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Abstract: Traffic intersections throughout the United States combine fixed, semi-actuated, and fully
actuated intersections. In the case of the semi-actuated and actuated intersections, uncertainties are
considered in phase duration. These uncertainties are due to car waiting queues and pedestrian
crossing. Intelligent transportation systems deployed in traffic infrastructure can communicate
Signal and Phase Timing messages (SPaT) to vehicles approaching intersections. In the connected
and automated vehicle ecosystem, the fuel savings potential has been explored. Prior studies have
predominantly focused on fixed time control for the driver. However, in the case of actuated signals,
there is a different and significant challenge due to the randomness caused by uncertainties. We
have developed a predictive control using the SPaT information communicated from the actuated
traffic intersections. The developed MPC-based algorithm was validated using model-based design
platforms such as AMBER®, Autonomie®, MATLAB®, and SIMULINK®. It was observed that the
proposed algorithm can save energy in a single phase, in multiple phase scenarios, and in compelled
stopping at stop signs when employed considering communications.

Keywords: connected and automated vehicles; actuated signals; optimal control; model predictive
control; short-term traffic

1. Introduction and Literature Review

United States Energy Consumption Administration has shared that the Transportation
sector consumes more than 150 quadrillions of Btu energy [1]. Presently, the majority of
vehicles are still gasoline-powered vehicles. Fossil-fuel-based vehicles cause sustainability
concerns and have detrimental environmental effects due to emissions. To reduce trans-
portation energy consumption, the market for Electric Vehicles (EVs) and Hybrid Electric
Vehicles (HEVs) is rapidly growing. In addition, advanced technologies in transportation
control, Vehicle-to-Vehicle (V2V), and Vehicle-to-Infrastructure (V2I) communications are
being explored to reduce the energy consumption of Connected and Automated Vehicles
(CAV). The CAV environment can be revolutionary for the automotive industry. Typically,
CAVs have better convenience, safety, and the capabilities of vehicle-to-infrastructure and
vehicle-to-vehicle communications, which provide opportunities to suggest driving speeds.
The authors in [2] provide an analysis of accidents that could have been avoided with the
help of CAV in the real world. Discussions on the benefits of communication that can be
utilized to maneuver more safely are put forward. Advanced Driver Assist System (ADAS)
development utilizing CAV-based information sharing to avoid accidents and save lives
is analyzed in [3]. Using CAV data, turning movement estimation using Kalman filters is
explored in [4]. The authors claim it is cost-efficient and effictive to create signal and phase
timing plans.

A big-data-based short-term traffic forecasting technique is shared in [5]. Velocity
control using these promising technologies provides an opportunity for energy savings.

Future Transp. 2023, 3, 643–662. https://doi.org/10.3390/futuretransp3020038 https://www.mdpi.com/journal/futuretransp

https://doi.org/10.3390/futuretransp3020038
https://doi.org/10.3390/futuretransp3020038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futuretransp
https://www.mdpi.com
https://orcid.org/0000-0002-2296-4498
https://doi.org/10.3390/futuretransp3020038
https://www.mdpi.com/journal/futuretransp
https://www.mdpi.com/article/10.3390/futuretransp3020038?type=check_update&version=2


Future Transp. 2023, 3 644

Figure 1 depicts a hierarchical system consisting of long-term and short-term control strate-
gies. In the CAV environment, as shown in Figure 1, the control system can contain multiple
layers that utilize historical and real-time information. Long-term control strategies aim to
provide solutions for eco-routing and eco-driving for a trip. Short-term control strategies
consider the immediate future’s planning and control for the system considering uncer-
tainties. A two-level hierarchal cooperative control technique that fixed phase duration
traffic signal and HEV energy management was used to reduce energy consumption [6].
An overview of various intelligent controls of vehicles to achieve energy savings is shared
in [7]. Data about road conditions, overall vehicular traffic, inter-vehicle positioning, or
crowding can be fused for considering long-term plans. At the same time, onboard sensors
such as GPS, cameras, Lidar, Radar, and accelerometers can be employed to generate
short-term strategies.
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Across the traffic networks in the United States, the traffic devices which control the
movements of vehicles consist of fixed duration traffic lights, semi-actuated traffic lights,
and fully actuated traffic lights. Semi-actuated and fully actuated traffic lights incorporate
uncertainties through sensors such as cameras and push buttons for pedestrians, available
at the intersections. In addition, car waiting queues and pedestrians waiting to cross the
intersection sensed by intersection sensors are used to determine the duration of red or
green phases for the multiple movements defined in the intersection.

Signal phase and timing messages, popularly known as SPaT messages, can consist
of information such as the current phase (Pc), start time (tstart), minimum end time (tmin),
likely end time

(
tlikely

)
, and maximum end time (tmax) [8]. Pictorial time-based descrip-

tions for red phase duration and green phase are shown in Figures 2 and 3. Figure 2 shows
that the vehicle velocity control has to perform maneuvers considering the stochastic nature
of the phase duration for the green and red phase. Figure 3 shares the nature of the three
ends of phase time estimations or the remaining time in the phase estimations. The esti-
mations are available from the beginning of the phase. However, the estimation can keep
changing and end up at different values than the estimations predicted at the beginning
of the phase. With the developments in traffic infrastructure, cellular communications,
and dedicated short-range communication (DSRC), signal phase and timing messages
can be communicated to vehicles approaching the intersections. In CAV ecosystems, the
availability of signal phase information supports the investigation of the fuel and/or energy
savings potential. Prior studies have mainly focused on fixed time traffic signal controls
for the driver. However, in the case of actuated signals or semi actuated signals, there are
significant challenges due to the randomness caused by uncertainties.



