
Citation: Moshayedi, A.J.; Roy, A.S.;

Taravet, A.; Liao, L.; Wu, J.; Gheisari,

M. A Secure Traffic Police Remote

Sensing Approach via a Deep

Learning-Based Low-Altitude Vehicle

Speed Detector through UAVs in

Smart Cites: Algorithm,

Implementation and Evaluation.

Future Transp. 2023, 3, 189–209.

https://doi.org/10.3390/

futuretransp3010012

Academic Editors: Ouri E. Wolfson

and Shunde Yin

Received: 1 October 2022

Revised: 14 January 2023

Accepted: 28 January 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Secure Traffic Police Remote Sensing Approach via a Deep
Learning-Based Low-Altitude Vehicle Speed Detector through
UAVs in Smart Cites: Algorithm, Implementation
and Evaluation
Ata Jahangir Moshayedi 1 , Atanu Shuvam Roy 2 , Alireza Taravet 3, Liefa Liao 1, Jianqing Wu 1,*
and Mehdi Gheisari 4

1 School of Information Engineering, Jiangxi University of Science and Technology, No. 86, Hongqi Ave.,
Ganzhou 341000, China

2 Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur 208016, India
3 Deimos Space, Oxford OX11 0QR, UK
4 Department of Cognitive Computing, Institute of Computer Science and Engineering, Saveetha School of

Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
* Correspondence: jianqing.wu@jxust.edu.cn

Abstract: Nowadays, the unmanned aerial vehicle (UAV) has a wide application in transportation.
For instance, by leveraging it, we are able to perform accurate and real-time vehicle speed detection
in an IoT-based smart city. Although numerous vehicle speed estimation methods exist, most of them
lack real-time detection in different situations and scenarios. To fill the gap, this paper introduces a
novel low-altitude vehicle speed detector system using UAVs for remote sensing applications of smart
cities, forging to increase traffic safety and security. To this aim, (1) we have found the best possible
Raspberry PI’s field of view (FOV) camera in indoor and outdoor scenarios by changing its height
and degree. Then, (2) Mobile Net-SSD deep learning model parameters have been embedded in the
PI4B processor of a physical car at different speeds. Finally, we implemented it in a real environment
at the JXUST university intersection by changing the height (0.7 to 3 m) and the camera angle on
the UAV. Specifically, this paper proposed an intelligent speed control system without the presence
of real police that has been implemented on the edge node with the configuration of a PI4B and an
Intel Neural Computing 2, along with the PI camera, which is armed with a Mobile Net-SSD deep
learning model for the smart detection of vehicles and their speeds. The main purpose of this article
is to propose the use of drones as a tool to detect the speeds of vehicles, especially in areas where it is
not easy to access or install a fixed camera, in the context of future smart city traffic management and
control. The experimental results have proven the superior performance of the proposed low-altitude
UAV system rather than current studies for detecting and estimating the vehicles’ speeds in highly
dynamic situations and different speeds. As the results showed, our solution is highly effective on
crowded roads, such as junctions near schools, hospitals, and with unsteady vehicles from the speed
level point of view.

Keywords: vehicle detection; vehicle speed estimation; transportation; unmanned aerial vehicle;
deep learning; remote sensing

1. Introduction

Unmanned aerial vehicles (UAVs) are increasingly used for remote sensing (RS) appli-
cations and are a relatively new category of robots in broader (commercial) use [1]. The
small size, flexible movement, and good control of UAVs [2] combined with the vision
systems [3] open a new gate for measuring and capturing data remotely. Recently, RS
applications using UAVs have been used for various tasks, such as thermography timing
of different thermal orthomosaics and photographs [4], boundary detection between land

Future Transp. 2023, 3, 189–209. https://doi.org/10.3390/futuretransp3010012 https://www.mdpi.com/journal/futuretransp

https://doi.org/10.3390/futuretransp3010012
https://doi.org/10.3390/futuretransp3010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futuretransp
https://www.mdpi.com
https://orcid.org/0000-0002-9457-6267
https://orcid.org/0000-0002-5522-9043
https://orcid.org/0000-0001-7198-4199
https://doi.org/10.3390/futuretransp3010012
https://www.mdpi.com/journal/futuretransp
https://www.mdpi.com/article/10.3390/futuretransp3010012?type=check_update&version=3

Future Transp. 2023, 3 190

parcels [5], complex and irregular field shape [6], accuracy measurement [7] or validating
for utilizing multi-temporal color images [8], and precision agriculture to optimize crops
and facilities crops management [9]. However, visual/object tracking to locate, detect,
and define objects [10] via UAV images is still challenging, even with state-of-the-art deep
learning models (RESNET, Mobilenet, Efficient Net etc.) in the field of computer vision.
Today, deep learning algorithms reach performance close to human experts in many appli-
cations, e.g., traffic surveillance, accident avoidance, traffic intersections [3,10], autonomous
vehicles, and intelligent transport systems. In the related literature, Retina Net, FCOS,
and YOLOv3 (YOLO-v3, YOLO-v3-spp and YOLO-v3-tiny) [11,12], Faster R-CNN [12–14],
multi-perspective convolutional neural network R-CNN [15], and hierarchical Bayesian
algorithm [16] are proposed for vehicle detection based on satellite data or stationary vision
systems. Based on the authors’ knowledge, there are few studies so far about the combina-
tion of UAV, visual/object tracking and speed detection. Moranduzzo et al. [3] proposed a
method based on scale-invariant features transform (SIFT) for vehicle speed estimation in
UAV imagery. The process begins with registering two successive images belonging to a
sequence acquired by the UAV at a height of 200 m. Their results show that the proposed
method generates 80.0% accuracy for car detection on the images acquired at a height of
200 m. Afifah et al. [17] estimated vehicle speed using Euclidian distance. As the first step
in their processing chain, all the images are transformed with warp perspective to align
them with a global coordinate. Then, they are converted to grayscale images and blurred
with a gaussian function. Finally, after performing background subtraction and comparing
and thresholding the images, the vehicle speed is estimated by comparing each vehicle with
itself in the next frame using Euclidian distance. The accuracy of their proposed approach is
92%. However, although very low altitude (<10 m) UAV-based car speed detection systems
can be very effective, a detailed analysis of them has not been performed yet. The present
paper aims to demonstrate the potential of deep learning approaches in newly proposed
car speed detection systems using low-altitude UAV data to help traffic safety and security
in smart cities. This paper makes the following contributions:

1. A more reliable and secure solution to verify vehicle speed using drones instead of
current studies is offered.

2. Providing an effective alternative method against the many reported cases of accident
damages and injuries for police officers as well as fixed traffic cameras.

3. Introducing the quick speed check system, which can be used in places with limited
access and in conjunction with the available speed detection system.

4. A low-altitude drone equipped with a Mobile Net-SSD method to measure vehicle
speed and a network connection capability was employed to implement our approach.

5. To achieve our solution, a low-altitude drone equipped with the Mobile Net-SSD
algorithm was used to detect the speed of vehicles and has the ability to connect to
the traffic police.

6. Several scenarios were taken into account in various conditions, such as road intersec-
tions and settings with abrupt speed changes, to provide more accurate findings.

7. To increase the solution’s speed detection accuracy, the effective cases were tested
and calibrated using a drone. The system was run on Raspberry PI4B for its faster-
processing speed, and memory capabilities, such as capacity and bandwidth, benefit
the deep learning-based computer vision module to run smoothly.

8. In addition to our earlier contribution, which was already discussed above, a movable
camera system was mounted on top of the drone, offering a number of opportunities
to assess our solution at various altitudes along the X and Y axes.

9. In addition, a graphical user interface (GUI) was designed and implemented that
allows us to record the environment’s status, identify problematic conditions based on
speed parameters, and send alarms to the appropriate authorities was built and put
into place. Additionally, we may manage the camera’s status, including its movement,
through the GUI.

Future Transp. 2023, 3 191

In general, the authors of this article believe that based on the variety of tests conducted
in real cases and measurements performed. The results mentioned in the following sections
and the satisfactory performance of the introduced method and system can effectively solve
various scientific problems. The rest of the sections are organized as follows. Section 2
introduces the system setup and methodology used for vehicle detection, tracking, and
speed estimation. Section 3 provides experimental results, followed by a discussion in
Section 4. Conclusions and potential paths for future work are given in Section 5.

2. Materials and Methods

According to the review of the past articles [18] and the investigation of the remaining
cases, vehicle speed detection systems include challenges and difficulties that need to
be reviewed and updated. Some of the most important limitations can be considered
as follows: Structural limitations, e.g., installing cameras at a height of 3–5 m vertically
on the road surface, lead to insufficient visibility on winding roads [17], the cost and
maintenance limitations of fixed cameras, which cause their limited use in places with the
short-term investigation times, special uses, such as schools and hospitals, which have a
lower speed limit than other places, and the possibility of using various processors [19]
based on the Internet of Things(IOT), considering the good accuracy and speed for vehicle
speed detection and tracking mission [18]. Therefore, according to the mentioned cases,
future urban and traffic management requires the use of capabilities, such as maneuvering
and fast movement, of UAVs, regardless of the type and characteristics of the cameras used.
The methodology of the paper is divided into four sections: system setup, which is about
the proposed hardware for the speed sensing system; vehicle detection and tracking, which
is the full description of the method and algorithm used for vehicle detection and tracking
section of the system. The vehicle speed estimation section fully describes the VASCAR
approach used for vehicle speed estimation. The system calibration section demonstrates
the sets of indoor and outdoor system calibration. The whole assembly is meant to capture,
read, and analyze the raw video input from the Raspberry Pi camera and give output in
real-time (Figure 1).Future Transp. 2023, 3, FOR PEER REVIEW 4

Figure 1. Proposed speed detection system (A) the total system scheme and logic, (B) the proposed
UAV, (C) the system performance and designed GUI.

