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Abstract: Over the last two decades, mobile phone data have appeared to be a promising data
source for mobility analysis. The structure, abundance, and accessibility of call detail records
(CDRs) make them particularly suitable for such use. However, their exploitation is often limited
to estimating origin–destination matrices of a restricted part of the population: regular travellers.
Although these studies provide valuable information for policymakers, their scope remains limited
to this subpopulation analysis. In the present work, we develop a collective mobility reconstruction
method adapted to nonregular travellers. The method relies on the notion of the detour ratio,
which makes it robust to the lack of mobile phone data as well as its application to large instances
(large and dense telecommunication networks). It is used to conduct a longitudinal analysis of the
macroscopic mobility patterns in Santiago de Cali, Colombia, thanks to call detail data shared by
communication provider CLARO as part of a research project conducted by Citepa, Paris, the Green
City Big Data Project.

Keywords: mobile phone data; call detail records; mobility patterns; macroscopic mobility reconstruction;
collective mobility reconstruction; total travelled distances

1. Introduction

A clear description of mobility patterns is essential for policymakers to identify mobil-
ity needs, anticipate the effects of planning decisions, and adapt the network management
strategies in real-time to short and long-term disruptive phenomena (accidents, climatic
phenomena, pandemics). Over the last two decades, mobile phone data have gained
increasing interest as data sources for analysing these mobility patterns [1]. Compared to
more traditional datasets (surveys, ticketing or loop detectors), these data offer several ad-
vantages. They can capture macroscopic mobility geographic patterns and dynamics [2–4]
across different modes of transport and have a high penetration rate among populations,
almost regardless of the territory studied.

Call detail records (CDRs) are the most popular and accessible mobile phone data type.
They are passively generated by mobile phone users when communicating and initially
stored by providers for billing purposes. Each record characterises a subscribed user’s
communication activity, whether incoming or outgoing. The data attributes specify the
user’s ID, the communication type (call, text message, internet browsing session), the time
of the communication event, and the ID of the base station that processed the event. The
records can also include additional data, such as the base station type (2G, 3G, 4G).

Although their structure is well suited to mobility analysis, CDRs have two significant
limitations. First, their spatial granularity depends on the local density of the network
base stations: the denser the network, the higher the spatial resolution of the data. Second,
the dependence of the data collection on user communication activities implies varying
sampling rates. Users who emit or receive no communication event generate no location
information. Then, their mobility tracks are either partially or entirely missing [5–7].
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To overcome this latter limitation, the mobility analyses conducted in the literature
were often restricted to a subset of advantageous mobile phone users. For instance, the
origin–destination matrices (the most frequently evaluated variable, [8–10]) are estimated
from users characterised by their regular activities and mobility patterns [9,11,12]. Those
users’ available data history and mobility regularity allow for reconstructing their mobility
through user-centric approaches [7,13] and mitigating the mobility information gaps caused
by the significant inter-event times. By excluding other travellers, these methods will likely
exclude peculiar mobility patterns. It can be problematic to characterise the overall traffic
or externalities such as traffic air emissions.

In particular, two types of travellers are disregarded in these approaches. The first
type corresponds to individuals observed daily but characterised by nonregular mobility
patterns. It can include taxi or delivery drivers who travel greater distances than regular
users. The second type corresponds to travellers observed too occasionally in the dataset,
such as visitors. Taken individually, these users have a limited contribution to the overall
and long-term mobility and urban traffic. However, they may be highly mobile during
their short time in the city and contribute, as a group, to significant mobility externalities.
To date, only a few studies have focused on the contribution of those user profiles to urban
mobility. For instance, some works [14] have analysed visitor patterns using roaming
phone data, which is peculiar to foreign visitors and, therefore, inadequate for studying
national tourism flows. Other authors [15] have looked into detecting tourists from CDR
data without analysing their contribution to urban mobility patterns.

Several studies have demonstrated the utility of applying an aggregated approach to
monitoring the mobility of various groups of users at a large scale, defined according to
gender or professional activity [16], or tracking the response of the population to the COVID-
19 sanitary measures [17]. In this paper, we question the possibility of reconstructing
such aggregate mobility patterns for nonregular users from mobile phone data. We design
a collective and macroscopic mobility reconstruction methodology, which can profitably
complement individual-centred methodologies of the literature applied to regular users.

Our main contributions to the field are the following:

• We argue that estimating origin–destination matrices of nonregular users is pointless
due to representativity issues and focus instead on estimating total travelled distances.

• We define a methodology to select CDR users with reliable mobility information.
• We develop a cost-efficient method to infer travelled distances based on origin and

destination positions and detour ratio.
• We test the method on two months of data covering the Colombian city of Santiago

de Cali and evidence macroscopic patterns in the daily total travelled distances of
nonregular travellers, including weekly seasonality and longer-term trends.