Future Transp. 2023, 3 645Future Transp. 2023, 3, FOR PEER REVIEW  3 
 

 

 
Figure 2. Velocity Profiling using SPaT information. 

 
Figure 3. Time estimates for phase duration. 

Asadi and Vahidi [9] identified feasible green phases to find the target velocity con-
sidering pre-timed fixed traffic phase intervals. The article studied pre-timed fixed traffic 
intersections. The impact on traffic due to vehicle crawling speed to pass through the 
green phase was ignored. Mahler and Vahidi [10] developed an algorithm based on dy-
namic programming in the spatial domain to carry out green waving using probabilistic 
prediction for actuated traffic signal timings. In the work published by Ibrahim et al. [11], 
estimating phase duration for SPaT messages by collecting data for 2 weeks to a month 
and more was achieved by minimizing a loss function. This development supports the 
assumption that there can be an average duration for the red and green phases. In article 
[12], the authors developed a statistical methodology to populate the SPaT messages as 
per SAE J2735. A four-mile corridor was studied to incorporate the uncertainties due to 
pedestrian actuation and different timing plans. The study signifies the need and im-
portance of confidence interval accuracy and consistency from the beginning to the end of 
the phase. 

Instantaneous SPaT messages can be used along with historical information for pre-
diction. For actuated signals, Hao et al. [13] demonstrated the approach and departure 
technique, which uses cosine/sine speed equations and a pre-defined deceleration speed 
profile. For decision making the algorithm implements a conservative strategy by using 
the minimum end time of the green signal. While the maximum end time of the red signal 
is used. The algorithm does not optimize the trajectory, but creates an acceleration profile 
based on cosine speed. Using dynamic programming and data-driven chance constraints, 
Sun et al. [14] developed a long term eco-driving algorithm. The solution does not con-
sider safety concerns due to probabilistic constraint satisfaction. Vehicles may be allowed 
to pass the traffic intersection during the red phase, causing safety concerns. Rostami-
Shahrbabaki, Majid et al. [15] have developed a speed advisory system for the mixed-
traffic condition. A reinforcement learning approach was developed and employed to sim-
ulate real-world traffic. The results shared flow efficiency benefits and emissions 

Figure 2. Velocity Profiling using SPaT information.

Future Transp. 2023, 3, FOR PEER REVIEW  3 
 

 

 
Figure 2. Velocity Profiling using SPaT information. 

 
Figure 3. Time estimates for phase duration. 

Asadi and Vahidi [9] identified feasible green phases to find the target velocity con-
sidering pre-timed fixed traffic phase intervals. The article studied pre-timed fixed traffic 
intersections. The impact on traffic due to vehicle crawling speed to pass through the 
green phase was ignored. Mahler and Vahidi [10] developed an algorithm based on dy-
namic programming in the spatial domain to carry out green waving using probabilistic 
prediction for actuated traffic signal timings. In the work published by Ibrahim et al. [11], 
estimating phase duration for SPaT messages by collecting data for 2 weeks to a month 
and more was achieved by minimizing a loss function. This development supports the 
assumption that there can be an average duration for the red and green phases. In article 
[12], the authors developed a statistical methodology to populate the SPaT messages as 
per SAE J2735. A four-mile corridor was studied to incorporate the uncertainties due to 
pedestrian actuation and different timing plans. The study signifies the need and im-
portance of confidence interval accuracy and consistency from the beginning to the end of 
the phase. 

Instantaneous SPaT messages can be used along with historical information for pre-
diction. For actuated signals, Hao et al. [13] demonstrated the approach and departure 
technique, which uses cosine/sine speed equations and a pre-defined deceleration speed 
profile. For decision making the algorithm implements a conservative strategy by using 
the minimum end time of the green signal. While the maximum end time of the red signal 
is used. The algorithm does not optimize the trajectory, but creates an acceleration profile 
based on cosine speed. Using dynamic programming and data-driven chance constraints, 
Sun et al. [14] developed a long term eco-driving algorithm. The solution does not con-
sider safety concerns due to probabilistic constraint satisfaction. Vehicles may be allowed 
to pass the traffic intersection during the red phase, causing safety concerns. Rostami-
Shahrbabaki, Majid et al. [15] have developed a speed advisory system for the mixed-
traffic condition. A reinforcement learning approach was developed and employed to sim-
ulate real-world traffic. The results shared flow efficiency benefits and emissions 

Figure 3. Time estimates for phase duration.

Asadi and Vahidi [9] identified feasible green phases to find the target velocity con-
sidering pre-timed fixed traffic phase intervals. The article studied pre-timed fixed traffic
intersections. The impact on traffic due to vehicle crawling speed to pass through the green
phase was ignored. Mahler and Vahidi [10] developed an algorithm based on dynamic
programming in the spatial domain to carry out green waving using probabilistic prediction
for actuated traffic signal timings. In the work published by Ibrahim et al. [11], estimating
phase duration for SPaT messages by collecting data for 2 weeks to a month and more was
achieved by minimizing a loss function. This development supports the assumption that
there can be an average duration for the red and green phases. In article [12], the authors
developed a statistical methodology to populate the SPaT messages as per SAE J2735. A
four-mile corridor was studied to incorporate the uncertainties due to pedestrian actuation
and different timing plans. The study signifies the need and importance of confidence
interval accuracy and consistency from the beginning to the end of the phase.

