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Abstract: Large-truck crashes often result in substantial economic and social costs. Accurate predic-
tion of the severity level of a reported truck crash can help rescue teams and emergency medical
services take the right actions and provide proper medical care, thereby reducing its economic and
social costs. This study aims to investigate the modeling issues in using machine learning methods for
predicting the severity level of large-truck crashes. To this end, six representative machine learning
(ML) methods, including four classification tree-based ML models, specifically the Extreme Gradient
Boosting tree (XGBoost), the Adaptive Boosting tree (AdaBoost), Random Forest (RF), and the Gra-
dient Boost Decision Tree (GBDT), and two non-tree-based ML models, specifically Support Vector
Machines (SVM) and k-Nearest Neighbors (k-NN), were selected for predicting the severity level
of large-truck crashes. The accuracy levels of these six methods were compared and the effects of
data-balancing techniques in model prediction performance were also tested using three different
resampling techniques: Undersampling, oversampling, and mix sampling. The results indicated
that better prediction performances were obtained using the dataset with a similar distribution to
the original sample population instead of using the datasets with a balanced sample population.
Regarding the prediction performance, the tree-based ML models outperform the non-tree-based ML
models and the GBDT model performed best among all of the six models.

Keywords: large-truck crash; crash severity prediction; machine learning methods

1. Introduction

In the United States, large trucks, as a significant means of freight transportation, play
a major role in the transportation system. Crashes associated with large trucks often lead
to substantial economic costs and serious or even fatal injuries. Accurate prediction of
the severity level of a reported truck crash can help rescue teams and emergency medical
services take the right actions and provide proper medical care, thereby reducing its
economic and social costs.

In general, the following KABCO scale is frequently used by law enforcement for
classifying the severity levels of a crash: K stands for fatal injury, A stands for incapacitating
injury, B stands for non-incapacitating injury, C stands for possible injury, and O stands for
no injury. In crash severity prediction studies, the response classes are often categorized
into different levels, including two levels, three levels, and so on [1]. The response classes
are usually determined by the research objectives and data quality. Detailed information
about crash datasets will be presented in the data collection and description section.

A variety of modeling methods have been used in previous studies to predict crash
severity. These methods include both traditional regression models and Machine Learning
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(ML)-based methods. Traditional regression methods are not good at capturing and inter-
preting associations between independent variables and dependent variables due to the
limitation of predefined assumptions [2]. Therefore, recently, many researchers have turned
to ML methods, and various ML methods have been adopted for crash prediction purposes.
Among them, the Decision Tree, Support Vector Machine (SVM), and k-Nearest Neighbor
(k-NN) methods have been widely employed for crash severity prediction. It is unclear,
however, whether different types of ML-based models perform equally well. In addition,
to develop a reliable prediction model, some attention has been paid to the selection of
sample datasets for training classifiers. Some researchers concluded that a training sample
with a skewed class distribution tends to make classifiers biased [3]. To solve this issue,
some researchers suggest using a dataset with a balanced number of instances of different
classes, while other scholars suggest that it is more beneficial to use a sample that has a class
distribution the same as its population [4]. Indeed, in crash severity prediction, the number
of instances relating to AK-level crashes is generally far fewer than the number of instances
relating to non-AK-level crashes. Therefore, the effects of different data-balancing methods
on the prediction performance of different modeling approaches need to be investigated.

This study aims to investigate the performance of different ML methods in predicting
the severity levels of large-truck crashes and the effects of data-balancing techniques
on model prediction performance. First, three resampling techniques, namely random
undersampling, SMOTE oversampling, and mix sampling, were used to pre-process the
original training dataset. Then, six representative machine learning methods, including
four classification tree-based ML models, specifically the Extreme Gradient Boosting tree
(XGBoost), Adaptive Boosting tree (AdaBoost), Random Forest (RF), and Gradient Boost
tree (GBDT), and two non-tree-based ML models, specifically Support Vector Machines
(SVM) and k-Nearest Neighbors (k-NN), were selected to predict the severity level of
large-truck crashes. After that, the performances of different models using different types
of training datasets were compared and analyzed.

In this study, an overview of previous research on the subject was summarized and
then the dataset used for his study was explained, and the analysis methodology was
introduced. Finally, a thorough discussion of the modeling outcomes and their implications
was discussed, and further suggestions were made.