• We additionally explore the macroscopic patterns of the overall population and draw
research perspectives from the results.

The American communication provider CLARO provided the evaluation data to
Citepa (a non-profit organisation and state operator for the French Environment Ministry)
as part of a research and development project named Green City Big Data.

The rest of this article is structured as follows. Section 2 presents our methodology.
Section 3 presents our case study and the available data. Section 4 displays the results
of our method applied to that case study. Section 5 finally discusses the results and the
improvement we consider as the following work.



Future Transp. 2023, 3 256

2. Methodology
2.1. Design and Method Outline

We assume that travellers can be divided into two categories: regular and nonregular
travellers. Considering an urban study area of limited extent, nonregular travellers include
both occasional visitors and travellers that are frequently observed in the area but have
non-recurrent activity chains. Therefore, a preliminary step of our work is to separate CDR
users into such two classes (Section 2.2).

Then, reconstructing the mobility patterns of nonregular users raises the question of
determining an analysis variable adapted to this population. Origin–destination matrices
are the most frequent mobility variable estimated to represent mobility patterns based on
the extraction of trips from mobile phone data. However, their upscaling to the overall
population implicitly assumes that the sampled user activity chains are representative of
the overall population. This assumption can be considered satisfactory when considering
travellers moving regularly. However, when analysing nonregular travellers, it is not valid
anymore; the global mobility of such users cannot be abstracted from observations made
on a single day. This problem, often neglected in the literature, requires defining a larger
scale of analysis and selecting mobility variables, such as distance travelled, appropriate
for studying nonregular users.

To estimate those distances, one must overcome the bias that incomplete mobility data
(as derived from CDRs) imply. To this end, we design a collective mobility reconstruction
approach involving the definition of a data completeness attribute and the selection of
representative nonregular users on that basis (Section 2.3). Then, we develop a method to
estimate efficiently travelled distances from mobility data limited to origin and destination
information (Section 2.4), well adapted to the scarce trajectory information characterising
CDR data. The method relies on the concept of detour ratio, introduced in [18]. We apply
it to the subsample of users whose communication activity provides reliable distance
estimation, then upscale the results to represent the overall nonregular population. Figure 1
illustrates this overall process.

Figure 1. Nonregular travelled distance estimation process.



Future Transp. 2023, 3 257

2.2. Nonregular Travellers Extraction

The first stage of our methodology involves identifying nonregular travellers from
CDR data. Two successive classification methods are proposed to reach this objective.

The first classification step aims at categorising users according to their daily presence
profile in the area. The main objective is to identify local users versus visitors. The literature
proposes many different approaches to carry out rich classifications [19–23]. We adopt a
binning approach based on the definition of some simple rules that allow us to separate
the population into three subgroups: residents, commuters, and visitors. Macroscopic
indicators derived from census and survey data helped calibrate the binning rules. This
classification process is presented in Appendix A and further details of this approach can
be found in [24]. Once users are classified, we can relate the sample sizes |s| (e.g., detected
residents, commuters, or visitors) to the size of the corresponding groups |Ps| within the
overall population (respectively, overall population of residents, commuters, or visitors) to
associate to each a scaling factor fs:

fs =
|Ps|
|s| (1)

The second classification step involves identifying nonregular users from residents and
commuters (local users). Visitors are considered nonregulars by default. The classification
of local users relies on the measurement of their temporal–uncorrelated entropy Su [25]:

Su = −
Nu

∑
i=1

pu(i) · log2 pu(i) (2)

where pu(i) is the historical probability of user u visiting location i, i.e., the total number
of times user u visited location i over the study period, divided by the total number of
visits generated by u over the study period [25,26]. The users whose entropy is below
one standard deviation above the mean value are considered regular travellers, others as
nonregulars. In our case study, Santiago de Cali, this results in a classification of 11% of the
local (residents and commuters) population as nonregular. At the same time, we estimate
that nonregular users are slightly more represented in the commuter population (13%) than
in the resident one.

2.3. Subsample Selection for Collective Mobility Reconstruction

The second stage of the method focuses on identifying a subsample of users with fully
characterised mobility patterns.

Users’ sparse communication rates may prevent observing their mobility patterns to
their full magnitude. Not detecting a trip or visit because of long interevent times can result
in misunderstanding the user’s activity chain, trajectories, and overall travelled distance.
The literature provides user-centric latent mobility reconstruction approaches [7,13] to
tackle this issue, filling the mobility gaps with history-based automatic learning. These
methods are adapted to regular users, but the little history or lack of redundancy of mobility
patterns of nonregular users prevent using such a method. Therefore, a more collective
mobility reconstruction approach is needed.