Instantaneous SPaT messages can be used along with historical information for pre-
diction. For actuated signals, Hao et al. [13] demonstrated the approach and departure
technique, which uses cosine/sine speed equations and a pre-defined deceleration speed
profile. For decision making the algorithm implements a conservative strategy by using
the minimum end time of the green signal. While the maximum end time of the red signal
is used. The algorithm does not optimize the trajectory, but creates an acceleration profile
based on cosine speed. Using dynamic programming and data-driven chance constraints,
Sun et al. [14] developed a long term eco-driving algorithm. The solution does not consider
safety concerns due to probabilistic constraint satisfaction. Vehicles may be allowed to pass
the traffic intersection during the red phase, causing safety concerns. Rostami-Shahrbabaki,
Majid et al. [15] have developed a speed advisory system for the mixed-traffic condition.
A reinforcement learning approach was developed and employed to simulate real-world
traffic. The results shared flow efficiency benefits and emissions reduction opportunities.
In article [16], the authors developed an eco-driving profile for an electric vehicle, but the
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traffic conditions around the vehicle while driving on roads were not considered. A de-
centralized hierarchical HEV energy management strategy was described in [17]. Velocity
profile generation for the real-time predictive control of a hybrid powertrain was discussed
in [18]. An MPC-based energy management framework assuming a cloud-based traffic
information distribution can be found in article [19]. Article [20] shares the framework and
experimental results of leveraging smart connectivity and intelligence to achieve energy
savings. Distance-based velocity profile optimization considers velocity and powertrain de-
tails to generate velocity predictions for the energy management of PHEV [21,22]. An MPC
energy management technique utilizing lumped parameter analysis of vehicle sub-systems
to save energy is given in article [23]. In article [24], an eco-approach is proposed to achieve
efficiency, as well as overtaking slow-moving vehicles for trucks in fixed timing control
signalized intersections. A micro-simulation-based optimization technique is discussed
in [25]. Different saturation rates and green phase ratios are simulated using MATLAB and
SUMO. Each vehicle is treated like a particle in a traffic flow. The traffic flow studies benefit
when a larger green ratio and CAV penetration can be provided.

In this paper, we focus on a predictive control algorithm for vehicle velocity control
and economical stopping when cruising through a traffic intersection is not feasible or
safe. The major contribution of the paper is vehicle velocity control for semi-actuated
and fully actuated traffic intersections, which provides non-deterministic estimations for
the phase timings. Additionally, the algorithm explores the opportunity to maximize the
regenerative braking energy when stopping at an intersection or a stop sign, henceforth
called eco-stopping. The developed control strategies are real-time suitable. To the best
of our knowledge, the framework can be utilized for electric vehicles. This aids the
infrastructure development research pertaining to the electric power grid to facilitate the
penetration of renewables in the power grid [26] and reduce carbon emissions due to the
frugal consumption of available energy.

The rest of the paper is organized as follows. Section 2 describes the overall architecture
and algorithms of predictive vehicle velocity control and eco-stopping. The section also
includes criteria for finding the feasibility of either passing through a traffic intersection
without stopping or eco-stopping to regenerate energy by exploiting the capabilities of the
vehicle. Section 3 details the validation, results and discusses the results of the presented
algorithms. Section 4 provides the conclusion based on the results and demonstrates how
Intelligent Transport Systems can use the presented algorithms to achieve energy savings
and ensure safety.

2. Predictive Control of Connected Vehicles at Automated Signalized Intersections

For safety and energy efficiency, the control system first checks the feasibility of
passing a vehicle through a traffic intersection. Figure 4 provides an overview of the
predictive velocity control at signalized intersections. As shown in the Figure 4, the output
of the feasibility switches the applicable algorithm to optimize the vehicle velocity control
decision. The control system uses the SPaT information, current vehicle velocity, and
the current distance between the ego vehicle and traffic intersection to determine if the
predictive control of vehicle velocity to pass through the intersection in the green phase
should be performed or apply the eco-stopping algorithm to stop the vehicle efficiently.
The yellow phase is considered as part of the red phase in this research for safety reasons.
Case 1 represents the predictive vehicle velocity control when it is feasible to pass through
the traffic intersection without stopping. Case 2 is for economical stopping with an aim to
maximize energy regeneration considering vehicle limitations. To determine the applicable
case, the current distance between the vehicle and traffic intersection is compared with the
distance required to reach the desired velocity and location with respect to acceleration
and deceleration.
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2.1. Feasibility Check at Traffic Intersections

As per the available information shared through SPaT messages, a vehicle controller
has to decide to either perform predictive vehicle velocity control to pass through the traffic
intersection, or execute eco-stopping at every time instance (t). When the current phase
is green, the distance required to achieve the velocity as per the ratio of distance from the
vehicle until the traffic intersection to the minimum end of phase time estimate is defined
in Equation (1)

dgn(t) =

(
dinter(t)
tmin(t)

)2
− vc(t)

2

2am
(1)

where dinter is the distance from the vehicle to the traffic intersection, vc is the current
velocity of the vehicle, and am is twice the cruising acceleration 4 m/s2 [27].