2.1. System Materials
The proposed speed sensing system consists of a UAV, CPU, and vision system, as

well as an object and speed detector along with a web-based GUI (Figure 1A). The UAV
(Tarot TL280H/Air 2205 2000 KV/10 × 4.5 mm) includes a control board (ArduPilot APM
2.8-3DR Robotics, USA), Motors and speed control driver (T-Motor Air 15A_China), GPS
(Ublox NEO-7M u-blox, Swiss), radio controls (TX: NET-Q118G, China), radio transmitter
(RG831B, 8ch 2.4 GHz, China), and battery (PULSE 2250 mAh 3S LiPo Battery, China).
The vision system consists of a Raspberry Pi camera with 1.3–5 MP maximum photograph
resolution (2592 × 1944), a Pan-Tilt system containing two servo motors, which can move
between +90° and −90° (vertically and horizontally) to move the camera and have a con-
trollable view, and an Intel neural compute stick 2. The Intel neural compute stick 2 is the
next generation of Intel’s USB plug-and-play development kit for AI and deep learning
technology, powered by Intel’s Movidius Myriad X Visual Processing Unit (VPU) [20]. It
can be used for real-time analysis of raw video footage from cameras, which normally
takes lots of time on a traditional CPU. Another reason for using this is its unique work-
load-specific hardware acceleration that minimizes data movement. The vision section is
attached to a Raspberry Pi 4 minicomputer via a USB port. The Raspberry Pi processor
and its camera (Pi camera) have been used in various Internet of Things projects and are
recognized as a trustable platform [21]. Among the variety of Raspberry Pi types, the PI 4
type has been chosen as it is the latest available version and supports high speed in data
processing, which is a mandatory requirement for this research. It should be mentioned
as the quad needs light accessories to continue the flight of the PI camera, along with their
small weight, size and processing capability, the Broadcom CPU was selected, which
makes this camera unique [22]. The tilting system is connected to the Raspberry Pi GPIO
connectors mounted on the UAV (Figure 1B). As Figure 1 shows, the whole system works
such that after running the program inside the PI, the camera, as the first part of the sens-
ing system, captures the video stream and feeds it into the raspberry pi computer. The

Figure 1. Proposed speed detection system (A) the total system scheme and logic, (B) the proposed
UAV, (C) the system performance and designed GUI.

Future Transp. 2023, 3 192

2.1. System Materials

The proposed speed sensing system consists of a UAV, CPU, and vision system, as
well as an object and speed detector along with a web-based GUI (Figure 1A). The UAV
(Tarot TL280H/Air 2205 2000 KV/10 × 4.5 mm) includes a control board (ArduPilot APM
2.8-3DR Robotics, USA), Motors and speed control driver (T-Motor Air 15A_China), GPS
(Ublox NEO-7M u-blox, Swiss), radio controls (TX: NET-Q118G, China), radio transmitter
(RG831B, 8ch 2.4 GHz, China), and battery (PULSE 2250 mAh 3S LiPo Battery, China). The
vision system consists of a Raspberry Pi camera with 1.3–5 MP maximum photograph
resolution (2592 × 1944), a Pan-Tilt system containing two servo motors, which can move
between +90◦ and −90◦ (vertically and horizontally) to move the camera and have a
controllable view, and an Intel neural compute stick 2. The Intel neural compute stick 2 is
the next generation of Intel’s USB plug-and-play development kit for AI and deep learning
technology, powered by Intel’s Movidius Myriad X Visual Processing Unit (VPU) [20]. It can
be used for real-time analysis of raw video footage from cameras, which normally takes lots
of time on a traditional CPU. Another reason for using this is its unique workload-specific
hardware acceleration that minimizes data movement. The vision section is attached to a
Raspberry Pi 4 minicomputer via a USB port. The Raspberry Pi processor and its camera
(Pi camera) have been used in various Internet of Things projects and are recognized as a
trustable platform [21]. Among the variety of Raspberry Pi types, the PI 4 type has been
chosen as it is the latest available version and supports high speed in data processing,
which is a mandatory requirement for this research. It should be mentioned as the quad
needs light accessories to continue the flight of the PI camera, along with their small weight,
size and processing capability, the Broadcom CPU was selected, which makes this camera
unique [22]. The tilting system is connected to the Raspberry Pi GPIO connectors mounted
on the UAV (Figure 1B). As Figure 1 shows, the whole system works such that after running
the program inside the PI, the camera, as the first part of the sensing system, captures
the video stream and feeds it into the raspberry pi computer. The program records and
analyzes the video. Then, the user inside the designed web-based GUI (Figure 1C) can
monitor the live detection process, and by defining the speed value inside the GUI, any car
that passes the limit receives the alarm. The design GUI (Figure 1C) has the other feature to
record, pause, and export the detected car report, along with a tilting system to control the
camera attached to the UAV.

2.2. Deep Learning Model Architecture

Inside the design, the Single Shot Multibox Detector Mobile Net (SSD-Mobile net) was
used as the deep learning model. This model is designed based on (Depth wise Separable
Convolutions), which are separated into different CONV layers, one for filtering and one
for integrating. In other words, SSD object detection comprises two sections, extracting
feature maps, and applying convolution filters to detect objects.

In this research Mobile Net-83 SSD model was selected due to features. such as good
accuracy for target detection [23], small size and high speed with real-time processing
performance [24], the ability to detect the object in one shot with the Multibox detector [25],
along with the ability to implement on embedded system platforms. In addition, this model
can detect the object [26] that is supposed to tilt the camera UAV in two axes, according to
the experimental target [27]. The suggested SSD Mobile Net model is shown in Figure 2.

As Figure 2 shows, the Mobile Net model aims to assign a default filter to each neural
input channel for setting up the extraction of features. A (1 × 1) pointwise convolution
follows next to integrate the outcome of the depthwise convolution. The batch norm comes
into each of these separable layers. ReLU nonlinearity anticipates that the final (FC) layer
that feeds into a SoftMax layer will be classified as having no nonlinearity. Unlike classic
CNN, Mobile net’s filters analyze each color channel separately before combining the three
outputs into a single value. This factoring has a significant impact. In the developed
method, features from the input photos are extracted using (32 and 64) filters with sizes of

Future Transp. 2023, 3 193

(5 × 5) before two max-pooling (pool size = 2). More details about the model can be found
in [28].

Future Transp. 2023, 3, FOR PEER REVIEW 5

program records and analyzes the video. Then, the user inside the designed web-based
GUI (Figure 1C) can monitor the live detection process, and by defining the speed value
inside the GUI, any car that passes the limit receives the alarm. The design GUI (Figure
1C) has the other feature to record, pause, and export the detected car report, along with
a tilting system to control the camera attached to the UAV.

2.2. Deep Learning Model Architecture
Inside the design, the Single Shot Multibox Detector Mobile Net (SSD-Mobile net)

was used as the deep learning model. This model is designed based on (Depth wise
Separable Convolutions), which are separated into different CONV layers, one for
filtering and one for integrating. In other words, SSD object detection comprises two
sections, extracting feature maps, and applying convolution filters to detect objects.

In this research Mobile Net-83 SSD model was selected due to features. such as good
accuracy for target detection [23], small size and high speed with real-time processing
performance [24], the ability to detect the object in one shot with the Multibox detector
[25], along with the ability to implement on embedded system platforms. In addition, this
model can detect the object [26] that is supposed to tilt the camera UAV in two axes,
according to the experimental target [27]. The suggested SSD Mobile Net model is shown
in Figure 2.

Figure 2. The single shot multi-box detector mobile net (SSD-mobile net) model structure.

As Figure 2 shows, the Mobile Net model aims to assign a default filter to each neural
input channel for setting up the extraction of features. A (1 × 1) pointwise convolution
follows next to integrate the outcome of the depthwise convolution. The batch norm
comes into each of these separable layers. ReLU nonlinearity anticipates that the final (FC)
layer that feeds into a SoftMax layer will be classified as having no nonlinearity. Unlike
classic CNN, Mobile net’s filters analyze each color channel separately before combining
the three outputs into a single value. This factoring has a significant impact. In the devel-
oped method, features from the input photos are extracted using (32 and 64) filters with
sizes of (5 × 5) before two max-pooling (pool size = 2). More details about the model can
be found in [28].

2.3. Vehicle Detection and Tracking
The proposed system follows the described process in Figure 3. As shown, the main

steps of work consist of initialization, which includes initializing the camera for live
stream, DNN (SSD-mobile net) calling to perform in the vehicle’s detection section, and
speed calculation.

Figure 2. The single shot multi-box detector mobile net (SSD-mobile net) model structure.

2.3. Vehicle Detection and Tracking

The proposed system follows the described process in Figure 3. As shown, the main
steps of work consist of initialization, which includes initializing the camera for live
stream, DNN (SSD-mobile net) calling to perform in the vehicle’s detection section, and
speed calculation.

Figure 3 depicts the proposed vehicle speed estimation process which starts by receiv-
ing the video stream from the camera to calculate the speed of each tracked vehicle.

