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Abstract: One of the main challenges for ticketing in Mobility as a Service is the integration of the
public and individual transport modes into a unified ticketing service. To realize this concept, a
trustworthy identification of transport modes that is resilient to possible attacks is required. In this
work, we propose two smartphone-based methods to seamlessly identify the use of trams, buses,
subways, walking and bicycles, which are able to detect GNSS-based attacks and continue to provide
a trustworthy identification of transport modes. We have recorded real-world measurements with
commercial smartphones using the transport network in Munich and Paris. Our results show that it
is possible to provide trustworthy identification of transport modes even when the system is under
attack. In conclusion, in this work we demonstrate the vulnerability of smartphone-based ticketing
to GNSS-based attacks, propose two methods to overcome this vulnerability and demonstrate the
validity of our methods with real-world measurements.
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1. Introduction

Over the last decade, cities have been transitioning from traditional mobility to Mobil-
ity as a Service (MaaS). MaaS is the integration of and access to different transport services,
such as public transport, ride/car/bike/scooter sharing, taxis, car rental and ride-hailing,
among others, in a single digital mobility service based on active mobility and an efficient
public transport system [1].

While the goal of MaaS is to offer passengers a seamless, end-to-end and easily
accessible journey, one of its key enablers is the ticketing [2]. The passenger experience of
ticket purchase should be flexible, seamless and based on real-time information.

The ticketing service in MaaS should integrate the public and individual transport
modes together with the billing platforms into a unified ticketing service.

If the ticketing experience is realized on everyone’s personal smartphone, passengers
could receive a consolidated bill for their monthly/weekly use of the unified transport
network without even having to buy a ticket. To realize this concept, it is necessary to
develop a seamless identification of the transport modes used, based on commercially
available smartphones.

In the literature, there are approaches to realize the seamless identification of the
transport modes used based on smartphones. For example, reading a QR code that identifies
the transport mode when hopping in and out of the vehicle is a possible implementation of
smartphone-based ticketing [3]. However, this solution relies either on the good will of the
passengers when reading the QR code with the smartphone or the existence of a controller
in the transport mode.

Other implementations of ticketing with smartphones involve the use of Near-Field
Communication (NFC) devices [4]. This implementation implies the use of check-in and
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check-out terminals that are able to determine the duration of the journey. The NFC
terminals are normally placed outside the transport mode, beside turnstiles or gates.

Unlike the above mentioned solutions, a seamless identification of the used transport
mode for ticketing is possible based on the use of Global Navigation Satellite Systems
(GNSSs) [5]. This implementation uses the position and velocity information from satellite
systems to identify the transport mode that is being used and the journey that has been
traveled. Nevertheless, the GNSS position and velocity can be forged with spoofing attacks,
for instance, to avoid or modify the billing. Additionally, there are plenty of urban scenarios
with no satellite reception, such as stations.

As the identification of transport modes should be used for billing, resilience is of high
importance. Resilience is the ability of the ticketing system to recover from a malicious
attack and provide correct identification of transport modes throughout the journey.

Depending on the particular technology used to identify the transport mode with the
smartphone, the system might be to a greater or lesser extent vulnerable to attacks. We
will focus on the smartphone-based identification of transport modes without the use of
external infrastructure, such as QR codes or NFC devices. As described above, one of the
most extended methods to identify the transport mode with the smartphone is to use the
position and the velocity provided by GNSSs.

The identification of transport modes purely or mainly based on GNSSs is vulnerable
to jamming and spoofing attacks. The jamming attack consists on an intentional interference
with enough power to force the receiver to lose the legitimate GNSS signal.

The spoofing attack consists of making the receiver believe it is positioned at a different
place than it is actually located and eventually that it is moving with a wrong velocity. This
attack is a common practice in the military context. However, the civilian context is not left
out, e.g., for criminal purposes, such as defeating automated payment systems, violating a
forbidden fishing zone or cheating on the driving hours of truck drivers.