When the current phase is red, the distance required to achieve the velocity as per the
ratio of distance from the vehicle until the traffic intersection to the maximum end of the
phase time estimate is defined in Equation (2) where decelm is the deceleration rate limit in
the red phase considered as −2 m/s2,

drd(t) =

(
dinter(t)
tmax(t)

)2
− vc(t)

2

2decelm
(2)

The maximum deceleration rate for regeneration as per the powertrain capabilities,
discussed in detail in section C, is −1.75m/s2, denoted as

(
decelregen

)
. During the green

phase, it could be impeding to following traffic and non-beneficial to start deceleration
when there is still a considerable distance to the traffic intersection. Thus, based on the
speed limit of the road, which is the upper limit of the velocity bound in the proposed
algorithms and decelregen deceleration rate, the distance dmaxregen is decided as shown in
Equation (3).

dmaxregen(t) =
(
0− speed limit2(t)

)
2× decelregen

(3)
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Figure 5 shows the pseudo code for checking the feasibility and deciding which case
is applicable.
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2.2. Case 1: Predictive Velocity Control

The reference velocity of the MPC controller can be calculated utilizing the signal
phase and timing messages via infrastructure-to-vehicle (I2V) and vehicle-to-infrastructure
(V2I) communication. For actuated intersections, the current phase end time is estimated in
the range of minimum, maximum, and likely end times.

Figure 6 shows the pseudo code for calculating MPC reference velocity in each iteration
for different cases. tlower is defined as the lower end time, and described in Equation (4) below:

tlower(t) = tlikely(t)− (1− α)(tmax(t)− tmin(t)) (4)

where α is the confidence level assumed as 0.8 based on the finding in [11]. tupper is defined
as the upper end time, and described in Equation (5), below:

tupper(t) = tlikely(t) + (1− α)(tmax(t)− tmin(t)) (5)
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Additionally, using the information of ttarget and the distance between intersection
and vehicle, target velocity is considered as described in Equation (6) below:

vre finter
(t) =

dinter(t)
tre f (t)

(6)

For the green phase, the reference time for the target velocity is considered as the
maximum of tlower or tmin. In the case of the red phase, it is the minimum of tupper or
tmax. Figure 6 shows the pseudo code for determining the target velocity considering
Equations (4)–(6) along with the current phase information. vc is the current velocity of
the vehicle. If it is feasible to pass through the intersection as per the algorithm in Figure 5,
model predictive velocity control is used to control the vehicle velocity to pass through the
intersection. The MPC-based predictive velocity control is formulated as follows. The states
are defined as the distance traveled by the vehicle and the vehicle velocity, as shown below:

X = [d v] (7)

The manipulated variable is the tractive force defined in Equation (8) below

U = ft (8)

State equation is defined in Equations (9) and (10) below:

.
d = v (9)

mv ×
.
v = ft −

(
f0 + f1 × v + f2 × v2

)
−mv × g× sinθ (10)

mv is the mass of the vehicle, ft is the tractive force, f0, f1, and f2 are road load coefficients,
g is the acceleration due to gravity, and θ is the road grade.

The bound constraint of velocity is defined below in Equation (11):

vmin ≤ v ≤ vmax (11)

Tractive force is contained by bounds as well as the velocity-based vehicle specific
limitation, as shown in Equations (12) and (13). The details of velocity-constrained tractive
force limits are available below:

ftmin ≤ ft ≤ ftmax (12)

ft ≤ ft(v) (13)

The tractive force is limited by the maximum and minimum. Additionally, it is
constrained by the vehicle velocity, which is shared in [28]. The cost function of MPC is
defined in Equation (14) below:

Cost Function(L) :
i=tc

∑
i=1

(
vre fi
− vi

)2
(14)

where the objective is to track the reference velocity. For real-time suitable on-linear model
predictive control, the QASES [29,30] optimizer with the ACADO [31] tool was employed.

2.3. Case 2: Eco-Stopping Algorithm

If the algorithm in Figure 5 finds it unfeasible for the vehicle to pass through the
intersection, the eco-stopping algorithm can be applied to stop the vehicle efficiently.
The eco-stopping algorithm plans and controls vehicle velocity to maximize the energy-
recovering regenerative braking of electrified vehicles.
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For the eco-stopping control, an optimal velocity profile is generated for a given
prediction horizon. The eco-stopping algorithm is designed based on two considerations:
maximizing energy regeneration and stopping the vehicle at the stop line. With the objec-
tive of recording the maximum energy regeneration capability of the vehicle during the
braking process, a vehicle data acquisition activity was performed on a Volt Gen II available
at Michigan Technological University. The test results of maximum deceleration for regen-
erative braking versus vehicle speed are shown in Figure 7. A polynomial Equation (15)
is generated as a curve fit of the acquired data for the maximum regeneration of energy
considering the vehicle powertrain capabilities, where v is vehicle velocity. This equation is
used to determine the negative acceleration

(
amap

)
.

amap = 2.902× 10−7 × v4 − 5.907× 10−5 × v3 + 0.004501× v2 − 0.1511× v + 0.1272 (15)
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The velocity profile based on the deceleration computed as per Equation (15) is
presented in Equation (16):

Vdecelre f i+1
= Vdecelre f i

+ amapi × ∆t (16)

To decide the distance profile to stop the vehicle at the stop line, the required average
deceleration