We make the following hypothesis. We assume that the distance travelled by users is
independent of their communication rates. Under this hypothesis, the most active share
of the population (whose mobility patterns can be considered complete) is considered
statistically representative of the less communicating users.

We introduce metric ρc to measure individual daily data completeness and suppose
that we can identify a minimum threshold ρmin

c above which the travel distances are
well estimated.

Different completeness metrics can be defined. In [13], authors use “the fraction of
time intervals [of one hour] for which [they] have at least one location sample”. Due to
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the specific features of the data used in this paper (cf. Section 3), we instead choose as a
metric the daily time with known positioning. For a given user, let S be the set of sequences
of consecutive communication events occurring at the same location, and let δs be the
duration of such a sequence s. We define daily completeness as:

ρc =
∑s∈S δs

∆d
(3)

where ∆d is the duration of the day.
Note that when sequences are made of a single communication event, i.e., their

duration is null, we disregard them from the completeness computation. In practice, the
literature generally considers those nonlasting sequences as pass-by points of a trip, as
opposed to the long sequences assimilated to static activities. Therefore, our approach
bases the study of completeness on the static activities of users.

Thereafter, we will note U irr
d the set of irregular users observed on day d, and U irr,c

d
the subset of irregular users observed on day d whose data completeness exceeds ρmin

c :

U irr,c
d = {u ∈ U irr

d |u.ρc > ρmin
c } (4)

On the contrary, let U
irr,p

d be the set irregular users observed on day d that display
partial mobility data. We propose to estimate the distance travelled by the subpopulation
U

irr,p
d before expanding the conclusions to the overall nonregular users U irr

d .

2.4. Travel Distance Calculation
2.4.1. Metric Definition

The distance calculation method we apply to users in U irr,c
d relies on an initial data

processing phase to identify the different locations visited during the day by travellers.
This topic is out of the scope of this paper, especially as the method applied is extracted
from well-known literature addressing the issue [10,27]. The method consists of classifying
communication events as either static or dynamic. Static events are aggregated into mobility
phases called stays, whereas dynamic events characterise trajectories in between stays.

However, the burstiness of human communication patterns [6,28–30] and the spatial
resolution of the data often result in trajectories too sparse for the direct estimation of
distances travelled. Instead, we use the shortest path between consecutive static communi-
cation sessions as a proxy for the distance travelled. Depending on the network density
and size, computing the shortest paths can be costly; we develop a lightweight hybrid
approach which does not systematically rely on actual shortest path computation.

We adapt the concept of detour ratio, first introduced by [18] to nominate the ratio
of the trip length d with a baseline distance dR, e.g., the Euclidean distance [3,18] or the
shortest path distance [3]. This concept characterises the extra amount of distance travelled
compared to the baseline distance. We adjust this notion by defining a detour ratio ρD as
the ratio of the shortest path distance dSP with the Euclidean dE:

ρD =
dSP
dE

(5)

The detour ratio ρD can be calibrated as a function of Euclidean distance dE using a
limited set of synthetic shortest paths on the studied network. Then, given the Euclidean
distance between two geographic positions p and q, one can estimate the shortest path
distance as:

d̂SP(p, q) = ρD(dE(p, q)) · dE(p, q) (6)

This approach provides a cost-effective method to estimate the shortest path distance
from one position to the other and is particularly fitted to large networks. Its main limitation
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is that the detour ratio presents a significant variability for short Euclidean distances, for
which it should not be trusted. We overcome this issue with a dedicated approach to small
Euclidean distances, for which we resort to a direct shortest path distance calculation. This
calculation is facilitated by the analysis of a limited spatial perimeter, and therefore short
computation times.

To summarise, we define a hybrid method dH to estimate the shortest path distance
between two consecutive visited locations, based on direct shortest path identification for
short Euclidean distances and on a cost-efficient shortest path distance approximation with
detour ratio for larger Euclidean distances. Plotting the detour ratio function can provide a
reasonable value for the distance threshold dmin determining for which distance each of
those two approaches should be used. The metric dH is formally defined below:

dH : R2 ×R2 → R

(p, q) 7→
{

dH(p, q) = dSP(od) if dE(p, q) < dmin

dH(p, q) = ρD(dE(p, q)) · dE(p, q) ifdE(p, q) ≥ dmin
(7)

where dSP(p, q) is the shortest path distance between positions p and q. Figure 2 provides an
illustration for each of these methods. The overall daily distance travelled by a user is simply
defined as the sum of distances of the trips of the user’s activity chain A = (a0, . . . , an):

TTDu = ∑
i≤n−1

dH(ai, ai+1) (8)

Figure 2. Illustration of the hybrid approach for estimating the distances travelled by an individual
between two base stations. Left: for long distances, we resort to an approximation of dSP through
the use of a detour ratio function and the Euclidean distances between the base stations. Right: for
short distances, we proceed to a calculation of the shortest paths, allowed by the analysis of limited
geographical areas.