Therefore, the spoofing attacks represent a major issue for the functioning of ticketing
systems, since a faulty navigation signal can be transmitted to one or some smartphones. To
do this, the receiver of the smartphone has to unlock from the legitimate navigation signal
and lock to the faulty navigation signal. The unlock is usually forced through jamming [6].

The faulty navigation signal can be a real satellite signal recorded with a legitimate
GNSS signal, e.g., a replay attack, or a created navigation signal. The replay attack is
possible because the integrity and the authentication are checked for the complete message
but not for the navigation signal [7].

The faulty navigation signals can be classified into three categories [8]:

• The signal simulator, which uses GNSS signal simulator software connected to gener-
ate a signal undifferentiated from a legitimate signal but not necessarily synchronized
with the satellite. The commercial GNSS receivers used in smartphones may be vul-
nerable to this attack if the power of the faulty navigation signal is higher than the
legitimate navigation signal.

• The receiver-based spoofer, which follows the above explained principle but takes
the faulty navigation signal from a legitimate navigation signal in order to synchronize
the attack. This attack is more complex and thus more difficult to detect.

• The sophisticated receiver-based spoofer, which is the most complex and effective
spoofing attack, since it allows a perfect synchronization between the faulty and
the legitimate navigation signal by knowing the receiver position. Nevertheless,
this attack is not possible if the exact position of the receiver is unknown, e.g., for
moving receivers.

In this work, we present two methods for smartphone-based transport mode identifica-
tion that are resilient to spoofing attacks using the public transport modes subways, trams
and buses and the individual transport modes bicycles and walking. The multisensor-based
identification of transport modes relies on smartphones’ embedded sensors to identify the
transport mode, as well as on GNSS. The system-under-attack check uses in this case the
discrepancies between both sources of information to detect the attack. The only-GNSS-
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based identification of transport modes relies only on GNSS to identify the transport modes,
and the system-under-attack check uses the GNSS clock drift to detect the attack [9].

We present real measurements recorded with commercial smartphones in Munich
(Germany) and Paris (France), to which we add a spoofing attack safely produced in an
anechoic chamber. With this work, we therefore put in evidence the vulnerability of the
ticketing system against spoofing attacks.

The remaining sections are structured as follows. Section 2 explains the methodology
followed to record the real-world measurements and to generate the attack in an anechoic
chamber. Section 3 is devoted to the presentation of the two novel proposed resilient
systems to identify transport modes with commercial smartphones. Section 4 discusses the
results obtained with the two proposed systems to identify transport modes in terms of
their resilience. Finally, Section 5 concludes the paper.

2. Methodology

In this section, we present the methodology we followed to record the journeys in
Munich and Paris with commercial smartphones and how we generated the spoofing
attacks in the anechoic chamber (see Figure 1).

Figure 1. Graphical representation of the two steps followed to generate the faulty navigation signal.

The data collection is divided into two steps, namely: (1) We collect real measurements
with a commercial smartphone during a multimodal journey. The legitimate navigation
signal is not only recorded with the smartphone but also with special equipment, which
is indicated in the figure above as u-blox and LabSat. (2) In an anechoic chamber, we mix
the legitimate navigation signal coming from the LabSat and the faulty navigation signal
generated by the Spirent signal generator and record the mix with the smartphone. We
then substitute the original GNSS recorded file with the modified GNSS recorded file and
associate the latter to the original multisensor file recorded during the journey.

2.1. Step 1: Real-Time Data Collection

We have designed multimodal journeys to cover the following transport modes: buses,
trams, subways, walking and bicycles. Figures 2 and 3 show the trajectories in Munich and
Paris, respectively.
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Figure 2. Journey followed in Munich. The orange line represents walking, the blue line represents
the tram and the yellow line represents the bus.

Figure 3. Journey followed in Paris. The orange line represents walking and the green line represents
the subway.

During the above described journeys, the smartphone was held in the hand, as
Figure 4 shows. The journey in Munich takes 36 min and the journey in Paris takes
44 min.