(
aavg

)
can be calculated by Equation (17):

aavg =
v2

f inal − v2
current

2× dinter
(17)

where dinter is the distance between the vehicle and the stop line. Due to the availability of
DSRC and/or cellular communication and RSU at traffic intersections, we can assume that
the vehicle can obtain the dinter values in real time. When the vehicle is less than 5 m away
from the stop spot, aavg deceleration is used to compute the tractive force. This is to avoid a
slow rolling stop, which may annoy the driver.
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As discussed in Equation (18) below, velocity for the next instance, i + 1, is computed
based on the current instance, i velocity and deceleration.

vavgre f i+1
= vavgre f i

+ aavgi × ∆t (18)

The distance profile based on average deceleration is calculated as described in
Equation (19).

ddecelre f i+1
= ddecelre f i

+
(

vavgre f i
× ∆t + 0.5× aavg × (∆t)2

)
(19)

The optimization algorithm is defined using the same Equations from (7) to (13). How-
ever, the cost function is defined where the objective is to follow the reference deceleration
velocity and reference distance. The optimization minimizes the error between vehicle
velocity and reference decelerating velocity, as well as the distance traveled by the vehicle
and reference distance, such that the vehicle will stop at the designated spot, i.e., the stop
line. Equation (20) is the cost function.

Cost Function (L) :
i=tc

∑
i=1

(
β1

(
ddecelre fi

− di

)2
+ β2

(
Vdecelre f i

− vi

)2
)

(20)

where β1 and β2 are the weighting factors.
Figure 8 summarizes the predictive vehicle control using SPaT information at signal-

ized intersections, along with the eco-stopping algorithm. The optimization algorithm
takes into consideration vehicle powertrain limitations, non-linear vehicle dynamics, and
external traffic conditions.
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Current information such as the SPaT message, vehicle velocity, and position are
used to determine the distance to a traffic intersection, the signal phase, and phase timing
estimates. When the vehicle is able to pass through the traffic intersection, predictive
velocity control is executed. Predictive vehicle velocity control using the optimization
algorithm as explained in Section 2.2 is employed. The control output, which is the tractive
force, is used to find the vehicle velocity and position in the next instance.

When the vehicle is unable to pass through the traffic intersection, the eco-stopping
algorithm is employed, as explained in Section 2.3. The eco-stopping algorithm considers
the condition to stop at a particular spot while maximizing the regeneration potential of
the vehicle. Test data acquired are utilized to find the stopping velocity reference profile.



Future Transp. 2023, 3 652

This architecture works to optimize the energy consumption, considering all the non-linear
dynamics of the vehicle, state constraints, powertrain limits, and traffic signal states.

3. Validation, Results and Discussion

The presented predictive control algorithms were validated using multiple test cases,
as described later in this section. The validation used multiple software packages, includ-
ing MATLAB, SIMULINK, ACADO, and AMBER [32]. AMBER is the abbreviation for
Advanced Model Based Engineering Resource, which is a model-based software. AMBER
contains the latest version of Autonomie [33], a vehicle powertrain system simulation tool.

The AMBER software, version 2021 developed by Argonne National Laboratory,
Chicago, USA has a vehicle model similar to the second-generation Chevrolet Volt produced
by General Motors. This model was employed to validate the presented algorithms and
understand the benefits, regenerative braking, and vehicle energy losses. The vehicle’s
name in AMBER is Extended Range Electric Vehicle Midsize Voltec 2nd Generation. Figure 9
shows the powertrain of Volt Gen II. Volt Gen II is a PHEV with multiple modes of operation.
The Volt Gen II powertrain is made up of one engine and two electric motors, a battery with
power electronics, two planetary gear trains, and three clutches. The multiple modes of
the powertrain are classified as electric vehicle (EV) mode and extended range mode (ER).
Different powertrain modes are achieved by connecting three clutches, two electric motors,
and an engine in distinct combinations. The simulation to generate the optimal velocity
profiles were in MATLAB and SIMULINK, version 2020a, developed by MathWorks Inc.,
Natick, Massachusetts, USA. The test cases with different input values and combinations
for variables were used to simulate the algorithm with the MPC optimization model, which
output the velocity profile. The generated velocity profiles were executed in AMBER
software to compute the vehicle outputs.
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3.1. Validation for the Combination of Single and Multiple Phase Scenarios

Within this section, predictive velocity control to pass through the traffic intersection
is tested using scenarios that take the uncertainties into consideration. As described in
the signal timing plan manual [34], a framework was utilized for the traffic signal plan
development and software to execute the plans. These uncertainties were due to the
dynamic count of pedestrians waiting to cross, vehicles in the queue for a left turn, and
the traffic flow rate for the lane in consideration. There were also some static causes of
uncertainties, such as the traffic intersection proximity to a school, hospital, or shopping
center. Such infrastructure can require more customization of the timing plans. The traffic
also varies considerably, depending on whether the day is a weekday or a weekend. Not
only phase duration but also the cycle duration can change based on the day and changing
traffic conditions. These variables can make the estimation of the residual time of the phase
decrease as well as increase during the active phase based on the transitory conditions
of the traffic intersection. All these contributors make estimating the residual end time
complex and challenging.
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3.1.1. Design and Methodology for Generating Randomized End of Phase Time
Estimations for Test Cases