2.4.2. Validation

Using a detour ratio function to estimate shortest path distances necessarily results
in approximation in the distance estimations. These errors can be additionally fuelled by
the coarse spatial resolution of the communication network; estimating distances from one
base station to the other necessarily implies a bias compared to the distance between the
microscopic origin and destination points. We propose a simple validation framework to
evaluate these errors.

First, we generate synthetic trips at the scale of the road network by sampling origin
and destination nodes and computing the shortest path between them. Second, we degrade
the origin and destination positions to the corresponding base stations (bo, bd), to represent
the information retrieved from mobile phone data. Using those estimated origin and
destination positions, we compute both the Euclidean distance dE(bo, bd) and the hybrid
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distance dH(bo, bd), and compare both of them to the reference shortest path distance. The
results of this analysis are presented in Section 4.2.

2.5. Distance Upscaling

Once the daily travel distances of individuals in U irr,a
d have been estimated, we

perform a double scaling to extrapolate the conclusions to the population it represents.
First, the individual distances are upscaled according to the weight fu = fs of the sample s
to which the user u belongs.

TTDirr,a = ∑
u∈U irr,a

d

TTDu ∗ fu (9)

Then, the resulting total distance is further upscaled in order to represent as well the
population that was filtered because of too little data completeness.

TTDirr = TTDirr,a ·
∑u∈U irr

d
fu

∑u∈U irr,a
d

fu
(10)

3. Case Study

This methodology was applied to mobile phone data provided by the American
communication provider CLARO to Citepa, the French state operator leading this research
project. The data horizon length is two months of the pre-COVID-19 period (January and
February 2020). Its spatial coverage consists of the greater area of the Colombian city of
Santiago de Cali, the third most populous city in Colombia.

For privacy protection and transfer efficiency reasons, the data shared by CLARO was
compressed and reduced to the mobility information only. Users’ consecutive communica-
tion events occurring at the same base station were aggregated into a unique communication
sequence entry. The resulting communication sequences were characterised by the users id,
the base station location, the timestamps of the first and last event of the sequence, and the
number of events observed during the sequence. Tables 1 and 2 provide an illustration of
regular CDR data and the format of the data as shared by CLARO.

Table 1. Raw data structure.

User ID Base Station Timestamp Event Type Technology Emission/Reception

A BS1 09:10 sms 3G incoming
A BS1 09:20 sms 3G outgoing
A BS1 17:40 call 3G outgoing
A BS2 21:30 data 4G incoming

Table 2. Compressed data structure.

User ID Base Station First Timestamp Last Timestamp # of Events

A BS1 09:10 17:40 3
A BS2 21:30 21:30 1

The shared data covers the 22 urban and 15 rural districts of Cali and two neighbouring
municipalities, Yumbo in the north and Jamundi in the south (see Figure 3). Table 3 provides
extensive population and surface indicators of the covered area.
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Table 3. Comparison of the perimeter properties in term of geography and available data.

Total Municipality

Jamundi Yumbo Cali
Total Urban Area Rural Area

Population (mil.) 2.72 0.13 0.13 2.46 2.43 0.03
Area (km2) 1434 632 234 569 123 446
# of BS 440 26 41 371 339 32
# of BS per km2 0.36 0.04 0.18 0.65 2.79 0.7

A total number of 440 base stations are covering Cali, Yumbo, and Jamundi with
an uneven density. The base station network is denser in the city centre than in the city
surroundings, where approximately 70% of the base stations are located. The network
density there is 2.79 base stations per square kilometre, whereas it is 0.16 base stations per
square kilometre outside of Cali. Figure 4a illustrates the inhomogeneous distribution of
the base stations over the area and Figure 4b represents the Voronoi’s tesselation of the base
station network. This tesselation is classically used in the literature to represent the spatial
resolution of the data. It identifies the theoretical geographical area covered by each base
station. This tesselation is often used to infer the users’ positions by assuming that users’
events are processed by the closest base station.

Figure 3. Valle del Cauca administrative division.
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(a) Distribution of the 440 base stations over
the municipalities of Cali, Jamundi, and
Yumbo

(b) Voronoi tesselation of the territory based
on the base station positions

Figure 4. Cali’s base station network.

In order to estimate the distance travelled both within the city and in its surrounding
rural districts, we divide the base station network into two large subareas. As the tessella-
tion defined by the Voronoi’s polygons of the BS network does not match the administrative
boundaries of the city, we associate to the inner city of Cali all the base stations’ antennas
located within a buffer of 700 metres outside of its administrative border. Note that since
these base stations have variable spatial coverage, the resulting area boundary may be
irregularly distant from the administrative city limits, as can be seen in Figure 5. Thereafter,
we will call Z0 the inner region and Z1 the outer area.