The program takes in each frame of the livestream footage and runs it through a
pre-trained deep-learning model. As shown, after initialization and getting the object frame
called, the OpenCV DNN converts the image blob and performs detection by confidence
evaluation. The confidence evaluation means the strictness of matching each vehicle. The
lower the minimum confidence specified, the less will be the detection accuracy. If the
confidence of the detected vehicle is more than the minimum confidence (70%), then the
vehicle will be indexed into memory and classified into a vehicle category followed by
the setting of a bounding box and its position set to be tracked in the subsequent frames
on the live feed. If the confidence of the tracked vehicles is less, the object’s last position
will be updated. Then, the new vehicle will be tracked, and the loop will keep going. The
model contains classification methods for all types of vehicles, such as cars, buses, trucks,
etc. Meanwhile, vehicle tracing occurs as the vehicle moves across consecutive frames and
calculates and declares the speed using the formulas explained in this section.

2.3.1. Vehicle Detection Approach

The vehicle detection phase consists of a multi-step process that relies on the existing
object centroid calculated in the proposed system to confirm and define the new object
(Figure 4).

Future Transp. 2023, 3 194Future Transp. 2023, 3, FOR PEER REVIEW 6

Figure 3. The proposed vehicle speed estimation process.

Figure 3 depicts the proposed vehicle speed estimation process which starts by re-
ceiving the video stream from the camera to calculate the speed of each tracked vehicle.

The program takes in each frame of the livestream footage and runs it through a pre-
trained deep-learning model. As shown, after initialization and getting the object frame
called, the OpenCV DNN converts the image blob and performs detection by confidence
evaluation. The confidence evaluation means the strictness of matching each vehicle. The
lower the minimum confidence specified, the less will be the detection accuracy. If the
confidence of the detected vehicle is more than the minimum confidence (70%), then the
vehicle will be indexed into memory and classified into a vehicle category followed by the
setting of a bounding box and its position set to be tracked in the subsequent frames on
the live feed. If the confidence of the tracked vehicles is less, the object’s last position will
be updated. Then, the new vehicle will be tracked, and the loop will keep going. The
model contains classification methods for all types of vehicles, such as cars, buses, trucks,
etc. Meanwhile, vehicle tracing occurs as the vehicle moves across consecutive frames and
calculates and declares the speed using the formulas explained in this section.

2.3.1. Vehicle Detection Approach
The vehicle detection phase consists of a multi-step process that relies on the existing

object centroid calculated in the proposed system to confirm and define the new object
(Figure 4).

Figure 3. The proposed vehicle speed estimation process.

Future Transp. 2023, 3, FOR PEER REVIEW 7

Figure 4. The schematic view of the vehicle detection and tracking algorithm.

The first task in the vehicle detection and tracking phase is to identify the objects and
build bounding boxes around them. For this purpose, all three bands (Red, Green, and
Blue) of each frame of the video are normalized using the following equations (Equation
(1)): NormBand = Band − μσ (1)

where Band is band values, and μBAND is the mean of each red, green, and blue Band,
respectively, σ is the scaling factor for normalization. After normalization, Mobile Net-
SSD is used for detecting vehicles. Mobile Net-SSD is a Single-Shot multi-box Detection
(SSD) network intended to perform object detection. The vehicle detection and tracking
system loops over all detected vehicles, add a bounding box around them and then calcu-
lates the centroid of the boxes. After the bounding box coordinates are extracted, the Eu-
clidean distances between the new and old bounding boxes are calculated. Each video
frame can have a different position of the previously tracked object, leading to different
boxes assigned to the same object in different frames. To avoid this, the distance between
the new object in the next frame and the old object in the last frame is calculated using the
following equation (Equation (2)):

𝑑 𝑥, 𝑦 = 𝑦 − 𝑥   (2)

where x and y are x and y coordinates, respectively, and i is the instance. For instance,
suppose that the last object detected in the frame is Ft, and the newly detected object is Ft
+ 1 (where it is the current frame). If the old and newly detected objects refer to the same
object, then the distance between Ft and Ft + 1 will be less than a new object’s length.
Hence, the algorithm associates newly detected objects with previous ones’ consecutive
frames and updates their position. In the last step, tracked vehicles that have not been
visible in 4 frames are removed and not tracked anymore.

2.3.2. Vehicle Speed Estimation Using an Improved VASCAR approach
This study’s vehicle speed estimation model is based on an improved Visual Average

Speed Computer and Recorder (VASCAR) method [29]. This method is based on timing
and the known distance between two fixed points on the road, as shown in Equation (3).
When a car passes the first reference point, the detector triggers the timer and captures
the time until the car passes the last point to calculate velocity. Vehicle speed = distance between Points A − Btime (3)

In the case of human operation, this method is severely limited by human error and
delayed reaction. This research considers four instead of only two points and automati-
cally calculates the velocity between the reference points. The standard VASCAR is

Figure 4. The schematic view of the vehicle detection and tracking algorithm.

Future Transp. 2023, 3 195

The first task in the vehicle detection and tracking phase is to identify the objects and
build bounding boxes around them. For this purpose, all three bands (Red, Green, and Blue)
of each frame of the video are normalized using the following equations (Equation (1)):

NormBand =
(Band− µBAND)

σ
(1)

where Band is band values, and µBAND is the mean of each red, green, and blue Band,
respectively, σ is the scaling factor for normalization. After normalization, Mobile Net-SSD
is used for detecting vehicles. Mobile Net-SSD is a Single-Shot multi-box Detection (SSD)
network intended to perform object detection. The vehicle detection and tracking system
loops over all detected vehicles, add a bounding box around them and then calculates the
centroid of the boxes. After the bounding box coordinates are extracted, the Euclidean
distances between the new and old bounding boxes are calculated. Each video frame
can have a different position of the previously tracked object, leading to different boxes
assigned to the same object in different frames. To avoid this, the distance between the new
object in the next frame and the old object in the last frame is calculated using the following
equation (Equation (2)):

d(x, y) =

√
n

∑
i=1

(yi − xi)
2 (2)

where x and y are x and y coordinates, respectively, and i is the instance. For instance,
suppose that the last object detected in the frame is Ft, and the newly detected object is
Ft + 1 (where it is the current frame). If the old and newly detected objects refer to the
same object, then the distance between Ft and Ft + 1 will be less than a new object’s length.
Hence, the algorithm associates newly detected objects with previous ones’ consecutive
frames and updates their position. In the last step, tracked vehicles that have not been
visible in 4 frames are removed and not tracked anymore.

2.3.2. Vehicle Speed Estimation Using an Improved VASCAR approach

This study’s vehicle speed estimation model is based on an improved Visual Average
Speed Computer and Recorder (VASCAR) method [29]. This method is based on timing
and the known distance between two fixed points on the road, as shown in Equation (3).
When a car passes the first reference point, the detector triggers the timer and captures the
time until the car passes the last point to calculate velocity.

Vehicle speed =
distance between Points (A− B)

time
(3)

In the case of human operation, this method is severely limited by human error and
delayed reaction. This research considers four instead of only two points and automatically
calculates the velocity between the reference points. The standard VASCAR is calculated
based on three points, while in the improved VASCAR, four measurements have been
considered to calculate velocity. The measurement process is shown in Figure 5.

Future Transp. 2023, 3 196

Future Transp. 2023, 3, FOR PEER REVIEW 8

calculated based on three points, while in the improved VASCAR, four measurements
have been considered to calculate velocity. The measurement process is shown in Figure
5.

Figure 5. Schematic view of the VASCAR approach in different location of A to D.

As shown in Figure 5, the car was detected at the specified point with a known dis-
tance. The system calculates the field of view based on the distance from the road it ob-
serves. The speed estimation system divides the whole frame into four points, considering
the frame points in the video to track the object. When a car passes reference point A, the
detector triggers the timer and captures the time until the car passes point D. This auto-
matic approach overcomes human error and delayed reaction that might occur in the case
of human operation. The calculations are shown in Equation (4).

Average Speed (km/h) = + + / 3) × 3.6 (4)

where D1 is the distance between points A–B in meters at t1 second, the distance D2 be-
tween points B–C as t2 second, and the points C–D distance as D3 meter with t3 second. As
Figure 5 shows, tracking an object in four points results in three distances included in the
relationship to calculate the average. In the next step, the system calculates the field of
view (FOV) based on the distance from the object. From the system point of view, at the
same time, new vehicles are constantly being tracked and registered, and old objects are
being deregistered. Meanwhile, the improved VASCAR algorithm is applied to each
tracked vehicle. In the second phase, the system initializes the estimated speed list, loops
over all the pairs of points, and estimates the speed of each object. Then, it calculates the
number of pixels between centroids in points and converts it to real-world distance(me-
ters) as the pixel per meter (PPM) in Equation (5) and calculates the vehicle’s average
speed. PPM = Distance ConstantFrame Width (5)

Equation (6) calculates the pixel spacing difference between the vehicle passing
through each point for each point pair (e.g. A and B).

Figure 5. Schematic view of the VASCAR approach in different location of A to D.

As shown in Figure 5, the car was detected at the specified point with a known distance.
The system calculates the field of view based on the distance from the road it observes.
The speed estimation system divides the whole frame into four points, considering the
frame points in the video to track the object. When a car passes reference point A, the
detector triggers the timer and captures the time until the car passes point D. This automatic
approach overcomes human error and delayed reaction that might occur in the case of
human operation. The calculations are shown in Equation (4).

Average Speed (km/h) = (
D1
t1

+
D2
t2

+
D3
t3

/ 3) × 3.6 (4)

where D1 is the distance between points A–B in meters at t1 second, the distance D2
between points B–C as t2 second, and the points C–D distance as D3 meter with t3 second.
As Figure 5 shows, tracking an object in four points results in three distances included in
the relationship to calculate the average. In the next step, the system calculates the field
of view (FOV) based on the distance from the object. From the system point of view, at
the same time, new vehicles are constantly being tracked and registered, and old objects
are being deregistered. Meanwhile, the improved VASCAR algorithm is applied to each
tracked vehicle. In the second phase, the system initializes the estimated speed list, loops
over all the pairs of points, and estimates the speed of each object. Then, it calculates the
number of pixels between centroids in points and converts it to real-world distance(meters)
as the pixel per meter (PPM) in Equation (5) and calculates the vehicle’s average speed.