2. Literature Review
2.1. Crash Severity Prediction Models

Previous studies have investigated different aspects of traffic safety analysis: Single-
vehicle crashes and multi-vehicle crashes, pedestrian collisions, macro-level crash analysis,
and micro-level crash analysis. For example, Wei et al. (2021) proposed a novel Bayesian
spatial random parameters logit (SRP-logit) model to explore the risk factors associated
with the severity of rural single-vehicle (SV) crashes [5]. The results indicated that the
SRP-logit model exhibits the best-fit performance compared with the multinomial logit
model, random parameter logit model, and random intercept logit model.

Guo et al. (2018) compared different approaches to modeling macro-level cyclist
safety. Four types of models were developed: The Poisson lognormal model (PLN), random
intercepts PLN model (RIPLN), random parameters PLN model (RPPLN), and spatial
PLN model (SPLN) [6]. The SPLN model performed best, and the results highlighted the
significant effects of spatial correlation.

Cai et al. (2021) investigated the factors associated with the severity of low-visibility-
related rural single-vehicle crashes [7]. In their study, a latent class clustering model was
implemented to partition the whole dataset into sub-datasets before modeling. Then,
a spatial random parameters logit model was established for each dataset to capture
unobserved heterogeneity and spatial correlation.

Among all the modeling approaches, ML techniques stand out as an alternative to
statistical methods. A variety of ML modeling methods have been adopted in all aspects
of crash-safety studies, including decision tree models, neural networks, Support Vector
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Machines, and ensemble learning classifiers. In particular, there is growing interest in using
tree-based ML techniques to predict and identify crash severity.

Li et al. (2012) compared the performance of the Support Vector Machine (SVM)
model and the ordered probit (OP) model in predicting the injury severity associated with
individual crashes [8]. It was found that the SVM model produced a better prediction
performance for crash injury severity than the OP model.

Pineda-Jaramillo et al. (2022) used a set of machine-learning models to predict the severity
of a vehicle–pedestrian collision. The results showed that the Linear Discriminant Analysis
model surpasses other machine learning models considering the evaluation metrics [9].

Chang and Chien (2013) examined the effects of factors related to drivers and vehicles
on heavy-truck crashes using the classification and regression tree method [10].

Yu and Abdel-Aty (2014) developed a crash severity analysis regression model by first
identifying factors that can explain the occurrence of severe crashes through a random
forest approach [11].

Iranitalab and Khattak (2017) compared the performance of Multinomial Logit, Near-
est Neighbor Classification, Support Vector Machines, and Random Forests in crash risk
prediction. In their study, the effects of data clustering preprocessing were also investi-
gated [12]. Although the results indicated that clustering methods can improve prediction
performance under certain conditions, in the real world, it is not practical to cluster a crash
before its crash severity can be predicted.

Tang et al. (2019) proposed a two-layer crash severity predicting framework [13]. The
first layer incorporates three tree-based models: Random Forest, an Adaptive Boosting tree,
and a Gradient Boost Decision tree. The second layer combines all the prediction results of
the developed tree-based models through logistic regression.

Schlögl et al. (2019) conducted a comparison of seven methods for identifying con-
tributing factors to traffic crashes [14]. A series of statistical learning techniques (including
all four types of logistic regression, tree-based ensemble methods, the BRNN, and the
Pegasos SVM) were compared regarding their predictive performance. The results showed
good performance of tree-based methods.

2.2. Data Balancing Techniques in Crash Severity Prediction Modeling

To develop a reliable prediction model, some attention has been paid to the selection
of appropriate sample datasets for training or fitting models. As we know, high-imbalance
datasets often occur in real-world applications. Trained with such a dataset, standard
ML classifiers tend to be biased [3]. The effects of class imbalance have attracted more
and more attention in recent years. To solve this issue, previous studies have proposed
solutions from the dataset perspectives and algorithmic perspectives. From the dataset
perspective, one can use many different forms of resampling to preprocess the data to
obtain balanced training datasets. At the algorithmic level, solutions include creating new
algorithms or modifying existing ones. Compared with the algorithmic level approach, the
data-level approach seems to be more straightforward and has greater promise to overcome
the class-imbalance problem [15]. Therefore, this study focuses on the data preprocessing
perspective. In general, three types of resampling approaches can be used to balance
classes. These are oversampling methods, undersampling methods, and mixed methods.
Oversampling includes the techniques that balance the number of instances between classes
by increasing the number of minority classes until the distribution of classes is balanced,
while undersampling includes the techniques to balance classes by reducing the number
of instances from the majority class. Finally, mixed techniques include techniques that
integrate the above two techniques.