Figure 5. Partitioning of the network into two subnetworks.

4. Results

This section first presents three short methodological studies:

1. the calibration of the detour ratio function required to set up the parameters of dH ;
2. the evaluation of the approximations implied by dH ;
3. the determination of a reasonable individual data completeness threshold for selecting

nonregular travellers used for mobility reconstruction.
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Then, we conduct an extensive analysis of the mobility patterns over the two months
of data.

4.1. Detour Ratio Calibration

A set of synthetic origins and destinations are sampled from the network and used for
calibrating the detour ratio function in Cali. For each trip, both the Euclidean and shortest
path distance between the origin and the destination are measured. Applying Equation (5),
we compute the corresponding detour ratio and relate it to the Euclidean distance. The
detour ratio values are averaged by steps of 500 m, and those measurements are used to
fit a decaying relationship describing ρd as a function of dE, as illustrated in Figure 6. We
found this curve can be fitted by:

ρD = 1.132 +
0.872

dE + 0.548
(11)

with R2 = 0.97. This relationship provides the numerical values for estimating the shortest
path distance directly from the Euclidean one.

Figure 6. Detour ratio function calibration: global and zoomed-in plots.

4.2. Hybrid Distance Metric Evaluation

In this section, we implement the evaluation protocol described in Section 2.4.2. The
objective is twofold. First, it is a question of evaluating the estimation errors introduced
by our method in comparison with the lengths actually travelled if travellers followed the
shortest path. Secondly, it is also a question of identifying the gain compared to a simple
calculation of distances based on Euclidean distances, used in some literature works.

Using 2000 synthetic trips on the city of Cali, we compare the real shortest path
distance to the estimated distance using the hybrid metric dH and using the Euclidean
distance dE instead. In both cases, we evaluate the absolute relative error. Figure 7 displays
the distribution of these errors. The green distribution represents the error distribution for
metric dH , whereas the blue one represents the error distribution for metric dE. The hybrid
metric provides smaller errors than the Euclidean one, with most errors being bounded
below 20%. In addition, we analyse the evolution of the average relative errors with the
Euclidean distance. Results are presented in Figure 8. Since we are measuring relative
errors, it is no surprise that the errors increase drastically when the Euclidean distance
approaches 0. However, when dE increases, the average errors using the hybrid metric
(orange line) quickly get bounded around 10%. This value oscillates around 20% for the
Euclidean distance (blue line). The strong variability of the plot above a Euclidean distance
of 30 km is explained by the limited sample of trips of such lengths.

On average, the deviation from the dSP distance is twice as small with the dH distance
as with the Euclidean distance and remains contained around 10%.
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Figure 7. Relative error distribution with hybrid distance and Euclidean distance.

Figure 8. Average relative error evolution with Euclidean distance dE.

4.3. Sensitivity Analysis

This section presents the analysis of the sensitivity of the individual distance estimate
to the daily communication level.

We compute the daily data completeness ratio for a sample of 30,000 users and relate it
to measured travelled distances. The objective is to determine if there is a data completeness
threshold above which more communication information does not provide more mobility
information. It is displayed in Figure 9 along with the cumulative distribution of the daily
number of events. Up to a completeness of 0.6, we observe a linear growth of the average
daily distance travelled with the daily number of events. After this completeness threshold,
we observe a stabilisation of the average travel distance at a level of approximately 60 km.
This stabilisation seems to confirm that beyond a certain completeness threshold, the
estimated distances are well represented: more data does not mean more distance travelled.
This 0.6 value is on a daily basis to set the completeness threshold ρmin

c used to separate
U irr,c

d and U
irr,p

d . On a daily basis, U irr,c
d represents approximately 5% of U irr

d , which
seems satisfactory to retrieve reliable statistics.

Figure 9. Evolution of the daily distance travelled with the daily data coverage.
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4.4. Application Analysis

In this section, we explore the results of the application of the detour ratio approach
for estimated distances travelled by users. We first evaluate the total travel distances for
the irregular population, then further investigate the distances travelled within the overall
population for each different user category.

Figure 10 displays the total travel distances estimated for the irregular population U irr,
based on a estimation derived from users of Uirr,c and upscaled to the users of Uirr,p.
The blue line represents the trend in the overall region Z0 ∪ Z1, whereas the orange line
represents the distance travelled within the city of Cali only (Z0). To allocate the distance
travelled to the city centre (Z0) or the rural areas (Z1), we draw a straight line from the
origin to the destination and simply evaluate in which proportion it intersects Z0 or Z1.
The distance allocation is distributed accordingly. It appears that the city of Cali represents
a very significant share of the distances travelled in the agglomeration.