PPM =
Distance Constant

Frame Width
(5)

Equation (6) calculates the pixel spacing difference between the vehicle passing
through each point for each point pair (e.g., A and B).

PAB = | CoordsB −CoordsA| (6)

Future Transp. 2023, 3 197

where CoordsB and CoordsA are centers of points A and B, respectively. Finally, Equation (7)
is used to calculate the distance in meters (dAB).

dAB = PAB × PPM (7)

Four timestamps are stored when the vehicle passes the video frame columns to
calculate the average speed. The average speed is calculated using the following equation
(Equation (8)).

Average Speed =

∆tAB
dAB

+ ∆tBC
dBC

+ ∆tCD
dCD

3
(8)

where ∆tAB is the timestamp between points a and b, ∆tBC is the timestamp between points
b and c, and ∆tCB is the timestamp between points c and d in second. In this paper, based on
mentioned equations, the improved VASCAR algorithm is implemented as a Python-based
program in OpenCV, and the DNN is built. The program acts to detect the object as the
vehicle detection and tracking, and then it tracks and estimates the speed as the vehicle
speed estimation.

2.4. System Calibration

Some points should be considered while using a speed detector system camera. Pixel
per meter ratio is one of the parameters which should be calibrated. It represents the
slice of road covered by each pixel and is relative to the square distance from the camera.
Notable factors include (a) camera height above ground (needs to be in the range of: distant
(≥5 m) or close (<5 m)), and (b) camera location (should be on the side of the road) [30].
Camera focal length is another important parameter mainly related to camera height, the
length of the road segment, and the number of lanes covered by the field of view. In most
related research, this number is reported as ≤25 mm [30] to cover multiple lanes and a
large road stretch. Furthermore, system calibrations are carried out to better evaluate the
proposed system and algorithms. This step is essential to tune system parameters and have
some pre-analysis of the system. The calibration process contains the indoor and outdoor
calibration from the tested FOV of the used camera to the program parameter and the final
speed detection calibrated formula, which is described as follows:

2.4.1. Indoor System Calibration

Indoor system calibration extracts the camera’s field of view (FOV). FOV is the max-
imum sample area that a camera can image. It is calculated in three steps (see Figure 6):
horizontal, vertical, and diagonal. A diagonal field of view (DFOV) designates the diagonal
dimensions of the measurement area in the object plane; a horizontal field of view (HFOV)
defines the horizontal dimensions of the object plane, and a vertical field of view (VFOV)
represents the vertical dimensions of the measurement area in the object plane [31].

As shown in Figure 6, to extract the maximum Pi camera FOV, the camera has been
moved on along with points P and Q. Then, using Equation (9), the camera horizontal FOV
value can be defined by:

FOV = 2 tan−1
(

1
2

image width
focal length

)
(9)

Future Transp. 2023, 3 198Future Transp. 2023, 3, FOR PEER REVIEW 10

Figure 6. Different camera FOVs measurement situation, diagonal lengths (A), horizontal (B), and
vertical (C).

As shown in Figure 6, to extract the maximum Pi camera FOV, the camera has been
moved on along with points P and Q. Then, using Equation (9), the camera horizontal
FOV value can be defined by:

FOV = 2 tan 12 image widthfocal length (9)

FOV extraction includes the following steps based on the setup shown in Figure 6:
• Step 1: Calculates the horizontal, vertical, and diagonal FOV from a fixed distance

from the object at different heights.
• Step 2: FOV extraction of the camera in different tilted positions on the x-axis to check

any orientation effects on the Pi’s FOV.
• Step 3: FOV extraction of the camera in different tilted directions of the y-axis while

the camera is 20 cm from the object. The same principle of the trapezoid as the last
test applies, but in this case, the trapezoidal frame appears along the vertical side.

• Step 4: Finally, the camera performance was studied with a random test for any
height and degree to calculate the FOV.
As Figure 6A shows, the camera system was put on top of the tilt systems to move

the camera on various x- and y-axes. It should be mentioned that for each tilt, the trape-
zoidal area of the image gets changed (Figure 6B–D) [32]. Then, to calculate the FOV, the
median of the trapezoidal (MT) image area is recalculated using the Equation (10). MT = L1 + L2 /2 (10)

where L1 and L2 are the lengths of base 1 and 2, respectively, and MT (median of the
trapezoid) is the image width used to calculate the FOV of the respective tilt angle.

Figure 7 shows the tilting system assembled with UAV and controlled with Rasp-
berry Pi. As shown in Figure 7A, the assembled servo motor can move in ±90 in X and Y
directions. Figure 7B shows that changing the baseline of L1 and L2 can cause the three
parallel situations. Figure 7C: horizontally angled. Figure 7D: vertically tilted, which can
affect the acquired image by the camera. It should be mentioned that for the Outdoor test,
the same assembly without a stand is installed on the top of the UAV.

Figure 6. Different camera FOVs measurement situation, diagonal lengths (A), horizontal (B), and
vertical (C).

FOV extraction includes the following steps based on the setup shown in Figure 6:

• Step 1: Calculates the horizontal, vertical, and diagonal FOV from a fixed distance
from the object at different heights.

• Step 2: FOV extraction of the camera in different tilted positions on the x-axis to check
any orientation effects on the Pi’s FOV.

• Step 3: FOV extraction of the camera in different tilted directions of the y-axis while
the camera is 20 cm from the object. The same principle of the trapezoid as the last test
applies, but in this case, the trapezoidal frame appears along the vertical side.

• Step 4: Finally, the camera performance was studied with a random test for any height
and degree to calculate the FOV.

As Figure 6A shows, the camera system was put on top of the tilt systems to move the
camera on various x- and y-axes. It should be mentioned that for each tilt, the trapezoidal
area of the image gets changed (Figure 6B,C) [32]. Then, to calculate the FOV, the median
of the trapezoidal (MT) image area is recalculated using the Equation (10).

MT = (L1 + L2)/2 (10)

where L1 and L2 are the lengths of base 1 and 2, respectively, and MT (median of the
trapezoid) is the image width used to calculate the FOV of the respective tilt angle.

Figure 7 shows the tilting system assembled with UAV and controlled with Raspberry
Pi. As shown in Figure 7A, the assembled servo motor can move in ±90 in X and Y
directions. Figure 7B shows that changing the baseline of L1 and L2 can cause the three
parallel situations. Figure 7C: horizontally angled. Figure 7D: vertically tilted, which can
affect the acquired image by the camera. It should be mentioned that for the Outdoor test,
the same assembly without a stand is installed on the top of the UAV.

Future Transp. 2023, 3 199Future Transp. 2023, 3, FOR PEER REVIEW 11

Figure 7. Indoor setup for the tilt system with the servo bed. (A) tilt system assembly, consisting of
two servo motors capable of moving in the x and y axis along with raspberry PI 4B, pi camera. (B)
the image and camera situation in a different scenario, parallel to the surface, (C) horizontally an-
gled, (D) vertically tilted, L1: base 1 and L2: based 2.

2.4.2. Outdoor System Calibration
The whole setup was brought outside the lab and tested to find the best distance for

object detection. The maximum distance was taken as the best distance because it would
allow a single vehicle to traverse further in the frame. In each test, the FOV was recorded
for the corresponding distance with the help of a measuring tape. The next step in outdoor
system calibration is system parameter calibration. The max disappears, and distance and
frame width should be correctly assigned to have the best system performance for differ-
ent FOVs.

3. Experimentation and Results
3.1. Indoor System Calibration

The first indoor system calibration step was to find horizontal, vertical, and diagonal
FOV from a fixed distance from the object at different heights. The experiment was con-
ducted based on the setups shown in Figure 8.

Figure 8. Indoor setup for horizontal, vertical, and diagonal FOV extraction from a fixed distance.
(A): Distance between fixed object and camera, (B): Real Horizontal Length measurement, (C):

Figure 7. Indoor setup for the tilt system with the servo bed. (A) tilt system assembly, consisting
of two servo motors capable of moving in the x and y axis along with raspberry PI 4B, pi camera.
(B) the image and camera situation in a different scenario, parallel to the surface, (C) horizontally
angled, (D) vertically tilted, L1: base 1 and L2: based 2.

2.4.2. Outdoor System Calibration

The whole setup was brought outside the lab and tested to find the best distance for
object detection. The maximum distance was taken as the best distance because it would
allow a single vehicle to traverse further in the frame. In each test, the FOV was recorded
for the corresponding distance with the help of a measuring tape. The next step in outdoor
system calibration is system parameter calibration. The max disappears, and distance
and frame width should be correctly assigned to have the best system performance for
different FOVs.

3. Experimentation and Results
3.1. Indoor System Calibration

The first indoor system calibration step was to find horizontal, vertical, and diagonal
FOV from a fixed distance from the object at different heights. The experiment was
conducted based on the setups shown in Figure 8.

Future Transp. 2023, 3, FOR PEER REVIEW 11

Figure 7. Indoor setup for the tilt system with the servo bed. (A) tilt system assembly, consisting of
two servo motors capable of moving in the x and y axis along with raspberry PI 4B, pi camera. (B)
the image and camera situation in a different scenario, parallel to the surface, (C) horizontally an-
gled, (D) vertically tilted, L1: base 1 and L2: based 2.

