference between them [17].

3. Results
3.1. Biomass Yields

The results presented in Table 1 show a significant increase in Sida biomass in the
preliminary three years of cultivation on sandy and sandy loam soil.

Table 1. Sida aboveground yield in oven dry tons (ODT).

Year
Type of Soil

Sandy Sandy Loam Mean

2016 1.115a 0.218a 0.667a

2017 1.602a 8.780b 5.191b

2018 3.190b 15.760c 9.475c

LSDp0.05 for years × type of soils */
for years ** 0.765 * 0.383 **

Mean 1.968a 8.253b 5.111

LSDp0.05 for type of soils *** 0.255 ***
The same letters (a, b, c) in the table mean there is no statistically significant difference. *, **, ***—refer to the LSD
values in the following columns: *—LSDp0.05 for years × type of soils; **—LSDp0.05 for years; ***—LSDp0.05 for
type of soils.

From 1.1 t·ha−1 in the first year to almost three times higher yields in the third year.
The yields of the aboveground mass are low, as they are determined by the perennial
species development rate, and their values over subsequent years are statistically signif-
icantly different. It should be noted here that the aboveground mass of Sida, which is
perennial, completes its growth and development due to the end of the growth season, and
is harvested each year. The formation of the root mass is completely different (Table 2). It
accumulates reserve substances, which determine the long-term durability of the plantation
and annual higher yields of aboveground mass.
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Table 2. Roots yield in ODT per hectare.

Year
Type of Soil

Sandy Sandy Loam Mean

2016 3.363a 3.160a 3.262a

2017 7.007b 10.367b 8.687b

2018 9.956c 19.890c 14.932c

LSDp0.05 for years × type of soils */
for years ** 1.737 * 0.869 **

Mean 6.775a 11.139b 8.957

LSDp0.05 for type of soils *** 0.579
The same letters (a, b, c) in the table mean there is no statistically significant difference. *, **, ***—refer to the LSD
values in the following columns: *—LSDp0.05 for years × type of soils; **—LSDp0.05 for years; ***—LSDp0.05 for
type of soils.

In the top 30 cm of the soil, Sida developed over three tons of roots per hectare in
the first year alone. In the third year of cultivation, the root weight increased threefold.
It is worth noting that the three-year root mass is also three times greater than the yield
of the aboveground part in the third year. The increase in root mass (as the roots are not
dug up every year) reflects the tendency characteristic for perennials. As in the case of
stems, there are statistically significant differences between the values of the root weight in
individual years.

3.2. Carbon Sequestration

A similar tendency to the increase in plant mass is visible in the increase in the mass
of stored carbon (Table 3). The experience factor significantly differentiated the value of
this feature, both for the mass of shoots and the mass of roots. The results from specific
years showed statistically significant differences.

Table 3. Total stem and root yield in ODT per hectare.

Years
Type of Soil

Sandy Sandy Loam Mean

2016 4.478a 3.378a 3.928a

2017 8.609b 19.147b 13.878b

2018 13.146c 35.650c 24.398c

LSDp0.05 for years × type of soils */
for years ** 2.196 * 1.098 **

Mean 8.744a 19.392b 14.068

LSDp0.05 for type of soil *** 0.732 ***
The same letters (a, b, c) in the table mean there is no statistically significant difference. *, **, ***—refer to the LSD
values in the following columns: *—LSDp0.05 for years × type of soils; **—LSDp0.05 for years; ***—LSDp0.05 for
type of soils.

In the third year of cultivation, almost 1.5 t·ha−1 carbon was bound in the stems, and
the sequestration of CO2 in the roots amounted to over four tons of carbon per hectare of
this element (Table 4).



Crops 2022, 2 262

Table 4. Carbon sequestration in stalks of Sida in C/ha (tons).

Year
Type of Soil

Sand Sandy Loam Mean

2016 0.516a 0.124a 0.320a

2017 0.741a 4.061b 2.401b

2018 1.475b 7.280c 4.382c

LSDp0.05 for years × type of soils */
for years ** 0.369 * 0.184 **

Mean 0.911a 3.825b 2.368

LSDp0.05 for type of soil *** 0.123 ***
The same letters (a, b, c) in the table mean there is no statistically significant difference. *, **, ***—refer to the LSD
values in the following columns: *—LSDp0.05 for years × type of soils; **—LSDp0.05 for years; ***—LSDp0.05 for
type of soils.

In the sandy loam soil, the yield of Sida grown from seeds is also low in the first year
of cultivation (a feature of perennials).

The dry weight yields of stems harvested in the first year on sandy loam soil presented
in the table amounted to slightly over 0.2 t ha−1, yet in the second year they were many
times higher at 8.7 t ha−1. The amount of dry matter of roots in the first year of cultivation
in sandy loam soil is similar to that in sandy soil. In the second year, the root weight of
Sida in sandy loam is slightly higher than that of sandy soil in the third year of cultivation
and show statistically significant differences.

Significant carbon sequestration is associated with a large root mass.
More than four tons of carbon per hectare (Table 5) were already achieved in the

second year of cultivation, in the root system located in the top 30 cm layer of sandy loam
soil, from Sida bound in the root system.