Figure 10. Irregular users: total travel distance.

We observe clear weekly seasonality effects with distance drops on Sundays, coupled
with a notable increase in the distance travelled at the beginning of the study period, which
corresponds to the New Year celebrations and vacations. This increase can be explained by
two factors: first, a probable influx of individuals considered irregular, the visitors; second,
a possible increase in the average distance travelled by users during this holiday period.
The number of kilometres travelled is significant. When compared to the total distance
travelled, we estimate that irregular users contribute to 19 to 25% of the mobility volume.

Figure 11 illustrates this trend. Interestingly, it shows how the irregular users have
an increased weight in the global mobility on a weekly basis as well. This weight rises
every Sunday, which means that even though irregular users are relatively less mobile on
Sundays, their mobility drop is weaker than for the regular users. Together, these plots
show that irregular users contribute to an important share of the total travelled distance
and therefore that they should not be neglected.

In Figure 12, the total travelled distances of the overall population is displayed, sepa-
rated by presence profile (residents of Z0 and of Z1, external commuters, and visitors), as
identified using the binning classification. Here again, the visualisation of the total travel
distance plays a weekly regularity. We observe the significant difference of magnitude
between the total travelled distance by residents and other user categories. This observa-
tion can question the utility of considering the contributions of those trajectories to the
distance travelled. However, a deeper investigation showed that commuters and visitors
travelled close to 300,000 km on a daily basis in the overall metropolitan area of Cali, which
is considerable.
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Figure 11. Irregular users: weight in the overall population TTD.

Figure 12. Overall population: total travel distance per category.

Furthermore, we note a significant impact of the completeness filter on commuters,
drastically reducing the sample size. This is explained by the fact that commuting users
live outside of the study area, and hence almost never spend more than 60% of their daily
time in the study area. Therefore, the completeness ratio as it is defined in the paper is
not adapted to this share of the population. This is an important limitation that should be
addressed in future improvements of the method.

To compare patterns on a similar scale, we plot with Figure 13 the total travel distance
of the overall population normalised by the maximal daily distance of the category. We
propose two versions of this graph, the first one in the standard case where the population
is reduced to the users with a completeness higher than 0.6 (Figure 13a), the second one
based on all the users, whatever their completeness level (Figure 13b). This distinction
demonstrates that although commuters are poorly represented in the population reduced
to the most complete users, they actually have aggregate mobility patterns as regular as
the other categories of the population. In Figure 13b, we clearly observe the temporal
shift between the profiles of the most regular users (residents and commuters) and the
profiles of the visitors. In the version reduced to a subsample of the population (Figure 13a),
the temporal regularities appear less clearly. Due to smaller sample sizes and less robust
expansion processes, the results are more sensitive to individual variations. The integration
of larger amounts of data should limit the noise observed on the curves.

Figure 14 displays, for the overall user population, the average distance travelled by
users for each considered mobility profile, both in the overall studied perimeter (Z0 ∪ Z1)
and in the inner city (Z0), and the 95% confidence interval. Figure 14a represents results
derived from the analysis of patterns of users with complete mobility upscaled to the
remaining population. In comparison, Figure 14b represents results derived from the direct
distance estimation of the whole population. We make several observations.
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(a)

(b)
Figure 13. Normalised total travel distances of the overall population: (a) with completeness-based
user selection (standard method), (b) without completeness-based user selection.

(a)

(b)
Figure 14. Average travel distances of the overall population: (a) with completeness-based user
selection (standard method), (b) without completeness-based user selection.

First, the two estimation approaches return different magnitudes for the travelled
distances. The application of our methodology (Figure 14a) provides higher travelled
distances than with a direct estimation from all nonregular users (Figure 14b). On average,
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at the Z0 ∪ Z1 scale, the daily travelled distances vary between 40 and 60 km per day
if we consider the estimates based on a restricted sample, against 15 to 35 with direct
estimation. Two factors explain this difference. On the one hand, the mobility of users from
Uirr,p is likely partial, which contributes to underestimating the actual travelled distance in
Figure 14b. On the other hand, contrary to the hypothesis that we have made, the mobility
of users from Uirr,c may not be entirely representative of the actual mobility of Uirr,p, and a
correlation may exist between the communication activities and the mobility of individuals.