In this paper, the scope is to develop and verify an algorithm for vehicle velocity
control considering the broadcasted SPaT messages from the traffic intersection, assuming
that the accuracy is reasonable and as per the SAE J2735 [8]. The estimation of the major
parameters in the SPaT messages, including the likely end time, the maximum end time,
and the minimum end time, is discussed in this section. Figure 10 shows the estimation
of these three parameters based on Tables 1 and 2. Table 1 gives information about green
phase duration limits for different speed zones of roads. The likely end ( tlikely

)
is initialized

randomly using a normal distribution defined by the “Initialization range of tlikely” row in
Table 1, denoted as tlikelyin

. The mean and standard deviation of the normal are defined by
Equations (21) and (22). For the speed groups 55–50 mph and 45–40 mph, the upper bound
and the lower bound of the initialization range of tlikely were 70 s and 40 s, respectively.
As a result, the mean of the normal distribution was as per Equation (21) with mean
55 s, i.e., 70+40

2 . The standard deviation was 3.75
(

70−40
8

)
as per Equation (22). The

randomization was implemented using the ‘randn’ command in MATLAB/SIMULINK, as
per Equation (23).

mean =
upper limit + lower limit

2
(21)

standard deviation =
upper limit− lower limit

8
(22)

Random number = (standard deviation× randn(1, 1) + mean) (23)
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Table 1. Predictive Velocity Control End Time Estimate Matrix.

Parameters Road Function Classification [35]

Major Arterial
(>40 mph)

Major Arterial
(<40 mph)

Minor
Arterial

Speed Groups
(mph) 55–50 45–40 40–35 35–30

Phase
Duration

tlikelyin
70–40 60–40 50–30

tmaxextr 70 60 50

tminextr 10 7 4

Minimum distance
between intersections

0.5 mile
(~805 m)

0.25 mile
(~402 m)

Table 2. Upper and lower limit bounds for estimating the maximum and minimum end time.

Speed Groups
Time (s)

Likely End Time
(tlikely)

Upper Bound for Maximum
Distribution (tmaxUB )

Lower Bound for Minimum
Distribution (tminLB )

(55–50)
(45–40)

<70 and ≥40 70 30

<40 and ≥30 50 10

<30 and ≥10 40 10

(40–35)

<60 and ≥40 60 30

<40 and ≥30 50 7

<30 and ≥7 40 7

(35–30)

<50 and ≥30 50 20

<30 and ≥20 40 4

< 20 and ≥4 30 4

Once the tlikely is initialized, the likely end time is linearly decayed, as shown in
Figure 10. There are two types of disturbances: random decay and random increase. The
random increase/random decrease of 2 s allowed in the tlikely is allowed to emulate events
such as more pedestrians waiting to cross than average and vehicle flow rate change. The
maximum number of random increases and decreases was limited to 3 in this study, which
represented 10% of the 60 s phase, to consider uncertainties and trust in the timing plans of
the traffic intersections. Figure 10 shows a pictorial representation of the end of the phase
time estimations over the total phase duration. The choice of adding the random increase
or decrease of tlikely was used to define different test cases. Two categories of test cases
are defined in this study. In the first category, the likely end time linearly decreases and
may have sudden increases of 2 s randomly, as shown in Figure 10. In the second category,
the likely end time can decrease as well as randomly decrease in steps of 2 s during the
active phase.

The distances for the phase end time estimation for different speed groups are defined
in Table 1. Although DSRC only has a range of 300 m, cellular communication can broadcast
to a wider range. We considered 805 m (0.5 miles) for speeds greater than 40 mph and
402 m (0.25 mile) for speeds less than 35 mph, which was shared in [34] and considered
to be more than enough to plan for driving through the traffic intersection or coming to a
stop. For every additional actuation by the detector/s, a typical 2 s extension was carried
out for the current phase.

The estimation of the maximum end time (tmax) and minimum end time (tmin ) in-
cluded two stages. In the first stage, the values of tlikely were within the ranges in Table 2.
In this stage, the upper bound and the lower bound to define the normal distribution of the
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maximum end time were the ‘Upper bound for maximum distribution’ (tmaxUB) and the

‘Likely end time’
(

tlikely ) in Table 2. The upper bound and the lower bound to define the

normal distribution of the minimum end time were the ‘Likely end time’
(

tlikely

)
and the

‘Lower bound for minimum distribution’ (tminLB ). At every 0.1 s instance, the maximum
end time and the minimum end time were generated based on the corresponding normal
distributions as per Equations (21)–(23). The second stage started when the likely time
reached the lowest value of the speed group

(
tlikely = textr

)
, as shown in Figure 10, which

in the case of speed groups of 55–50 mph and 45–40 mph was textr = 10 s. In the second
stage, the maximum end time was estimated as 1.2 times the likely end time, and the
minimum end time was estimated as 0.8 times the likely end time.

3.1.2. Tests, Results, and Discussion

Based on the details shared in the previous subsection, the test cases for validation are
given below. Different scenarios were simulated to observe the algorithm’s behavior, and
energy results are compared with the baseline.

Green Phase Throughout

Based on the details shared in the previous subsection, the test cases are listed for the
validation. For each test case, the distance to be traveled is listed in Table 1. The initial
velocity of the vehicle was randomized considering the uniform distribution within the
speed group limit. For example, if the speed group was 55–50 mph, then the upper limit
was 55 mph and the lower limit was 50 mph. The uniform distribution was implemented
using ‘rand’ in MATLAB/SIMULINK. Random initial velocity generation is defined in
Equation (24).