We used a smartphone Samsung Galaxy S20 to record the accelerometer, gyroscope
and barometer signals, as well as the GNSS-computed position and velocity during the
journeys. In the suitcase, we had a u-blox EVK-M8T (in the following u-blox) and a LabSat 2
(in the following LabSat). We worked with the GPS L1 signal. The LabSat was connected to
a power battery of 12 V and 8 Ah and to a computer to be executed, as well as the u-blox.
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Figure 4. The volunteer carries a smartphone in their hand and a case with the GNSS equipment, the
u-blox receiver and LabSat. (Original picture restored.)

2.2. Step 2: Generation of the Attack

The spoofing attacks we generated for this work were of the receiver-based spoofer
type (see Section 1). We used a software synchronized by the real satellite constellation
and a Spirent GSS6560 (in the following Spirent) connected to a passive GPS L1 antenna to
generate the faulty navigation signal. The legitimate satellites’ constellation has been taken
from the LabSat.

The attacks werecarried out in a post-processing step in an anechoic chamber. An
anechoic chamber is an isolated room prepared to avoid the reflection of the electromagnetic
waves inside the room (see Figure 5). We used an anechoic chamber because it is forbidden
to radiate in the GNSS band outdoors.

Figure 5. Setup of the spoofing attack carried out in the anechoic chamber. The smartphone is
hanging on the mannequin. The transmitter GPS antenna (orange; down, right) and the smartphone
are separated by 1 m.
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We introduced the attacks during the journeys; that means the journeys contain both
legitimate and faulty navigation signals. The legitimate navigation signal was recorded
by the LabSat during the data collection, and it is synchronized with the signals recorded
by smartphone, e.g., accelerometer, magnetometer and barometer signals. The faulty navi-
gation signal has been synchronized using the legitimate navigation signal and modified
with the Spirent.

The faulty and the legitimate navigation signals are combined with a splitter (see
Figure 1). As a control measure, during the attack in the anechoic chamber we measured
the carrier-to-noise ratio detected at the smartphone’s place using a u-blox EVK-M8T placed
near the smartphone. The carrier-to-noise ratio value is between 20 dB/Hz and 40 dB/Hz,
which recreates realistic conditions for the attack.

3. Deceiving the Ticketing System

In this section, we explain the spoofing attacks we prepared for the trajectories depicted
in Figures 2 and 3 and we present two complementary methods to detect the deceit.

Usually, the methods of identifying transport modes that mainly rely on the GNSS
position and velocity provided by the smartphone are prone to confuse transport modes
that have similar velocities and move in close spaces with similar trajectories. A well-
known challenging case is differentiating buses and bicycles, since the bicycle lanes are
usually adjacent and parallel to the bus lanes, as shown in Figure 6. The accuracy of the
GNSS position is degraded in urban scenarios due to multiple paths in urban canyons or
scattering originated by the tree leaves, as shown in Figure 6. Therefore, the delivered
position is in many cases not accurate enough to distinguish the bus from the bicycle lanes.

Figure 6. Urban scenario showing the adjacent bus and bicycle lanes.

With our recorded journey in Munich shown in Figure 2, we aim at recreating the
aforementioned scenario. Therefore, we spoofed the GNSS’s legitimate navigation signal
to make the e-ticketing system believe the passenger did not step on a bus (yellow line in
Figure 2) in Sendlinger Tor, but after leaving the tram she took the bicycle and was driving
for a couple of minutes towards Viktualienmarkt over the bicycle lane parallel to the bus
lane. Then, the passenger finished her journey. In this case, the bus ticket from Sendlinger
Tor to Viktualienmarkt should not be included in the consolidated bill. Figure 7 shows the
modified journey.
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Figure 7. Modified journey in Munich. The orange line represents walking, the blue line represents
the tram and the lilac line represents the bicycle.