Due to the lack of ground truth data, validating these orders of magnitude is challeng-
ing. The surveys conducted by the administration of Santiago de Cali focus more on the
travel time than on the trip distances [31]. In a paper whose analysis may be out of date [32],
the authors approximated the total distance travelled per type of vehicle (e.g., cars or buses).
Assigning a transportation mode to users or trips is out of the scope of this work; therefore,
comparing our results to this kind of reference is not straightforward. However, we use the
results of similar works, albeit more recent and conducted in countries other than Colom-
bia, to put our orders of magnitude into perspective. For example, Chinese drivers have
recently been reported to travel an average of 28 km per day [33], French drivers 33 [34],
and Americans 59 [35]. In comparison, our results indicate that Cali residents travel on
average between 20 km (without selection of users with complete data) and 60 km per day
(with selection). These figures confirm the above hypothesis that the mobility estimated
from unfiltered data is underestimated but that the drastic user selection is likely to also
result in overestimation. However, one can consider those results as an upper bound of the
distance travelled, which we will refine in future works. We discuss how in the conclusions.

Second, we observe that the study scale influences the relative contribution of different
user categories. With the restricted sample analysis (Figure 14a), residents from Z0 and Z1
are observed to travel equivalent distances (60 km on average) at the scale of Z0 ∪ Z1. At the
scale of Z0 instead, the two resident categories display different contributions: residents of
Z0 travel similar distances, whereas residents of Z1 travel less than 40 km on average. This
suggests that the residents from Cali’s surroundings (Z1) tend to travel more in that area
than residents of Cali city centre. Interestingly, when not restricting the analysis to complete
activity chains (Figure 14b), the results provide a slightly different point of view regarding
this contribution to the distances travelled in Z0 ∪ Z1. Residents from Z1 are estimated
to travel more kilometres on average (above 30) than residents from Z0 (around 25). This
difference compared to Figure 14a shows the sensitivity of the analysis to the filters we set
on communication level and suggests different communication properties between users
of Z0 and Z1. At the scale of Z0 however, we observe relative contributions comparable to
those of Figure 14a.

Lastly, the comparative analysis of Figure 14a,b illustrates the impact of the complete-
ness filter on sample sizes and statistical representativity both for commuter and visitor
categories, as Figure 14a displays high variability and large confidence intervals. Daily visi-
tors may present similar presence patterns to commuters and suffer from the too-high 0.6
completeness threshold.

5. Conclusions

This paper addresses the question of characterising urban mobility patterns from
sparse mobile phone data (CDR) for nonregular travellers. The mobility of those travellers
is not easy to analyse because of several issues. In addition to suffering from the general
limitations of CDR data (coarse spatial resolution and variable sampling rates), the historical
mobility data of these users are not regular enough to reconstruct the missing mobility
information at an individual level. Furthermore, origin–destination matrices, traditionally
used to represent mobility patterns, are inappropriate for representing the mobility of
nonregular users because their activity chains cannot be considered representative.

We propose to evaluate mobility patterns through the scope of the total travel distances.
We propose a collective mobility reconstruction approach: a subsample of nonregular trav-
ellers (with mobility chains weakly impacted by the mobile phone data sparsity) supports
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estimating the distances travelled by the whole group. The sample is selected according to
a completeness threshold following a sensitivity analysis. The distance travelled by those
users is estimated based on a hybrid distance estimation method. We consider that the
shortest path distance is a reliable approximation of the distance travelled by the users,
but avoid the costly computation of those shortest paths by designing a method relying on
the concept of detour ratio. The detour ratio considered here compares the shortest path
distance to the Euclidean distance. We show that this method generates limited errors in
estimating the shortest path distance.

We apply our method to compressed call detail records provided by the American
provider CLARO for Santiago de Cali, Colombia. The method is first applied only to
nonregular users. This analysis evidences that nonregular users often dismissed from
mobility analysis contribute to regular weekly macroscopic patterns of significant mag-
nitude. Those results justify including such users more systematically in urban mobility
analyses and suggest macroscopic approaches can better cope with those travellers than
user-centric approaches.

We also explore the macroscopic mobility patterns of the overall population, classified
according to different mobility profiles (residents, commuters, and visitors). This extensive
analysis allows for identifying the critical limits of our method: the completeness threshold
selected appears to be restrictive for commuters, and to some extent to visitors. As they
live outside the study area, those users generally spend too little time within the area to
reach the selected threshold. Therefore, the samples of “complete” users selected are too
limited to provide representative mobility patterns. A solution to this issue will be defining
a specific completeness threshold for each presence profile.

As often when processing mobile phone data, a challenging aspect of this study is the
validation of the method outcomes. Our longitudinal analysis provides convincing results:
increased weight of nonregular mobility on weekends, weekly seasonality of travelled
distances, or impact on the mobility of events such as holidays. The lack of appropriate
ground truth data prevents accurate validation of the numerical values. However, their
comparison with some literature works on different study areas evidenced consistent orders
of magnitude while suggesting a slight overestimation of our results. The hypothesis we
make in this work, which assumes that individuals’ communication and mobility activities
are independent, is likely to be responsible for this overestimation, as there might be a
positive correlation between those two variables [36]. Characterising this relation will allow
us to calibrate and apply correction factors to rectify this bias and refine our estimates.
Besides, ongoing works for identifying modal share should allow us to estimate travel
distances per mode and relate our analysis to some more ground truth statistics.