2.4.2. Outdoor System Calibration
The whole setup was brought outside the lab and tested to find the best distance for

object detection. The maximum distance was taken as the best distance because it would
allow a single vehicle to traverse further in the frame. In each test, the FOV was recorded
for the corresponding distance with the help of a measuring tape. The next step in outdoor
system calibration is system parameter calibration. The max disappears, and distance and
frame width should be correctly assigned to have the best system performance for differ-
ent FOVs.

3. Experimentation and Results
3.1. Indoor System Calibration

The first indoor system calibration step was to find horizontal, vertical, and diagonal
FOV from a fixed distance from the object at different heights. The experiment was con-
ducted based on the setups shown in Figure 8.

Figure 8. Indoor setup for horizontal, vertical, and diagonal FOV extraction from a fixed distance.
(A): Distance between fixed object and camera, (B): Real Horizontal Length measurement, (C): Figure 8. Indoor setup for horizontal, vertical, and diagonal FOV extraction from a fixed distance.

(A): Distance between fixed object and camera, (B): Real Horizontal Length measurement, (C): Hori-
zontal lengths inside the obtained image, (D): vertical lengths inside the obtained image, (E): diagonal
lengths inside the obtained image.

Future Transp. 2023, 3 200

To test the camera indoors FOV parameter, as the first step based on Figure 7, the
Raspberry Pi with the camera mounted was set on a surface with a fixed object distance of
20 cm and varying height (r) from 0.25 to 3.5 m. The obtained results are shown in Table 1.

Table 1. Indoor FOV measurement with fixed distance (20 cm) and varying heights, Height (H),
Horizontal Length (HL), Horizontal Fov (H_FOC), Vertical Length (VL), Vertical Fov (V_FOV),
Diagonal Length (DL), Diagonal Fov (D_FOV).

H (m) HL (cm) H_FOC (Degree) VL (cm) V_FOV (Degree) DL (cm) D_FOV (Degree)

0.25 19.5 51.9784 15.5 42.3626 23 59.7978
0.5 19.6 52.2097 15.4 42.1134 23.2 60.2274

0.75 20 53.1301 14.9 40.8607 23.1 60.0128
1 20 53.1301 15 41.1120 22.8 59.3662

1.25 20.3 53.8155 15.2 41.6135 23.5 60.8684
1.5 19.8 52.6708 15.5 42.3626 23 59.7978

1.75 19.6 52.2097 15.3 41.8637 23 59.7978
2 20.3 53.8155 15.2 41.6135 23 59.7978

2.25 20.3 53.8155 15.2 41.6135 22.9 59.5822
2.5 20.1 53.3590 15.1 41.3630 23 59.7978

2.75 19.5 51.9784 15.1 41.3630 23 59.7978
3 20 53.1301 15.1 41.3630 23.1 60.0128

3.25 20.1 53.3590 15 41.1120 23 59.7978
3.5 19.9 52.9006 15 41.1120 23 59.7978

Table 1 concludes that the results of every test actually can coincide with the design FOV
angles from the specifications (H_FOV: 53.50 +/− 0.13 degrees, V_FOV: 41.41 +/− 0.11 degrees)
and considering that the 2-degree measurement error differential due to human error and
the height does not affect the FOV by a huge margin, be it horizontal, vertical, or diagonal. It
should be noted that because of the angle change, the image received or captured may seem
rectangular on screen, detecting a trapezoidal frame. In the next step, the FOV variations
in the fixed distance (20 cm) with different camera angles in the x-direction from −90 to
+90 degrees are presented (Table 2).

Table 2. Indoor FOV (Filed Of View) measurement over changing the camera angle from −90
to +90 angle of view on the x-axis (AOV_X), Distance From Lens (DL), Horizontal Length (HL),
Horizontal FOV (H_FOV), Vertical Length of Base 1 (VL1), VERTICAL LENGTH of BASE 2 (VL 2),
Vertical Median of Trapezoidal Frame (VMT), Vertical FOV (V_FOV), Diagonal Length (DL), Diagonal
FOV (D_FOV).

AOV_X
(Degrees) DL (cm) H_L

(Degree)
H_FOV

(Degree) VL1 (cm) VL2 (cm) VMT
(cm)

V_FOV
(Degree)

DI_L
(cm)

D_FOV
(Degree)

90
Obj. out of scope Null 0 Null Null Null 0 Null 075

60
45 22.5 23 54.1441 15 18 16.5 40.272 35 75.7499
30 21.5 21 52.0591 15 17 16 40.819 32 73.3122
15 21 21 53.1301 15 15 15 39.307 30 71.0753
0 20 20 53.1301 15 15 15 41.112 23 59.7978
−15 21 21 53.1301 15 16 15.5 40.512 30 71.0753
−30 21.5 21 52.0591 15 17 16 40.819 32 73.3122
−45 22.5 21 50.0337 15 18 16.5 40.272 35 75.7499
−60

Obj. out of scope Null 0 Null Null Null 0 Null 0−75
−90

As Table 2 shows, for the degrees 60 or above, and in the same case for below −60,
when the device was turned to that specific degree, the object’s frame was out of the image
frame. This test shows that the camera movement on the tillite system in the x direction

Future Transp. 2023, 3 201

should be between ±60 degrees. For the third test, the camera gradually tilted along the
y-axis while the object was at 20 cm in a constant place. The same principle of the trapezoid
as in the last test applies. In this case, the trapezoidal frame appears along the vertical side.
It should be noted that due to the y-axis movement of the camera, only one base (base 2) of
the image will be changed (Table 3).

Table 3 shows that the system has a limitation of±75-degree rotation in the direction of
the object inside the frame, so the direction of movement should rotate within ±75 degrees.
As the result shows, the degree between 75 and 90 in the Y direction with positive and
negative values causes the camera disability to record an image, so the system loses its
performance to track the object.

3.2. Outdoor System Calibration

The outdoor system calibration starts with checking the Pi camera FOV. In order to
estimate vehicle speed accurately, the vehicle must be seen traversing from the initial point
of the frame to the very end. Table 4 shows the various FOVs measured from various
distances from 300 up to 1600 cm horizontally perpendicular to the road. All the outdoor
system calibrations are conducted at a laminar wind speed.

Table 3. Indoor FOV measurement with device position from the object (cm) and changing the camera
in the y direction, Distance From Lens (DL), Horizontal Length (HL), Horizontal FOV (H_FOV), the
Vertical Length of base 1 (VL1), the vertical length of base 2 (VL2), Vertical Median of Trapezoidal
Frame (VMT), Vertical FOV (V_FOV), Diagonal Length (DI_L), Diagonal FOV (D_FOV), object out
shown as OUT.

AOV_Y
(Degrees) DL (cm) VL2 (cm) VMT (cm) H_FOV

(Degree)
VL1
(cm)

V_FOV
(Degrees)

DI_L
(cm)

D_FOV
(Deg)

90 Obj. out of scope Null Null 0 Null 0 Null 075
60 40 42 31 42.3626 16.1 29.113 39 64.342
45 34 36.5 28.25 45.1200 15.8 31.246 35 63.553
30 27 32 26 51.4199 15.5 33.196 32 63.215
15 24 27 23.5 52.1711 15.2 35.842 30 65.100
0 20 20 20 53.1301 15 41.112 23 59.797
−15 24 26.5 23.25 51.6887 15 35.757 30 65.657
−30 27 32 26 51.4199 15.4 32.993 32 63.215
−45 34 36 28 44.7602 15.6 31.132 35 64.010
−60 40 41.5 30.75 42.0510 15.9 28.991 39 64.761
−75 Obj. out of scope Null Null 0 Null 0 Null 0−90

Table 4. Outdoor Field Of View (FOV) measurement for various distances from the road, Average
Horizontal Field Of View (AVG H_ FOV).

Distance From Road (cm) FOV (cm) FOV (Degree) AVG H_FOV (Degree) FOV (Degree)

300 335 48.2

51.12 53.1

350 385 48.8
400 430 48.8
450 465 51.6
500 515 51.7
550 570 51.5
600 570 53.5
650 650 53.1
700 770 51.53

1600 1500 51.53

Future Transp. 2023, 3 202

In each test, the FOV was recorded for the corresponding distance with the help of a
measuring tape. As Table 5 shows, the data obtained for the tested FOV are very close to
the value declared by the camera manufacturer (53 degrees), which indicates the accuracy
of the calculations and experiments. Finally, the last distance of 16 meters was set as the
fixed distance for future tests due to the clear image visibility at this setup. At this distance,
the FOV is 15 m.

Table 5. Final calibration of the system parameters.

Component Description Value (Unit)

max_disappear Maximum consecutive frames for an object to be allowed to pass before deregistering it 15 frames
max_distance Maximum distance between centroid to associate an object 1.75 m
track_object Number of frames to track for object 4 frames
confidence Minimum confidence or probability of detection 0.4
frame_width Frame width in pixels 480 pixels
speed_estimation_zone Speed estimation columns 4 (A, B, C, D)
distance Distance from road to camera 16 m
speed_limit Speed limit To Be Set

3.3. System Software Parameters Calibration

As already mentioned, max disappears, max distance, track object, and frame width
must be determined correctly for better system performance. The parameters have been
calibrated through trial and outdoor experiments with the values, as presented in Table 5.

As shown in Table 5, the parameters used for max disappear and max distances are 15
and 1.75 m. The frame number for object tracking is set to 4. The confidence was chosen to
be 0.4 (i.e., minimum detection percentage of 40%). This allows some flexibility because the
model will also track objects it is less confident about. Since vehicles come in all shapes and
sizes, this can increase robustness in real-world use. Frame width is set to 480 as both 60 fps
and 90 fps footage are supported at this resolution. Moreover, it reduces computational
needs and speeds up the process due to faster calculations on smaller images.