In recent years, several studies have explored crash severity prediction with data-
balancing techniques. For example, Mujalli et al. (2016) discussed the effects of three types
of different data-balancing approaches on traffic crash data [16]. Then, Bayes classifiers
were developed based on the imbalanced and balanced datasets. It was found that using
the balanced training datasets reduced the misclassification of AK-level crashes.
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Schlögl et al. (2019) adopted a mixed approach in which a combination of oversam-
pling and undersampling was used to preprocess the dataset [14]. The findings revealed
that there is a trade-off between accuracy and sensitivity. They conclude that this was
inherent to imbalanced classification problems.

Rivera et al. (2020) assessed five classification algorithms on an original imbalanced
dataset [17]. Five re-sampling algorithms were tested: The synthetic minority oversampling
method (SMOTE), borderline SMOTE, adaptive synthetic sampling, random undersam-
pling, and random oversampling. The results indicated that the imbalance between binary
labels negatively affected the performance of both classifiers. Moreover, random oversam-
pling performs best.

Abou Elassad et al. (2020) developed a decision support system based on four ML
methods [18]. This study also studied the effects of three balancing methods: Oversampling,
undersampling, and synthetic minority over-sampling (SMOTE). The best performances
were acquired by SMOTE balancing.

In summary, various ML-based modeling approaches have been used to predict crash
severity. Among these models, classification tree-based ML models (e.g., Extreme Gradient
Boosting tree (XGBoost), Adaptive Boosting tree (AdaBoost), Random Forest (RF), and
Gradient Boost Decision Tree (GBDT)), Support Vector Machines (SVM), and k-Nearest
Neighbors (kNN) are the most popular ML techniques that have been used for crash
severity prediction. However, it is unclear whether different types of ML-based models
perform equally well. Moreover, few studies have considered the tree-based ML models as
a group and compared them with other types of ML methods. Several questions remain
open and need further exploration. Therefore, this study aims to compare the performances
of six machine learning models in predicting large-truck crash risk. In addition, the effects
of the data imbalance issue on the performance of different modeling approaches are still
not clear. To fill this gap, the three most commonly used data balancing techniques, random
undersampling, SMOTE oversampling, and mix sampling, will be used to preprocess the
original training dataset to test the effectiveness of data balancing in model prediction
performance.

3. Study Data
3.1. Data Source

The truck crash records of the state of Texas from 2016 to 2019 were pulled from the
Texas Crash Records Information System (CRIS). In the raw dataset, there are over 170 at-
tributes in each record, including information about the drivers, the number of vehicles
involved, crash characteristics, weather conditions, and roadway location and conditions.

3.2. Variables Selection and Setting

The severity level of crashes was the prediction label. It was categorized into three
levels: Crashes with Property Damage Only (PDO) (y = 0), crashes with Slight Injuries
(SLIG) (y = 1), and crashes in which someone is Killed or has Severe Injuries (KSEV) (y = 2).
In the training dataset, as shown in Figure 1a, there were 72.45% PDO-level crashes, 22.84%
SLIG-level crashes, and 4.71% KSEV-level crashes. In the testing dataset, as shown in
Figure 1b, there were 73.36% PDO-level crashes, 22.27% SLIG-level crashes, and 4.37%
KSEV-level crashes. It can be seen that the data are very imbalanced because a class
distribution with an imbalance ratio greater than 1.5 can be considered imbalanced [19],
and the distribution of the three severity levels of the testing dataset is highly consistent
with that of the training dataset.
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Forty independent variables were carefully selected from over 170 attributes based
on the analysis of their correlations and data quality. These attributes of the large-truck
crash data belong to different categories, as shown in Table 1. The variable selection process
was detailed as follows. The first step is to reduce collinearity variables. Then, categorical
variables were converted to dummy variables. It can be observed that the variables in the
same category were highly correlated. Taking the “Traffic Control” category as an example,
there are six types of traffic control types: “none”, “stopsign”, “signallight”, “yieldsign”,
“flashinglight” and “markedlane”, and “signal camera”; in other words, a crash can fall
into one of these six conditions. If all these dummy variables were included in modeling,
their sum would be equal to 1. This can cause a dummy variable trap, therefore one
baseline variable for each category will be selected [20]. Moreover, variables without a clear
causal relationship with the dependent variable were removed to avoid the endogeneity
problem [21]. Finally, 40 independent variables were selected, as listed in Table 1, and the
distributions of variables are presented in Table 2. There were 83,148 large-truck crashes in
the final dataset.
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Table 1. Variables and Descriptions.