This latter research direction is also promising as it opens the door to other assessment
perspectives, such as estimating air emissions from road traffic. In this direction, a key step
will be to couple our collective nonregular mobility reconstruction approach with finer
user-centric methods within a global, multiscale pattern evaluation framework.
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Appendix A

Here, we present the main elements of the users classification according to their
presence profile in Santiago de Cali and its greater area. The different classes targeted are
defined as follows.

1. Residents R: individuals living in the area covered by the antennas;
2. Commuters C: individuals that live outside of the area but enter it on a frequent basis;
3. Visitors V: individuals that mainly live and work outside of the area, but may visit

the studied territory, either for touristic reasons with a dense stay, or from time to
time with shorter stays.

Appendix A.1. A Binning Approach

We use a simple binning approach, where the limits of the clusters are calibrated
based on our observations of the individual behaviors. Based on the definitions selected
previously, we consider as significant discriminating features the following ones:

• fday: the number of days of observation in the area;
• fweekDay: the number of weekdays of observation in the area;
• fnight: the number of nights with observation in the area;
• fmaxStay: the shortest stay (in number of consecutive days) observed over the historical period.

The parameters fday and fweekDay isolate local users (residents and commuters) from
visitors, whereas fnight separates within local users the commuters from the residents.
Introducing fmaxStay allows enriching the distinction between residents and commuters,
commuters being expected not to appear in the area for too many consecutive days because
of weekends. We partition the day into four time windows: night (8p.m.–7a.m.), early
morning (7a.m.–9a.m.), restricted day (9a.m.–6p.m.), and late afternoon (6p.m.–8p.m.).
Daily and nightly features are extracted from the night and the restricted day periods only,
considering that the activities during early morning and late afternoon can vary from one
day to the other.

We make explicit a set of binning rules, summarised in Table A1. Those rules rely on
only two threshold parameters, thigh and tlow. The threshold thigh aims at setting a high
presence threshold that guarantees the users meeting these criteria are local users: they are
present enough in the area, at night or day, to be considered either residents or commuters.
The proposal of threshold tlow is to extend the resident category to users who are sufficiently
observed at day to be considered locals, and sufficiently observed at night to be considered
residents instead of commuters.

Table A1. Binning rules.

Binning Rules Role

fnight > thigh Present at night
Residents or fnight > tlow and fday > thigh or present at day (w/ softer night condition)

or fmaxStay > thigh or has at least a long stay
Commuters fweekDay > thigh Present at day

and not a resident
Visitors User is not a resident Other users

nor a commuter.



Future Transp. 2023, 3 271

Residents

Visitors

Commuters

-

6
fday

fnight

thigh

thightlow

Figure A1. User classification diagram in the ( fnight, fday) plan.

Appendix A.2. Threshold Calibration

Let Rre f
0 and Rre f

1 be, respectively, the population of residents of the city of Cali (Z0) and

of its greater area (Z1). Let also Cre f
1→0 be the populations of residents of Z1 that commute to

work in Z0. We assume that:

1. the penetration rates of the mobile technology within Rre f
0 and Rre f

1 are identical;

2. the penetration rates of the mobile technology within Cre f
1→0 and Rre f

1 are identical.

Note that these assumptions may not hold at a fine geographic scale or when compar-
ing two different regions or differently urbanized areas, due to socio-economic characteris-
tics. However, the geographic consistency and the aggregated spatial scale considered here
support these assumptions in our case.

They allow us to define two macroscopic constants rre f
1 and rre f

2 (derived from census
data [37] and local mobility survey [38]) that the groups of classified CDR data users
should respect:

rre f
1 =

|Rre f
1 |
|Rre f

0 |
= 12% (A1)

rre f
2 =

|Cre f
1→0|
|Rre f

1 |
= 33% (A2)

The ratio rre f
1 describes the relation between the suburban and city population sizes,

whereas ratio rre f
2 characterizes the share of the suburban population that commutes to the

city. We calibrate the thresholds tlow and thigh so that the corresponding sampled popu-
lation groups R0, R1, and C1→0 respect those ratios. This is conducted with a systematic
exploration of the (tlow, thigh) plan, which results in setting thigh to 11 and tlow to 7.

In this work, the resident and commuter classes are aggregated under the local users
class. We look into their mobility regularity to identify regular and nonregular users,
whereas visitor users are by default considered nonregular.
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