3.4. Vehicle Speed Estimation Optimization

A real vehicle test shows the difference between real speed and the system’s estimated
speed in two road directions and this difference is higher due to the greater distance of the
quad from the road. To overcome this issue, as the last step, the final calibrated formula
extracted (Equations (10) and (11)) with the help of curve fitting tools in MATLAB based
on the following process is applied to the outcomes of the vehicle speed detection model.
For this aim, the UAV was placed at a height of 3 m in the fixed point test, and a vehicle
with a speed range of 10–70 km/h was used to test the system, considering the maximum
speed limit of the city traffic police. A car with a driver and one of the researchers as an
assistant driver was used. Before the vehicle starts to move, the driver is informed about the
target speed then the driver brings the car’s speed to the desired speed at the UAV location.
Then, when passing the drone’s position, along with checking vehicle identification, the
UAV speed reading and the vehicle speed from the odometer are read and recorded by
the driver’s assistant. It should be noted that speed comparison is based on the two-way
remark as direction 1, the path which has the minimum distance with the UAV and the
vehicle is moving towards the UAV, and direction 2, going away from the UAV with the
maximum distance and located on the other side of the street. The test is repeated five
times, and the average is considered the final detected speed. Table 6 shows the system
performance in real vehicle tests for the mentioned speed range.

Future Transp. 2023, 3 203

Table 6. The real car speed and detected speed with the proposed system over different car directions
(Direction 1: near side and Direction 2: faraway side).

Speed (km/h) Direction 1 (y1) Difference Direction 2 (y2) Difference

10 7.76 2.24 6.96 3.04
20 15.62 4.38 15.29 4.71
30 23.18 6.82 24.91 5.09
40 33.729 6.271 54.26 −14.26
50 43.1 6.9 32.83 17.17
60 73.08 −13.08 73.32 −13.32
70 83.22 −13.22 80.5 −10.5

The result shows that when the UAV is in the car’s direction side, the detected speeds
are nearer than the cases with more than 16 m (Figure 9).

Figure 9 shows that the car has a different curve in each direction. Then, to have a
better-speed estimation, the results from Table 7 were formulated with the help of the curve
fitting tool in MATLAB software, and the extracted curve is shown in Equations (11) and (12).

y1 =
(
−2.283× 10−6

)
x5 + (0.0004265)x4 + (−0.0291)x3 + (0.9024)x2 + (−11.7)x + 59.67 (11)

y2 =
(
−4.958× 10−6

)
x5 + (0.001001)x4 + (−0.07487)x3 + (2.542)x2 + (−37.01)x + 188.9 (12)

Future Transp. 2023, 3, FOR PEER REVIEW 15

based on the following process is applied to the outcomes of the vehicle speed detection
model. For this aim, the UAV was placed at a height of 3 m in the fixed point test, and a
vehicle with a speed range of 10–70 km/h was used to test the system, considering the
maximum speed limit of the city traffic police. A car with a driver and one of the research-
ers as an assistant driver was used. Before the vehicle starts to move, the driver is informed
about the target speed then the driver brings the car’s speed to the desired speed at the
UAV location. Then, when passing the drone’s position, along with checking vehicle iden-
tification, the UAV speed reading and the vehicle speed from the odometer are read and
recorded by the driver’s assistant. It should be noted that speed comparison is based on
the two-way remark as direction 1, the path which has the minimum distance with the
UAV and the vehicle is moving towards the UAV, and direction 2, going away from the
UAV with the maximum distance and located on the other side of the street. The test is
repeated five times, and the average is considered the final detected speed. Table 6 shows
the system performance in real vehicle tests for the mentioned speed range.

Table 6. The real car speed and detected speed with the proposed system over different car direc-
tions (Direction 1: near side and Direction 2: faraway side).

Speed (km/h) Direction 1 (y1) Difference Direction 2 (y2) Difference
10 7.76 2.24 6.96 3.04
20 15.62 4.38 15.29 4.71
30 23.18 6.82 24.91 5.09
40 33.729 6.271 54.26 −14.26
50 43.1 6.9 32.83 17.17
60 73.08 −13.08 73.32 −13.32
70 83.22 −13.22 80.5 −10.5

The result shows that when the UAV is in the car’s direction side, the detected speeds
are nearer than the cases with more than 16 m (Figure 9).

Figure 9. The measured and real vehicle speed differences in two directions. Figure 9. The measured and real vehicle speed differences in two directions.

Future Transp. 2023, 3 204

Table 7. Vehicle Detection Accuracy on the UAV Height Variation.

UAV Height (m) Number of Vehicles on Street Number of Detected Vehicles Detected Car (Error %)

0.7 32 42 31.25
1.0 19 24 26.32

1.25 25 31 24.00
1.50 32 38 18.75
1.75 34 40 17.65
2.50 34 38 11.76
3.0 34 38 11.76

As per as analysis in MATLAB with the mentioned coefficient in Equations (10) and (11),
the best R2 for direction 1 is 0.9968 and for direction 2 is 0.9033.

3.5. Real Vehicle Test

The real vehicle test includes experiments regarding changes in UAV height from 0.7
to 3 m with the fixed location, changing the UAV degree with X-axis from −15 to +15,
changing the camera degree with X-axis from −90 to +90, changing the camera degree
with Y-axis from −90 to +90. Finally, a random test with dynamic height and degree was
conducted (Figure 10). A vehicle was driven along a specific road (JXUST university golden
campus, Ganzhou, China) with minimum traffic.

3.6. Vehicle Detection and Tracking

In the experiments, the car driver is asked to set a specific speed, so the real speed of
the vehicle can be compared to the one obtained by the proposed system. In the first stage,
the UAV was flown from 0.7 m height to 3 m. The maximum height of 3 m is assigned
based on security issues. At each height, the estimated car speed was logged. The vehicle
detection results on both roadsides are shown in Table 8.

Future Transp. 2023, 3, FOR PEER REVIEW 16

Figure 9 shows that the car has a different curve in each direction. Then, to have a
better-speed estimation, the results from Table 7 were formulated with the help of the
curve fitting tool in MATLAB software, and the extracted curve is shown in Equations
(11) and (12). 𝑦1 = −2.283 × 10 𝑥 + 0.0004265 𝑥 + −0.0291 𝑥 + 0.9024 𝑥 + −11.7 𝑥 + 59.67 (11)

𝑦2 = −4.958 × 10 𝑥 + 0.001001 𝑥 + −0.07487 𝑥3 + 2.542 𝑥 + −37.01 𝑥 + 188.9 (12)

As per as analysis in MATLAB with the mentioned coefficient in Equations (10) and
(11), the best R2 for direction 1 is 0.9968 and for direction 2 is 0.9033.

Table 7. Vehicle Detection Accuracy on the UAV Height Variation.

UAV Height (m) Number of Vehicles on Street Number of Detected Vehicles Detected Car (Error %)
0.7 32 42 31.25
1.0 19 24 26.32

1.25 25 31 24.00
1.50 32 38 18.75
1.75 34 40 17.65
2.50 34 38 11.76
3.0 34 38 11.76

3.5. Real Vehicle Test
The real vehicle test includes experiments regarding changes in UAV height from 0.7

to 3 m with the fixed location, changing the UAV degree with X-axis from −15 to +15,
changing the camera degree with X-axis from −90 to +90, changing the camera degree with
Y-axis from −90 to +90. Finally, a random test with dynamic height and degree was con-
ducted (Figure 10). A vehicle was driven along a specific road (JXUST university golden
campus, Ganzhou, China) with minimum traffic.

Figure 10. The schematic view of real vehicle tests with various location of A to D. Figure 10. The schematic view of real vehicle tests with various location of A to D.

Future Transp. 2023, 3 205

Table 8. Vehicle detection accuracy on the UAV X-axis degree variation.

X-Axis Change (Degree) Number of Vehicles on Street Number of Detected Vehicles Detected Car (Error %)

−15 39 36 7.69
+15 26 30 15.38

In the next step, the car detection algorithm is tested when changing the UAV angle to
the road with the x-axis from −15◦ to +15◦ at a UAV height of 3 m. The vehicle detection
results on both roadsides are shown in Table 8.

The previous test is repeated for the changes in the Y-axis degree with the UAV height
of 3 m. The results show that the UAV can monitor the road between +15 and −30 in the
Y direction Table 9.

Table 9. Vehicle detection accuracy on the UAV y-axis degree variation.

Y-Axis Change (Degree) Number of Vehicles on Street Number of Detected Vehicles Detected Car (Error %)

−30 22 28 27.27
−15 18 21 16.67
+15 21 25 19.05
+30 The road is out of range

The last test is the system performance in a random situation with dynamic UAV
height and a camera degree. This test in each step is repeated 5 times randomly, and the
average is considered the final value is shown in Table 10.

Table 10. Vehicle detection accuracy on the system random test.