Traffic Control Weather Characteristics

none 1 for no traffic control, 0 otherwise (baseline) clr 1 for clear weather condition, 0 otherwise (baseline)
st_sign 1 for traffic control is stop sign, 0 otherwise rain 1 for raining weather condition, 0 otherwise

sig_light 1 for signal light controlled, 0 otherwise snw 1 for snowing weather condition, 0 otherwise
yld_sign 1 for yield sign controlled, 0 otherwise blowing 1 for blowing sand weather condition, 0 otherwise

flash_light 1 for flashing light controlled, 0 otherwise fog 1 for fog weather condition, 0 otherwise
mk_lane 1 for markedlane controlled, 0 otherwise sleet 1 for sleet weather condition, 0 otherwise

sig_camera 1 for signal camera controlled, 0 otherwise sv_crosswinds 1 for severe crosswinds weather condition, 0 otherwise

Light characteristics Median type

day_light 1 for crash during daylight, 0 otherwise (baseline) median_none 1 lane with no median, 0 otherwise (baseline)
dawn 1 for crash during dark yet not lighted, 0 otherwise unprotected 1 lane with unprotected, 0 otherwise

dk_no_light 1 for crash during dawn, 0 otherwise posi_barrier 1 lane with positive barrier, 0 otherwise
dk_light 1 for crash during dark yet lighted, 0 otherwise one_way_pair 1 lane with one-way pair, 0 otherwise

dusk 1 for crash during dusk, 0 otherwise curbed 1 lane with curbed, 0 otherwise

Roadway functional system Road alignment

r_int_hwy 1 crashes in rural interstate highway, 0
otherwise (baseline) stgt_evel 1 for straight level road alignment, 0

otherwise (baseline)
u_int_hwy 1 crash in urban interstate highway, 0 otherwise stgt_grade 1 for straight grade road alignment, 0 otherwise

r_ppl_a 1 crash in rural principle arterial, 0 otherwise stgt_hillcrest 1 for straight hillcrest road alignment, 0 otherwise
u_oth_ppl_a 1 crash in urban other principle arterial, 0 otherwise curve_level 1 for curve level road alignment, 0 otherwise
u_minor_a 1 crash in urban minor arterial, 0 otherwise curve_grade 1 for curve grade road alignment, 0 otherwise
r_minor_a 1 crash in rural minor arterial, 0 otherwise curve_hillcrest 1 for curve hillcrest road alignment, 0 otherwise

Location of first harmful event Base type

on_rd 1 for crash occurred on road, 0 otherwise (baseline) soil 1 for soil road, 0 otherwise (baseline)
on_shlder 1 for crash occurred on shoulder, 0 otherwise granular 1 for granular road, 0 otherwise

on_median 1 for crash occurred on median, 0 otherwise asph 1 for asphalt road, 0 otherwise
off_rd 1 for crash occurred off road, 0 otherwise concr 1 for concrete road, 0 otherwise

Shoulder type left Curb type left

shldr_lt_none 1 for no left shoulder, 0 otherwise (baseline) curb_lt_none 1 for no left curb, 0 otherwise (baseline)
shldr_lt 1 if left shoulder exists, 0 otherwise curb_lt 1 if left curb exists, 0 otherwise

Shoulder type right Curb type right

shldr_rt_none 1 for no right shoulder, 0 otherwise (baseline) curb_rt_none 1 for no right curb, 0 otherwise (baseline)
shldr_rt 1 if right shoulder exists, 0 otherwise curb_rt 1 if right curb exists, 0 otherwise
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Table 1. Cont.

Traffic Control Weather Characteristics

Road type Crash contributing factors

2lane_ 2way 1 for road type that is 2 lanes, 2 way, 0
otherwise (baseline) fatigue 1 for driver under influence of fatigue, 0 otherwise

4ormore_div 1 for road type that is 4 or more, divided, 0 otherwise drug 1 for driver under influence of drug, 0 otherwise
4ormore_undiv 1 for road type that is 4 or more, undivided, 0 otherwise alcohol 1 for driver under influence of alcohol, 0 otherwise

Lane width and shoulder width Numerical variables

lane_wid width of lanes in feet adt_adj_curnt_amt adjusted average daily traffic for the current year for
crashes located on the road

shldr_width_left width of left shoulder in feet crash_spd_lim speed limit of the lane
shldr_width_right width of right shoulder in feet trk_aadt_pct adjusted average daily traffic percent

nbr_of_lane number of lanes

Table 2. Distribution of the Variables.