Another challenging scenario for the methods for identifying transport modes that
mainly rely on GNSS are the stations and the underground transport modes, such as the
subway. In these scenarios, the GNSS reception is either highly degraded or not available.
With our recorded journey in Paris shown in Figure 3, we aim at deceiving the e-ticketing
system by making it believe the passenger did not commute in Montparnasse from Metro 4
to Metro 6 and continued until Trocadero, but she finished her journey in Montparnasse,
went out of the station and walked until her destiny. In this case, the subway ticket
corresponding to Metro 6 should not be included in the consolidated bill. Figure 8 shows
the modified journey.

Figure 8. Modified journey in Paris. The orange line represents walking, and the green line represents
the subway.

3.1. Multisensor-Based Transport Mode Identification

In this section, we present a unique method designed to detect attacks to the satellite
signal that induce errors in the transport mode identification. Existing solutions use the
position and the velocity provided by GNSSs to identify the transport mode [5]. The
position and velocity can also be used as input for artificial intelligence [10] or machine
learning algorithms [11]. Other existing solutions combine GNSSs with information about
the traffic network, such as surrounding railway or bus stops, to identify the transport
mode [12]. Lastly, there are multisensor solutions that do not use GNSSs, such as [13], which
uses accelerometer and magnetometer data processed with a convolutional neural network.
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The presented method makes use of sensors embedded in the smartphone, particularly
the accelerometer, the magnetometer and the barometer at 50 Hz, and of the out-of-the-box
GNSS position and the GNSS velocity at 1 Hz.

Figure 9 shows the flow diagram of the multisensor-based transport mode identification.

Figure 9. This figure presents the flow diagram of the multisensor-based transport mode identification.

On the one hand, the identification of transport modes is carried out with a convo-
lutional neural network using the signals of the accelerometer, the magnetometer and
the barometer. On the other hand, in parallel, the identification of transport modes is
carried out based on map matching. To this end, the GNSS position and GNSS velocity
are correlated with the available map of the bus, tram and subway stops/stations. The
predefined trajectories of the bus, tram and subway are included in the map.

Under normal circumstances, the output of both subsystems of the parallel detection
is congruent. However, under attack, the output of both parallel systems differs. In the case
of non-coincident outputs for a long period of time, the map-matching subsystem, which is
only based on GNSSs, is switched off since it is considered under attack.

3.1.1. Convolutional Neural Network

For the convolutional neural network subsystem depicted in Figure 9, we use the
information of the accelerometer, the magnetometer and the barometer embedded in the
smartphone to identify the currently used transport mode.

For the algorithm depicted in Figure 10, the input is a coded image containing infor-
mation of the acceleration, magnetic field and air pressure. The first layer of the feature
extraction contains 32 filters that are applied with a 3 × 3 pixel kernel. The activation layer
chosen is ReLu to eliminate possible negative values that may appear after the convolution
operation with the filters. A second layer of filters is used to extract higher-order features
and detect more complex patterns than with only one layer. This layer contains 64 filters
that are applied with a 3 × 3 pixel kernel. Again, the activation layer is ReLu.

The third activation layer is a maximum pooling layer applied with a 2 × 2 pixel
kernel. The next layer is a 25% drop-out layer, in which the connections between neurons
are removed with a 25% probability. The last part is the flatten layer, where the features
obtained are serialized to serve as input for the next stage.

After the feature extraction comes the classification layer. This stage consists of three
different layers. The first is a fully connected neural network consisting of 128 neurons and
a ReLu activation function. The second is a 50% drop-out layer. Finally, there is a layer that
performs the classification between transport modes, with a softmax activation function.

Figure 11 shows the output of the identification of transport modes based on the
accelerometer, the magnetometer and the barometer signals corresponding to the journey
recorded in Munich shown in Figure 2. This figure shows how the transport modes are
correctly identified with the multisensor approach. There are, however, some outliers
indicating confusion between different transport modes that can be afterwards eliminated
comparing the multisensor identification and the only-GNSS-based identification.
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Figure 10. This figure presents the block diagram of the convolutional neural network identification
of transport modes.