Table 5. Carbon sequestration in roots of Sida in C/ha (tons).

Year
Type of Soil

Sandy Sandy Loam Mean

2016 1.435a 1.348a 1.392a

2017 2.990b 2.990b 3.707b

2018 4.249c 4.249c 6.368c

LSDp0.05 for years × type of soils */
for years ** 0.567 * 0.283 **

Mean 2.891a 4.753b 3.822

LSDp0.05 for type of soils *** 0.198 ***
The same letters (a, b, c) in the table mean. there is no statistically significant difference. *, **, ***—refer to the LSD
values in the following columns: *—LSDp0.05 for years × type of soils; **—LSDp0.05 for years; ***—LSDp0.05 for
type of soils.

However, in sandy soil, this result was achieved one year later, which shows the effect
of soil abundance in water (fertilization was the same).

It is worth paying attention to the large mass of roots obtained from only 30 cm of the
top layer. Despite this, Sida produces a larger root mass, as the root system reaches more
than 350 cm into the soil, and the main mass is in the top 25–50 cm layer.

Table 6 shows the total results of carbon sequestration in Sida shoots and roots over
the three years of research cultivation.
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Table 6. Total results of carbon sequestration in Sida shoots and roots in C/ha (tons).

Year
Type of Soil

Sandy Sandy Loam Mean

2016 1.951a 1.472a 1.712a

2017 3.732b 8.484b 6.108b

2018 5.724c 15.776c 10.750c

LSDp0.05 for years × type of soils */
for years ** 0.927 * 0.465 **

Mean 3.802c 8.577b 6.190

LSDp0.05 for type of soils *** 0.309 ***
The same letters (a, b, c) in the table mean there is no statistically significant difference. *, **, ***—refer to the LSD
values in the following columns: *—LSDp0.05 for years × type of soils; **—LSDp0.05 for years; ***—LSDp0.05 for
type of soils.

The two most pronounced relationships, which are statistically significant and have
the same fertilization and rainfall, result from the difference in the greater capacity of sandy
loam to store water than sandy soil. and the huge and rapid development of the plant and
roots, which progresses with age.

Undoubtedly. the large mass of perennial roots. and several tons of fallen leaves
each year, significantly change the soil-biohabitat. An example of this could be the results
presented in Table 7.

Table 7. Soil environment effect of the cultivation of Sida on the content of earthy fractions (<2 mm)
in sandy and sandy loam soil.

Agronomic
Category of

Soil
the Term of the Marking

Percentage of Fractions

Sand
(0.05–2.00)

Silt
(0.05–0.002)

Loam
(<0.002)

mm

Sandy soil Before cultivating 76.55 21.45 2.00

After three years of cultivation 72.33 22.95 4.72

Sandy loam Before cultivating 53.31 43.30 3.39

After three years of cultivation 56.73 38.67 4.60

After three years of cultivation, the improvement in soil quality in both cases is related
to the 1% increase in the content of humus in the sandy soil (the source is the falling Sida
leaves) and the improvement of the water–air ratio in sandy loam soil.

The results of the soil particle size analysis are presented in Table 7. The experiment
was conducted in two types of soil: sandy loam soil and medium loam soil. In terms of
the percentage of sand, silt and clay fractions, the first type of soil is the granulometric
subgroup-light loamy sand. The share of sand here was 76.55%, silt 21.45%, and loam 2.00%.
In terms of agricultural suitability, these soils belong to the slightly acidic rye complex,
with an agronomic category of average soil [11,12]. After 3 years, where an experiment
was conducted with a perennial plant with a high biomass yield, the content of the sandy
fraction decreased, and the content of silt and loam slightly increased. However, this did
not change the agronomic category of the soil. The root system of Sida in sandy soil, where
sand sticks to the humus, because the level of humus increases due to the mass of falling
leaves, causes the roots to crush the soil lumps in which the sand is stuck, hence changing
its content.

In the experiment located in the second type of soil, according to the percentage of
sand, silt and loam fractions, where the sand fraction was 53.31%, the silt fraction was
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43.3% and the loam fraction was 3.39%, which corresponds to the composition of medium
loam, this soil is classified as heavy soil in the agronomic category. After 3 years, some
changes in the soil particle size composition were observed, especially a decrease in the
silt fraction, but these were not significant changes and did not lead to a change in the
agronomic category of the soil.

The content of fine sand fraction increased significantly (by 2.72 points). A similar
increase (statistically insignificant) was recorded in the silt content. This is especially
important in light soil with a low water-holding capacity. Due to the increase in the
content of humus in the soil (a dozen tons of fallen leaves annually, per hectare), sandy
soil susceptible to drought, obtained a significant water retention capacity, similar to sandy
loam soil.

4. Discussion

The vast majority of studies on the carbon sequestration of perennial energy crops
concern grasses and trees (Miscanthus sp., Salix sp., Populus sp.). It is therefore difficult to
compare the results of our work on dicotyledonous perennial with monocotyledon [18]
perennials (another type of photosynthesis), measured with different methods and even at
different depths, or even less with trees [19], or annual plants [20].