Random Parameter Vehicles on Street (KM/h) Detected Vehicles (KM/h) Detection Error %

UAV height 1.5 m 49 58 18.37
UAV height 1.0 m 34 44 29.41
UAV height 2.0 m 42 46 9.52
x-axis −15 degree 36 39 8.33

4. Discussion

This research investigated low-amplitude UAV applications for car speed detection
using Mobile Net-SSD models. Different indoor and outdoor tests were conducted to
explore the camera’s ability and calibrate the hardware. The special advantages of this
design in low-altitude flights include battery energy consumption, reduced UAV charging
speed, longer flight length, and the ability to develop a design to track vehicle speed at
dynamic speed points, such as intersections, Joins of roads, traffic lights, etc. Another
reason to check the vehicle’s speed at a low height is to use a camera with fewer pixels
and increase the UAV operating hours, as well as not interfere with the wind speed in the
performance and control of the quad. In addition, this solution can be used in intersections
and schools, kindergartens, and hospitals where vehicles generally accelerate at once. The
system setup calibration demonstrated that a centroid tracking algorithm used for vehicle
detection and tracking requires the camera to be perpendicular to the road to prevent
obstacles. It seems that using any value for max disappear more than 15 with the given
resolution of 640 × 480 would render speed detection impossible in most cases. Max
distance higher than 175 cm could cause the centroid to disassociate from the object and
fail to detect the vehicles.

Furthermore, it has been observed that heat substantially reduces the performance
of the system. It affects the Intel neural compute stick (system shutdown due to the heat).
The results show that vehicle detection error reduces when the UAV height increases. This
means that by increasing the UAV height, vehicle overlapping decreases, and sudden

Future Transp. 2023, 3 206

speed changes in vehicles can be detected easier. A system with a UAV positioned at
lower heights leads to a loss in the system’s tracking process. Experimental results of
vehicle speed detection show that the minimum speed detection error obtained from a
setup for the camera has a −15-degree angle to the X-axis, and the maximum error is
a −30-degree angle. Another parameter which influences the system’s accuracy is the
distance from the road. As the vehicle moves further, the accuracy of vehicle detection
reduces. This is especially critical for highways and wide roads because vehicles will not
always drive along the road edge [33,34]. High-speed vehicles are more likely to avoid
detection by the UAV speed detector. In addition, the speed of the vehicle is also one of
the factors influencing the accuracy of the system, since vehicles do not always move at a
constant speed. Sometimes, they may reduce speed to avoid a collision or react suddenly
to a traffic situation. Moreover, vehicles are partly obscuring each other in a 2D frame
due to their variable speeds. They sometimes stop in front of the camera and block other
vehicles behind them. Final observations from the data show that any speed above 50 km/h
reduces the system’s performance. The UAV used in this project can also be autonomously
controlled using modern trajectory planning algorithms, such as the evolutionary trajectory
planning algorithm (ETPA), which is based on deep learning [35,36]. Besides the system
can be equipped with pedestrian detection so that the UAV maintains its path avoiding
pedestrians [37,38]. The mentioned improvement and utilization of modern technologies
in making cities smart, especially in the transportation department, increases various
parameters, such as the economy, environment, and infrastructure, from 10% to 30% [39].
Moreover, the data (image, video, graphics etc.) from these applications can help find
behavior and support predictions using big data learning and discovery techniques [40].

5. Conclusions and Future Work

In this research paper, we have proposed a novel solution using extended UAVs, an
application of remote sensing, to improve IoT-based smart city services. To show its superior
performance, several different indoor and outdoor scenarios have been evaluated through
implementation. The superior performance mainly stems from the accurate calibration
of the UAV’s camera, obtained in one of the implemented scenarios, supporting accurate
vehicle speed detection. The results show that vehicle detection error reduces when the
UAV height increases. Specifically, by increasing the UAV height, vehicles’ separations are
decreased, facilitating the easier detection of sudden speed changes in vehicles. Even in
the case of connecting roads, such as the location of traffic lights, the car’s speed generally
varies, and sudden changes cause interference in the measurement of the actual speed, but
the promising results of the solution elaborate on its effectiveness in crowded roads or
junctions where vehicles have variant and non-stable speeds. In addition, our solution has
the capability to connect to the traffic police with a friendly and easy-use GUI, which can
handle the data and helps the end-users in the smart city to control the camera and record.
In future work, we aim to evaluate it using the three different angles (yaw, pitch, roll) along
with implementing other deep learning methods and comparing the measured system
speed result with the city police control traffic cameras for better calibration and evaluation.
It is also planned to check and average the vehicle’s speed based on job distribution and a
swarm of UAVs.

Author Contributions: Conceptualization: A.J.M., A.S.R., L.L., J.W. and A.T.; methodology: A.J.M.,
A.S.R., L.L. and J.W.; software: A.J.M., A.S.R. and L.L.; validation: A.J.M., A.S.R., L.L. and J.W.;
investigation: A.J.M., A.S.R., L.L., J.W. and A.T.; resources: A.J.M., A.S.R. and L.L.; writing—original
draft preparation: A.J.M., A.S.R., L.L., A.T. and J.W.; writing-review and editing: A.J.M., A.T., J.W.
and M.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Jiangxi University of Science and Technology, 341000,
Ganzhou, P.R China, underfunding numbers: 2021205200100563 (Corresponding author: Jianqing Wu).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Future Transp. 2023, 3 207

Data Availability Statement: The data is available upon the request.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

AVG H_FOV Average Horizontal Field Of View
Band Band values
CoordsA Centre of points A
CoordsB Centre of points B
d(x, y) Distance between x, y
dAB Distance in meters between A & B
d/t Distance over time
DL Distance From Lens
DI_L Diagonal Length
D_FOV Diagonal FOV
FOV Field of View
HL Horizontal Length
H_FOV Horizontal FOV
Km/h Kilometer per hour
L1 Length of base 1 of the trapezoidal image area
L2 Length of base 2 of the trapezoidal image area
MT Median of the trapezoidal image area
NormBand Normalized band
OUT out object
PPM Pixel per meter
PAB Pixel spacing between a & b
UAV Unmanned aerial vehicle
VL1 the Vertical Length of base 1
VL2 the Vertical Length of base 2
VMT Vertical Median of Trapezoidal Frame
V_FOV Vertical FOV
µBAND The mean of each red, green, and blue band
∆tAB Timestamp between a and b
σ Scaling factor for normalization

References
1. Awais, M.; Li, W.; Cheema, M.J.; Hussain, S.; Shah, A.; Aslam, B.; Liu, C.; Ali, A. Assessment of optimal flying height and timing

using high-resolution unmanned aerial vehicle images in precision agriculture. Int. J. Environ. Sci. Technol. 2021, 19, 2703–2720.
[CrossRef]

2. Bennett, R.; van Oosterom, P.; Lemmen, C.; Koeva, M. Remote sensing for land administration. Remote Sens. 2020, 12, 2497.
[CrossRef]

3. Moranduzzo, T.; Melgani, F. Car speed estimation method for UAV images. In 2014 IEEE Geoscience and Remote Sensing Symposium;
IEEE: Piscataway, NJ, USA, 2014; pp. 4942–4945. [CrossRef]

4. Cao, G.; Yang, X.; Li, H. Intelligent Monitoring System of Special Vehicle Based on the Internet of Things. In Proceedings of
International Conference on Computer Science and Information Technology. Advances in Intelligent Systems and Computing; Patnaik, S.,
Li, X., Eds.; Springer: New Delhi, India, 2014; Volume 255. [CrossRef]

5. Carranza-García, M.; Torres-Mateo, J.; Lara-Benítez, P.; García-Gutiérrez, J. On the performance of one-stage and two-stage object
detectors in autonomous vehicles using camera data. Remote Sens. 2020, 13, 89. [CrossRef]

6. Cepni, S.; Atik, M.E.; Duran, Z. Vehicle detection using different deep learning algorithms from image sequence. Balt. J. Mod.
Comput. 2020, 8, 347–358. [CrossRef]

7. Deng, J.; Zhong, Z.; Huang, H.; Lan, Y.; Han, Y.; Zhang, Y. Lightweight Semantic Segmentation Network for Real-Time Weed
Mapping Using Unmanned Aerial Vehicles. Appl. Sci. 2020, 10, 7132. [CrossRef]

8. Coombes, M.; Fletcher, T.; Chen, W.H.; Liu, C. Decomposition-based mission planning for fixed-wing UAVs surveying in wind. J.
Field Robot. 2020, 37, 440–465. [CrossRef]

9. Du, M.; Noguchi, N. Monitoring of Wheat Growth Status and Mapping of Wheat Yield’s within-Field Spatial Variations Using
Color Images Acquired from UAV-camera System. Remote Sens. 2017, 9, 289. [CrossRef]

10. García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Mauri, P.V.; Lorenz, P. DronAway: A Proposal on the Use of Remote Sensing Drones
as Mobile Gateway for WSN in Precision Agriculture. Appl. Sci. 2020, 10, 6668. [CrossRef]

http://doi.org/10.1007/s13762-021-03195-4
http://doi.org/10.3390/rs12152497
http://doi.org/10.1109/IGARSS.2014.6947604
http://doi.org/10.1007/978-81-322-1759-6_37
http://doi.org/10.3390/rs13010089
http://doi.org/10.22364/bjmc.2020.8.2.10
http://doi.org/10.3390/app10207132
http://doi.org/10.1002/rob.21928
http://doi.org/10.3390/rs9030289
http://doi.org/10.3390/app10196668

Future Transp. 2023, 3 208

11. Ibrar, M.; Mi, J.; Karim, S.; Laghari, A.A.; Shaikh, S.M.; Kumar, V. Improvement of Large-Vehicle Detection and Monitoring on
CPEC Route. 3D Res. 2018, 9, 45. [CrossRef]

12. Døssing, A.; Lima Simoes da Silva, E.; Martelet, G.; Maack Rasmussen, T.; Gloaguen, E.; Thejll Petersen, J.; Linde, J. A High-Speed,
Light-Weight Scalar Magnetometer Bird for km Scale UAV Magnetic Surveying: On Sensor Choice, Bird Design, and Quality of
Output Data. Remote Sens. 2021, 13, 649. [CrossRef]

13. Huang, Y.; Thomson, S.J.; Brand, H.J.; Reddy, K.N. Development and evaluation of low-altitude remote sensing systems for crop
production management. Int. J. Agric. Biol. Eng. 2016, 9, 1–11. [CrossRef]

14. Jaiswal, D.; Kumar, P. Real-time implementation of moving object detection in UAV videos using GPUs. J. Real-Time Image Proc.
2020, 17, 1301–1317. [CrossRef]

15. Lenain, L.; Melville, W.K. Autonomous surface vehicle measurements of the ocean’s response to Tropical Cyclone Freda. J. Atmos.
Ocean. Technol. 2014, 31, 2169–2190. [CrossRef]

16. Park, S.S.; Kozawa, K.; Fruin, S.; Mara, S.; Hsu, Y.-K.; Jakober, C.; Winer, A.; Herner, J. Emission factors for high-emitting vehicles
based on on-road measurements of individual vehicle exhaust with a mobile measurement platform. J. Air Waste Manag. Assoc.
2011, 61, 1046–1056. [CrossRef] [PubMed]

17. Afifah, F.; Nasrin, S.; Mukit, A. Vehicle Speed Estimation using Image Processing. J. Adv. Res. Appl. Mech. 2019, 48, 9–16. Available
online: http://www.akademiabaru.com/doc/ARAMV48_N1_P9_16.pdf (accessed on 10 July 2022).