Random initial velocity = (upper bound− lower bound)× rand(1, 1) + lower bound (24)

The generated time estimate cycle was inputted into the optimization SIMULINK
model to generate the reference velocity trace for the predictive velocity control. The MPC
controller outputted the control actions to track the reference velocity profile. These control
actions were used to calculate the actual vehicle velocity and recorder, which was inputted
into the AMBER/AUTONOMIE Voltec Gen II model to determine the energy consumption
numbers. The parameters were kept as the default except for the initial SOC. The road load
co-efficients were from the EPA [36]. The initial SOC was considered to be 70%. Table 3
shares the vehicle parameters for the simulation.

Table 3. Parameter Values for Validation.

Parameter Values Unit

Mass of Vehicle 1748 kg

f0 120.55 N

f1 2.1624 N/m/s

f2 0.34707 N/m/s2

g 9.81 m/s2

Prediction horizon tc 10 s

Figure 11 shows the energy consumption of each test case and the corresponding
sub-tests in the same sequence, as described in Table 4. The test results show that the
algorithm helped to pass the intersection in all cases discussed. The energy consumption
was compared to the baseline, which was the constant velocity followed throughout the
distance and was same as the initial velocity.
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Table 4. Test Cases for the Validation of the Green Phase.

Speed Group
Tests Initial

Velocity
(mph)

Initialized
Green Phase
Duration (s)Number Disturbance

Type

55–50

U1
Random
Increase

52.1 54.2

U2 54 50.7

U3 53.6 51.8

45–40

V1
Random

Decay

44.0 65.5

V2 43.2 55.3

V3 42.2 57.4

40–35

W1
Random
Increase

37.4 52.7

W2 38.2 51.2

W3 35.8 50.7

35–30

X1
Random

Decay

34.8 38.3

X2 33.5 42.2

X3 32.5 42.9

Multiple Phase Scenarios (Vehicle May Stop or Decelerate Partially)

Additional scenarios were designed to observe the algorithm performance when a vehicle
may need to stop or decelerate partially. Table 5 lists the test scenarios when a vehicle must
stop. Table 8 lists the test scenarios when a vehicle may have to partially decelerate to pass the
traffic intersection. Cycles S.1 and P.1 and S.3 and P.3 were used for testing the speed group
of 55–50 mph. Cycles S.2 and P.2 and S.4 and P.4 were used for testing the speed group of
35–30 mph, as shown in Table 6. The initial velocity for the simulation model was the speed
limit of the group, e.g., 55 mph for the speed group 55–50 mph.
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Table 5. Time Cycle Information for Imminent Stop Due to Longer Red Phase and Partial Green Phase.

Cycle Phase Duration (s) Disturbances Phase Duration (s) Disturbances Disturbance Type

S.1

Green

20 2

Red

30 1
Random Decay

S.2 15 1 20 1

S.3 20 2 30 1 Random
IncreaseS.4 15 1 15 1

Table 6. Baseline for Multiple Phase Test Cycles.

Cycle Speed Limit/Initial Velocity Deceleration Distance
Feet (Meters)

S/P.1 and S/P.3 55 mph 445 (135.6)

S/P.2 and S/P.4 35 mph 285 (86.8)

The baseline for these tests considered the initial velocity as the speed limit. The vehicle
was driven at the initial velocity for all of the time before deceleration. The deceleration
started at the distance interpreted from [34] and is listed in Table 6. For the test cycles in
Table 5, the deceleration rate of the baseline was calculated by Equation (25) when the
vehicle reached this distance. The final velocity was considered as zero.

Deceleration rate =
Final Velocity2 − Current Velocity2

2× Distance
(25)

Table 7 shows the energy consumption results for the tests. Negative energy consump-
tion was due to the regeneration energy being greater than the energy consumption during
cruising in the respective velocity profile. For the overall task, the algorithm was able to
use less energy to travel the same distance than the baseline.

Table 7. Results for Imminent Stop Due to Red Phase.

Cycles
Energy Consumption (W.h)

Energy Gain (W.h)
Algorithm Baseline

S.1 −23.7 −11.6 12.1

S.2 −13.8 −11.7 2.1

S.3 −23.3 −11.6 11.7

S.4 −13.1 −11.7 1.4

For the test cycles in Table 8 where the vehicle decelerated partially and as the phase
turned green, allowing the vehicle to pass through the intersection. Multiple phase test
scenarios’ details are provided in Table 9. The cycles P.1 and P.2 were random decay dis-
turbances, and the remaining were random increase disturbances. The baseline definition
was the same as discussed before. If acceleration was required, the acceleration rate was
2 m/s2.

Table 8. Time Cycle Information for Multiple Phases.

Cycle Phase Duration
(s) Disturbances Phase Duration

(s) Disturbances Phase Duration
(s) Disturbances Disturbance

Type

P.1

Green

30 2

Red

10 1

Green

65 3 Random
DecayP.2 20 1 10 1 50 2

P.3 20 2 10 1 65 3 Random
IncreaseP.4 18 1 4 0 50 3
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Table 9. Test results for Multiple Phase Scenarios.