Figure 11. This figure shows the representation over time of the transport mode used during the
journey in Munich in blue and the transport modes identified by the convolutional neural network
in orange.

Figure 12 shows the output of the identification of transport modes based on the
accelerometer, the magnetometer and the barometer signals corresponding to the journey
recorded in Paris shown in Figure 3. This figure shows how the transport modes are
correctly identified with the multisensor approach. There are, however, some outliers
indicating confusion between different transport modes that can be afterwards eliminated
comparing the multisensor identification and the only-GNSS-based identification.
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Figure 12. This figure shows the representation over time of the transport modes used during the
journey in Paris in blue and the transport modes identified by the convolutional neural network
in orange.

3.1.2. Map Matching

For the map-matching subsystem depicted in Figure 9, we use an only-GNSS-based
map-matching algorithm to identify the currently used transport mode. The map-matching
algorithm is an algorithm that matches geographic coordinates to a logical model of the
real world, e.g., a map. As depicted in Figure 9, the map-matching algorithm uses only the
GNSS position and GNSS velocity. We use the OpenStreetMap to match the current position
with the surrounding types of path, i.e., railway, road and sidewalk. In case of ambiguities
because many types of path are at the same location, we use the velocity averaged over the
last 5 s to distinguish between different possibilities. There is rarely only one type of path,
since it is a common urban design that the sidewalks and roads and even the rails of the
tram are deployed at the same spot in parallel, as shown in Figure 6.

The limiting factor of only using the GNSS position and the GNSS velocity is that
the identification of all transport modes detected with the multisensor approach is not
possible. For example, in scenarios of no satellite reception, such as in stations or subways,
no detection is possible. This approach is heavily influenced by the map as well, in this
case the OpenStreetMap. Sometimes the information of all bicycle lanes is not included;
therefore, we excluded the transport mode of the bicycle. Figure 13 shows the block
diagram of our map-matching algorithm.

Figure 14 shows the output of the identification of transport modes based on GNSSs
corresponding to the journey recorded in Munich shown in Figure 2. This figure shows
confusion mainly between the tram and bus due to their very close and parallel tracks
and similar velocities. From the minute 16 until the minute 26, the passenger was in the
bus; however, the bus did not start the journey until minute 23. The fact that the bus is
detected with the multisensor approach in Figure 11 is due to the fact that the motor of the
bus was on while waiting at the initial bus stop and the vibration was detected. However,
the velocity is zero, since the bus is still at the bus stop; therefore, the only-GNSS-based
approach detects standing.

Figure 15 shows the output of the identification of transport modes based on GNSSs
corresponding to the journey recorded in Paris shown in Figure 3. This figure shows that
during a great part of the journey there was no satellite reception. After minute 5, the
passenger enters the station to catch the subway; thus, the reception is lost. The walking
part missing from minute 16 until minute 30 occurs in the station as well. However,
the subway line travels for some stations at a ground level; thus, there is again satellite
reception from minute 31 until minute 37.
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Figure 13. This figure presents the block diagram of the map-matching GNSS-based identification of
transport modes.

0 5 10 15 20 25 30 35
Time (min)

No signal

Standing

Walking

Bus

Tram

Subway
Reference
Identification

Figure 14. This figure shows the representation over time of the transport modes used during the
journey in Munich in blue and the transport modes identified with the GNSS-based map matching.
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Figure 15. This figure shows the representation over time of the transport modes used during the
journey in Paris in blue and the transport modes identified with the GNSS-based map matching.

3.1.3. System-Under-Attack Check A

The faulty navigation signal we generated for the journey, recorded in Munich, was
introduced at minute 16 and consists of a modified GNSS position and GNSS velocity. The
modifications were performed with the aim of replicating a bicycle trajectory. To this end,
the GNSS position was moved from the bus lane to the bicycle lane and the GNSS velocity
was reduced to 20 km/h. The length of the journey was reduced as well.