The research conducted so far in Poland (and in Europe) concerned mostly the yield of
the aboveground Sida biomass. There is not a single study in which the carbon sequestration
in Sida biomass would be investigated, considering the yield of underground biomass and
the impact of several tons of fallen leaves per annum, feeding the humus and soil organic
carbon (SOC) content in the soil.

According to the guidelines of the European Commission a drop in the humus content
below 3.5% may indicate desertification of a given area and the need to introduce appropri-
ate corrective measures in the cultivation of arable land and plants. If we take this criterion,
the problem of desertification concerns most soils in Poland, as the average content of
humus in soils is assumed to be about 1.9%. The division of soils in Poland according to
the humus content is assumed to be poor soils containing 0.1% to 1% of humus; low, from
1% to 2%, medium, from 2% to 4%; and fertile, above 4% of humus.

The results of our research clearly show the advantages of Sida cultivation in terms of
increasing the humus and carbon content while improving soil quality (Table 7).

Previous research by the University of Life Sciences in Lublin showed the beneficial
effect of Sida cultivation on the soil. The studies carried out in sewage sludge (sludge layer
50–60 cm thick, spread over the soil) showed that after several years of cultivation of Sida,
a clumpy structure, called “peds” (soil micro aggregates) formed in the originally muddy
mass of the sludge [21,22]. Other species, including Salix and Miscanthus, have dried 100%.
Several years of cultivation of the Sida species as a fore crop allowed the cultivation of other
plants in this changed sediment [23], including wheat, with good yields from a quantitative
and qualitative perspective. The structure-forming effect of Sida on the sediment substrate,
which was the sewage sludge, has long raised the question, whether the cultivation of Sida
on sandy soils is also able to improve their quality. Hence, the idea of carrying out the
research which is the subject of the current manuscript.

Sida, like many other perennial species, reaches the full yield in the 3rd–4th or even
5th year of cultivation; it depends mainly on soil fertility and weather conditions. In light
soil with paltry nutrient content and low water retention capacity, the yield of stems is
irrelevant in the initial cultivation period. Along with the significantly growing root system,
in the second year, they oscillate between two t·ha−1 and more; however, in the fifth year,
they exceed 11 t per hectare [24]. In the results presented above, in the initial period of
cultivation, the yields of energy biomass were also low on sandy soil. From 1.6 t in the
second year to 3.2 t·ha−1 in the third year. The full yield can be expected in the 4th–5th year
of cultivation. Much higher yields were achieved on sandy loam soil. Despite a very small
weight of stems in the first year, almost 8.8 t ha−1 were harvested in the second cultivation
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year. In the literature on the subject, you can find related results (10.4 t per hectare) for the
second year of Sida cultivation [25,26].

The content of carbon in the dry root matter is over 4%, slightly lower than in the
aboveground energetic mass. The high-carbon content in a large mass of roots contributes
to a significant amount of this element being stored and sequestered for years (plantation
durability/lifespan is estimated at 20–30 years) under the soil surface.

Very rarely, attention is paid to plant residues, which also contain carbon but are
usually removed from the field. There are no crop residues in the Sida cultivation as 100%
of the aboveground biomass and carbon are harvested [5].

Our results [5,27], indicating a large share of roots, and a huge role of the roots in
carbon sequestration, were noticed earlier, although in other species [28]. Some research
teams have already noticed the environmental benefits of growing energy perennial [29].

The carbon contained in the stems from the first year in sandy loam, and on sandy
soil also from the second year of cultivation, can be added to this. Harvesting such low
aboveground biomass is unprofitable. Thin, delicate stems, after being crushed and left on
the plantation, will be partially macerated in winter and eventually be introduced into the
soil with spring cultivation. Our results are partially consistent with the results obtained
using other energy crops by research teams in Germany [30,31].

In 2019, the amount of absorbed CO2 by the coniferous forest in Hyytiälä, Finland
was measured by the Institute for Atmospheric and Earth system Research (INAR) at the
Faculty of Science of the University of Helsinki (by Kukka-Maaria Kohonen). The result is
4.4 tons of CO2 per hectare per annum (forest over 30 years old)—http://www.hiilipuu.fi/
(accessed on 15 May 2022).

This is less per hectare, per annum, than a one-year sequestration by Sida (five tons C
in sandy soil and 15 tons in sandy-loam).

Sida is a well-known energy species with a beneficial effect on the environment [32–34].
In the era of combating excessive carbon dioxide emissions. significant carbon seques-

tration in the roots and stems of Sida allows the species to be classified as a crop, which
is particularly useful in environmental protection. and it can be considered as the future
species of Carbon Farming.

5. Conclusions

1. Significant carbon sequestration in the root system and above ground biomass allows
Sida to be classified as one of the species limiting the concentration of carbon dioxide
in the atmosphere.

2. Sida is particularly suitable for cultivation in sandy soils due to the improvement of
their mechanical and biological properties.

3. On sandy loam soil, the yield of Sida biomass was several times higher than on
sandy soil.

4. Virginia fanpetals (Sida), due its strong Carbon sequestration and environment bene-
fits can be also called The Species for a Changing World.
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