Cycles
Energy Consumption (W.h)

Energy Gain (W.h)
Algorithm Baseline

P.1 34.0 38.2 4.2

P.2 16.6 18.3 1.7

P.3 −13.0 11.2 24.2

P.4 29.2 46.5 17.4

The reason for low as well as negative energy consumption was the regeneration
being part of the energy consumption for the test cases. The test cycle P.1 had random
decay disturbances with an initial velocity of 55 mph. The first phase in the cycle was
green, and had a net duration of 26 s. The second phase in the same cycle is red, with a net
duration of 8 s. The third phase was green again. As shown in Figure 12, the predictive
vehicle velocity control algorithm made the vehicle gradually decelerate as compared to
the baseline velocity profile. The baseline profile went to a lower velocity in comparison.
When the phase changed to green, the deceleration was arrested. Additionally, the vehicle
travelled the residual distance. The baseline profile decided to decelerate till the end of the
red phase, and then accelerated to reach the traffic intersection.
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If we consider test P.4, the cycle had a random increase in the type of disturbances.
The first phase was green with a net duration of 20 s. The second phase was red, which had
a duration of 4 s without any disturbance. The third phase was green again. The predictive
vehicle velocity profile made the vehicle slow a bit for the small red phase duration and
continue to pass the traffic intersection. However, the baseline profile decelerated to a
much lower velocity and accelerated to travel the residual distance.

3.2. Validation for Eco-Stopping

In this section, the eco-stopping algorithm is validated using multiple scenarios. We
had four test cases wherein the input was the initial vehicle velocity and the distance of
the vehicle to the stop line, as shown in Table 10. The deceleration speed and distance
values were taken from the US06 drive cycle. The deceleration profile segments of the
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US06 drive cycle were also treated as the baseline to measure the improvements. This
was undertaken to simulate the condition for stop signs. The initial SOC value was 70%.
The values of weighting factor β1 = 1 and β2 = total distance

initial velocity . This made the tuning factors
automated based on the initial velocity and the amount of distance to be covered to stop at
the designated spot.

Table 10. Eco-stopping Test Cases Details.

Test No. Initial Velocity (mph) Distance (Meters)

Test A 70.7 587.6

Test B 51.6 211.9

Test C 44.9 128.4

Test D 34.6 75.4

The eco-stopping control actions generated with input as the given target distance and
the initial velocity were recorded in Simulink. These control actions were integrated to find
the velocity profile. The recorded velocity profile was then fed into the AMBER/Autonomie
software to calculate the energy saved by the eco-stopping algorithm. The vehicle param-
eters were the same as in Table 3. Table 11 shows the energy regenerated back into the
battery for each test run. The eco-stopping algorithm could maximize the regeneration
energy. The percentage improvements ranged from 1.5% on the higher side to 0.4% on the
lower side. Table 12 had mechanical brake energy efficiency improvements. Equation (26)
shows the calculation for Mechanical Brake Energy (MBE) from the simulation data. The
eco-stopping algorithm could reduce the mechanical brake application, which contributed
to energy regeneration.

MBE = Total Brake Energy− Regen Energy (26)

Table 11. Regenerative Energy Improvement Details.

Test No.
Regeneration Energy (W.h)

Eco-Stopping Baseline Improvement

Test A 160.2 159.2 0.9%

Test B 101.1 99.6 1.5%

Test C 78.1 77.5 0.8%

Test D 46 45.8 0.4%

Table 12. Mechanical Brake Energy Gains.

Test No.
Mechanical Brake Energy (W.h)

Eco-Stopping Baseline Improvement

Test A 31.8 32.5 0.7

Test B 21 22.2 1.2

Test C 17.3 17.8 0.5

Test D 11.4 11.9 0.5

Figure 13 shows the velocity and distance plots for four test cases. For each test case,
the velocity profile could decelerate to zero velocity and stop at the designated stop spot.
The distance was in a decaying state as it neared the stop spot.
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Figure 14 shows the comparison of the regen power and brake power for the baseline
and eco-stopping algorithm in Test B. It can be observed that the area covered by the regen
power curve of the eco-stopping algorithm was larger than the area covered by the baseline
regen power curve. The velocity profile generated by the eco-stopping helped to capture
more energy as a result. The mechanical brake was utilized multiple times with the baseline
velocity, while in the case of the eco-stopping velocity profile the brake was applied only
once, at a lower speed where the opportunity to regenerate was also less.
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4. Conclusions and Future Work

The paper presents optimal algorithms for a vehicle to pass through a semi-actuated/
actuated traffic intersection or to maximize energy regeneration in case of an eminent stop
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and slow down to pass through a green phase. The algorithms were validated using the
second-generation GM Volt model in AMBER/AUTONOMIE software developed by the
Argonne National Laboratory. The presented methods can be applicable to different types
of vehicles/powertrains with knowledge of the system design details.

Firstly, the predictive vehicle velocity control algorithm can handle the randomness of
the end-of-phase-duration time estimations. Multiple test cases which incorporate random-
ness in the end-of-phase-duration estimations were employed to check the performance of
the control algorithms. The proposed algorithms can show an improvement compared to
the baseline. The algorithm can carry out vehicle velocity control in a better way to reduce
energy consumption in the case of an imminent stop. In the case of multiple phase changes,
the vehicle can slow down to reach the traffic intersection in a more energy efficient manner.

Secondly, the eco-stopping algorithm in a standalone manner can create more regen-
eration for the same distance and initial velocity in the deceleration sections of the US06
drive cycle. The vehicle was able to stop at the stop line, thus validating the algorithm’s
suitability to come to zero velocity at the stop sign.

For future scope, as more real-world historical data of SPaT message becomes accessi-
ble, the control algorithm can be improved based on the probability density function of the
available real-world data.
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