As a result of the faulty navigation signal, the multisensor-based identification of
transport modes obtains non-coincident outputs from minute 16 on; thus, the system
is considered under attack and the identification of transport modes only based on the
acceleration, the magnetic field and the air pressure are taken into account.

The faulty navigation signal we generated for the journey, recorded in Paris, was
introduced at minute 21 and consists of a modified GNSS position and GNSS velocity. The
modifications were performed with the aim of shortening the journey. To this end, the
GNSS position was modified to leave the station at Montparnasse and walk 500 m in the
south direction and the GNSS velocity was reduced to 4 km/h to replicate walking.

As a result of the faulty navigation signal, the multisensor-based identification of
transport modes obtains non-coincident outputs from minute 21 on; thus, the system
is considered under attack and the identification of transport modes only based on the
acceleration, the magnetic field and the air pressure are taken into account.

3.2. Only-GNSS-Based Transport Mode Identification

In this section, we present an alternative method to detect attacks to the satellite signal
that are prone to induce errors in the identification of transport modes. The presented
method makes use of the drift between the GNSS receiver clock of the smartphone and the
GPS time (only the GPS constellation is used; therefore, we call it in the following GPS time)
to check whether the system is under attack and uses the out-of-the-box GNSS position
and GNSS velocity at 1 Hz to identify the currently used transport mode.

Figure 16 shows the flow diagram of the only-GNSS-based transport mode identification.
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Figure 16. This figure presents the flow diagram of the only-GNSS-based identification of transport
modes.

3.2.1. System-Under-Attack Check B

Positioning satellites are equipped with atomic clocks with a stable drift synchronized
with each other [14]. The GNSS receiver clock of the smartphone is not synchronized with
the GPS time. Therefore, there is an offset between the GPS time and the GNSS receiver
clock of the smartphone [14].

However, in the case of an attack, the offset between the GPS time and the GNSS
receiver clock of the smartphone suddenly changes when the attack starts, since the smart-
phone does not receive the legitimate navigation signal from the satellites anymore but
rather the faulty navigation signal from another transmitter.

The transmitter of the faulty navigation signal requires an atomic clock and needs to
synchronize its oscillator with GPS time to avoid a sudden change in the offset between
clocks. This is unlikely to happen for the purpose of deceiving the e-ticketing system.

Therefore, the continuous observation of the offset between the GPS time and the
GNSS receiver clock of the smartphone allows detecting the attack. In [15], the authors
explain the limitations of commercial off-the-shelf receivers and why and how the clock
bias can be used to detect attacks. This method does not require additional hardware or
software, and the required information is provided by the navigation chip. Furthermore,
in [16] the authors experimentally demonstrate how the clock bias analysis allows for the
detection of such attacks.

Figure 17 shows an outlier when there is a variation between the GNSS receiver clock
of the smartphone and the GPS time. This happens when the spoofing attack starts and
ends. The faulty navigation signal we generated for the journey recorded in Munich was
introduced at minute 16 and it lasted until minute 23.

Time (min)

C
lo

ck
 d

rif
t (

s/
s)

Figure 17. This figure shows an outlier when there is a variation between the GNSS receiver clock
of the smartphone and the GPS time. The faulty navigation signal is introduced at minute 16 and it
lasted until minute 23.
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Figure 18 shows an outlier when there is a variation between the GNSS receiver clock
of the smartphone and the GPS time. This happens when the spoofing attack starts and
ends. The faulty navigation signal we generated for the journey recorded in Paris was
introduced at minute 21 and it lasted until the end of the journey. From minute 6 until
minute 32 (see Figure 15) there was no satellite reception. The periods of no satellite
reception have been indicated in Figure 18 with a gray shadow. The signal loss yields
to no signal interruption because the out-of-the-box GNSS solution of the smartphone
extrapolates the offset between the clocks during the period of no reception.