18. Sadeghi, M.; Emadi Andani, M.; Bahrami, F.; Parnianpour, M. Trajectory of Human Movement during Sit to Stand: A New
Modeling Approach Based on Movement Decomposition and Multi-Phase Cost Function. Exp. Brain Res. 2013, 229, 221–234.
[CrossRef] [PubMed]

19. Zhang, X.; Yang, G.; Liu, S.; Moshayedi, A.J. Fractional-order circuit design with hybrid controlled memristors and FPGA
implementation. AEU-Int. J. Electron. Commun. 2022, 153, 154268. [CrossRef]

20. Intel. Intel® Movidius™ Myriad™ X Vision Processing Unit. Available online: https://www.intel.com/content/www/us/en/
products/details/processors/movidius-vpu/movidius-myriad-x.html (accessed on 10 July 2022).

21. Moshayedi, A.J.; Roy, A.; Liao, L.; Li, S. Raspberry Pi SCADA Zonal based System for Agricultural Plant Monitoring. In
Proceedings of the 2019 6th International Conference on Information Science and Control Engineering (ICISCE), Shanghai, China,
20–22 December 2019; pp. 427–433. [CrossRef]

22. Gay, W. Pi Camera. In Advanced Raspberry Pi; Apress: Berkeley, CA, USA, 2018. [CrossRef]
23. Jian, Z.; Yonghui, Z.; Yan, Y.; Ruonan, L.; Xueyao, W. MobileNet-SSD with the adaptive expansion of the receptive field. In

Proceedings of the 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI), Chongqing, China,
28–30 November 2020; pp. 177–181. [CrossRef]

24. Ren, J.; Li, H. Implementation of Vehicle and License Plate Detection on Embedded Platform. In Proceedings of the 2020 12th Inter-
national Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Phuket, Thailand, 28–29 February 2020;
pp. 75–79. [CrossRef]

25. Chiu, Y.C.; Tsai, C.Y.; Ruan, M.D.; Shen, G.Y.; Lee, T.T. Mobilenet-SSDv2: An Improved Object Detection Model for Embedded
Systems. In Proceedings of the 2020 International Conference on System Science and Engineering (ICSSE), Kagawa, Japan,
31 August–3 September 2020; pp. 1–5. [CrossRef]

26. Xu, G.; Khan, A.S.; Moshayedi, A.; Zhang, X.; Shuxin, Y. The Object Detection, Perspective and Obstacles In Robotic: A Review.
EAI Endorsed Trans. AI Robot. 2022, 1, e13. [CrossRef]

27. Gao, C.; Zhai, Y.; Guo, X. Visual Object Detection and Tracking System Design based on MobileNet-SSD. In Proceedings of
the 2021 7th International Conference on Computer and Communications (ICCC), Chengdu, China, 10–13 December 2021;
pp. 589–593. [CrossRef]

28. Zhang, J.; Xu, J.; Zhu, L.; Zhang, K.; Liu, T.; Wang, D.; Wang, X. An improved MobileNet-SSD algorithm for automatic defect
detection on vehicle body paint. Multimed. Tools Appl. 2020, 79, 23367–23385. [CrossRef]

29. Prakash, N.; Kamath, C.; Gururaja, H.S. Detection of traffic violations using moving object and speed detection. Wutan Huatan
Jisuan Jishu 2020, 16, 1001–1749.

30. Fernández Llorca, D.; Hernández Martínez, A.; García Daza, I. Vision-based vehicle speed estimation: A survey. IET Intell. Transp.
Syst. 2021, 15, 987–1005. [CrossRef]

31. Haldar, S.K. Field of View. Available online: https://www.sciencedirect.com/topics/earth-and-planetary-sciences/field-of-view
(accessed on 10 July 2022).

32. Schwager, M.; Julian, B.; Angermann, M.; Rus, D. Eyes in the Sky: Decentralized Control for the Deployment of Robotic Camera
Networks. Proc. IEEE 2011, 99, 1541–1561. [CrossRef]

33. Mishra, D.; Khan, A.; Tiwari, R.; Upadhay, S. Automated Irrigation System-IoT Based Approach. In Proceedings of the 2018 3rd
International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU), Bhimtal, India, 23–24 February 2018;
pp. 1–4. [CrossRef]

34. Tiwari, R.; Sharma, H.K.; Upadhyay, S.; Sachan, S.; Sharma, A. Automated parking system-cloud and IoT based technique. Int. J.
Eng. Adv. Technol. (IJEAT) 2019, 8, 116–123.

35. Asim, M.; Mashwani, W.K.; Shah, H.; Belhaouari, S.B. An evolutionary trajectory planning algorithm for multi-UAV-assisted
MEC system. Soft Comput. 2022, 26, 7479–7492. [CrossRef]

http://doi.org/10.1007/s13319-018-0196-5
http://doi.org/10.3390/rs13040649
http://doi.org/10.3965/j.ijabe.20160904.2010
http://doi.org/10.1007/s11554-019-00888-5
http://doi.org/10.1175/JTECH-D-14-00012.1
http://doi.org/10.1080/10473289.2011.595981
http://www.ncbi.nlm.nih.gov/pubmed/22070037
http://www.akademiabaru.com/doc/ARAMV48_N1_P9_16.pdf
http://doi.org/10.1007/s00221-013-3606-1
http://www.ncbi.nlm.nih.gov/pubmed/23807475
http://doi.org/10.1016/j.aeue.2022.154268
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
http://doi.org/10.1109/ICISCE48695.2019.00092
http://doi.org/10.1007/978-1-4842-3948-3_26
http://doi.org/10.1109/IICSPI51290.2020.9332204
http://doi.org/10.1109/ICMTMA50254.2020.00025
http://doi.org/10.1109/ICSSE50014.2020.9219319
http://doi.org/10.4108/airo.v1i1.2709
http://doi.org/10.1109/ICCC54389.2021.9674450
http://doi.org/10.1007/s11042-020-09152-6
http://doi.org/10.1049/itr2.12079
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/field-of-view
http://doi.org/10.1109/JPROC.2011.2158377
http://doi.org/10.1109/IoT-SIU.2018.8519886
http://doi.org/10.1007/s00500-021-06465-y

Future Transp. 2023, 3 209

36. Asim, M.; Mashwani, W.; Belhaouari, S.; Hassan, S. A Novel Genetic Trajectory Planning Algorithm With Variable Population
Size for Multi-UAV-Assisted Mobile Edge Computing System. IEEE Access 2021, 9, 125569–125579. [CrossRef]

37. Iftikhar, S.; Zhang, Z.; Asim, M.; Muthanna, A.; Koucheryavy, A.; Abd El-Latif, A.A. Deep Learning-Based Pedestrian Detection
in Autonomous Vehicles: Substantial Issues and Challenges. Electronics 2022, 11, 3551. [CrossRef]

38. Iftikhar, S.; Asim, M.; Zhang, Z.; El-Latif, A.A.A. Advance generalization technique through 3D CNN to overcome the false
positives pedestrian in autonomous vehicles. Telecommun. Syst. 2022, 80, 545–557. [CrossRef]

39. Nguyen, D.D.; Rohács, J.; Rohács, D.; Boros, A. Intelligent total transportation management system for future smart cities. Appl.
Sci. 2020, 10, 8933. [CrossRef]

40. Gao, Z.K.; Liu, A.A.; Wang, Y.; Small, M.; Chang, X.; Kurths, J. IEEE Access Special Section Editorial: Big Data Learning and
Discovery. IEEE Access 2021, 9, 158064–158073. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2021.3111318
http://doi.org/10.3390/electronics11213551
http://doi.org/10.1007/s11235-022-00930-1
http://doi.org/10.3390/app10248933
http://doi.org/10.1109/ACCESS.2021.3127335

	Introduction
	Materials and Methods
	System Materials
	Deep Learning Model Architecture
	Vehicle Detection and Tracking
	Vehicle Detection Approach
	Vehicle Speed Estimation Using an Improved VASCAR approach

	System Calibration
	Indoor System Calibration
	Outdoor System Calibration

	Experimentation and Results
	Indoor System Calibration
	Outdoor System Calibration
	System Software Parameters Calibration
	Vehicle Speed Estimation Optimization
	Real Vehicle Test
	Vehicle Detection and Tracking

	Discussion
	Conclusions and Future Work
	References