The attack starts under no satellite reception conditions at minute 21. The introduction
of the faulty navigation signal produces an outlier in the offset of the clocks, as shown in
Figure 18.

Time (min)
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ck
 d

rif
t (

s/
s)

Figure 18. This figure shows an outlier when there is a variation between the GNSS receiver clock of
the smartphone and the GPS time. The faulty navigation signal was introduced at minute 21 and it
lasted until the end of the journey.

However, there are limitations of the method of detecting the attack based on the GNSS
receiver clock: if the attack occurs exactly at the same time as the smartphone recovers
the GNSS reception, e.g., when leaving an underground station, there is no possibility of
differentiating between an attack and the pure recovery of GNSS reception. Nonetheless, the
out-of-the-box GNSS navigation signal provided by the smartphone is usually extrapolated
from the last received GNSS signal to cover the periods of no reception.

3.2.2. Map Matching

The only-GNSS-based identification of transport modes will be calculated only in the
case that the system is not under attack. If the system is not considered under attack, the
identification of transport modes is carried out using the out-of-the-box GNSS position and
GNSS velocity with the map-matching algorithm explained in Section 3.1.2. The figures of
the transport modes identified correspond to Figures 14 and 15.

4. Discussion

In Section 3, we have presented two different methods to make the smartphone-based
transport identification of transport modes resilient under GNSS-based attacks, particularly
spoofing. We have demonstrated that the identification of transport modes only based
on the GNSS position and velocity is vulnerable, because the GNSS legitimate navigation
signal can be replaced by a faulty navigation signal.

The multisensor-based identification of transport modes has the advantage of using
sensors that are embedded in commercial smartphones, such as the accelerometer, mag-
netometer, barometer and GNSS receiver. The combination of different and independent
sources of information has three main advantages. First, the map matching (GNSS-based)
solves ambiguities, such as the outliers outputted by the convolutional neural network
(accelerometer-, magnetometer- and barometer-based) shown in Figures 11 and 12. Second,
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the system-under-attack check B is simply based on the long-term incongruities between the
outputs of the convolutional neural network and the map matching. By default, the system
decides that the GNSS signal has been attacked because this is more likely to happen than
that the accelerometer, magnetometer and barometer are all malfunctioning simultaneously.
Third, the transport mode identification can also be realized in scenarios where the satellite
reception is not possible, such as stations or underground, as shown in Figure 15, using
only the convolutional neural network.

The only-GNSS-based identification of transport modes has the advantage of being
computationally cheap, since the information required for the identification of transport
modes is only the out-of-the-box GNSS position and GNSS velocity at 1 Hz. This reduces
considerably the amount of data that has to be either processed in the smartphone or
transmitted to the cloud, compared with the multisensor method. Both the GNSS position
and GNSS velocity are always available provided the smartphone has satellite reception.
The system-under-attack check B only requires checking for outliers between the GPS time
and the GNSS receiver clock of the smartphone, as Figures 17 and 18 show. Likewise, if
there is no satellite reception, the attack might not be detected, since outliers between the
GPS time and the GNSS receiver clock of the smartphone can also be due to losing the
satellite reception, e.g., entering a roofed station or using the subway.

The system-under-attack check B, based on the GNSS receiver clock, can also be
applied to the multisensor-based identification of transport modes as a redundancy to
confirm whether the GNSS is under attack.

5. Conclusions

The objective of this work was to present and discuss two smartphone-based methods
for identifying the use of subways, trams, buses, walking and bicycles in terms of their
resilience under GNSS-based attacks. We have demonstrated with real measurements
recorded with commercial smartphones in two representative cities, Munich and Paris,
that malicious modifications of the legitimate GNSS signal were not able to deceive the
identification of transport modes using our two proposed methods.

The presented technology enables a trustworthy ticketing system that allows a seamless
and reliable identification of transport modes, allowing passengers to receive a monthly/weekly
consolidated bill for the use of the entire transport network, including public transport and
rental bicycles.
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