Variable
Crash Injury Severity

Total Percent Variable
Crash Injury Severity

Total Percent
PDO SLIG KSEV PDO SLIG KSEV

Traffic Control Weather Characteristics

none 6587 1819 275 8681 10.44% clr 43,087 13,219 2764 59,070 71.04%

st_sign 2679 915 273 3867 4.65% rain 6333 1978 332 8643 10.39%

sig_light 7271 2081 253 9605 11.55% snw 133 26 5 164 0.20%

yld_sign 938 262 28 1228 1.48% blowing 36 13 8 57 0.07%

flash_light 283 96 32 411 0.49% fog 422 188 90 700 0.84%

mk_lane 31,653 10,224 1872 43,749 52.62% sleet 153 35 9 197 0.24%

sig_camera 116 33 5 154 0.19% sv_crosswinds 159 40 11 210 0.25%

Light Characteristics Median Type

day_light 45,662 13,980 2326 61,968 74.53% median_none 17,147 5482 1639 24,268 29.19%

dawn 828 276 84 1188 1.43% unprotected 5882 1818 368 8068 9.70%

dk_no_light 6667 2249 894 9810 11.80% posi_barrier 11,128 3634 720 15,482 18.62%
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Table 2. Cont.

Variable
Crash Injury Severity

Total Percent Variable
Crash Injury Severity

Total Percent
PDO SLIG KSEV PDO SLIG KSEV

dk_light 6534 2150 480 9164 11.02% one_way_pair 103 18 1 122 0.15%

dusk 448 139 39 626 0.75% curbed 675 220 27 922 1.11%

Roadway Functional System Road Alignment

r_int_hwy 21,967 6639 829 29,435 35.40% stgt_evel 46,507 14,148 2729 63,384 76.23%

u_int_hwy 5766 1958 733 8457 10.17% stgt_grade 6265 2161 516 8942 10.75%

r_ppl_a 17,158 5611 769 23,538 28.31% stgt_hillcrest 1799 741 150 2690 3.24%

u_oth_ppl_a 2348 680 139 3167 3.81% curve_level 3304 999 265 4568 5.49%

u_minor_a 2853 963 438 4254 5.12% curve_grade 1947 652 152 2751 3.31%

r_minor_a 6567 1769 538 8874 10.67% curve_hillcrest 449 121 26 596 0.72%

Location of First Harmful Event Base Type

on_rd 52,128 16,415 3226 71,769 86.31% soil 372 133 42 547 0.66%

on_shlder 764 190 130 1084 1.30% granular 34,451 10,964 2561 47,976 57.70%

on_median 1873 641 115 2629 3.16% asph 788 223 50 1061 1.28%

off_rd 5653 1608 373 7634 9.18% concr 24,821 7534 1191 33,546 40.34%

Shoulder Type Left Curb Type Left

shldr_lt_none 4725 1254 586 6565 8.39% curb_lt_none 3211 1162 197 4570 27.43%

shldr_lt 51,941 16,290 3459 71,690 91.61% curb_lt 9225 2518 348 12,091 72.57%

Shoulder Type Right Curb Type Right

shldr_rt_none 5813 1964 755 8532 10.19% curb_rt_none 3754 1239 234 5227 29.12%

shldr_rt 54,458 17,180 3573 75,211 89.81% curb_rt 9721 2636 368 12,725 70.88%

Road Type Crash Contributing Factors

2lane_2way 9890 3310 1185 14,385 17.30% fatigue 804 386 129 1319 1.59%

4ormore_div 43,114 13,338 2202 58,654 70.54% drug 100 84 88 272 0.33%

4ormore_undiv 7355 2189 454 9998 12.02% alcohol 348 235 167 750 0.90%
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4. Methodology
4.1. Crash Severity Modeling Methods

As mentioned in the literature review, in this study, six representative machine learning
methods, including four representative classification tree-based ML models (e.g., XGBoost,
AdaBoost, RF, and GBDT, and two non-tree-based ML models (e.g., SVM and kNN) were
selected for developing crash severity prediction models.

4.1.1. Random Forest (RF)

RF builds trees from samples that were drawn from the training dataset. It is a com-
bination of Breiman’s bagging idea and Ho’s “random subspace method” [22]. Decisions
are made considering all individual trees in the ensemble. It can be achieved by either
averaging the probabilistic predictions of the classifiers or letting each classifier vote.

In this study, the input samples for RF are represented as x = {[xi1, xi2, ..., xin ], yi}
where i = 1, 2, 3 . . . , m and m indicate the number of crash samples, and n is the number of
independent variables. The values of the dependent variable y (y = 0.1, or 2) correspond to
different levels of crash severity. The python interface to RF, available through the package
RandomForestClassifier from scikit-learn, is used.

4.1.2. Adaptive Boosting (AdaBoost)

AdaBoost is a method of making classifications by combining weak learners with a
weighted majority vote (or sum). Taking into account the previous weak learners’ errors, it
updated the sample accordingly [23]. The basic steps of this algorithm can be explained as
follows [24]:

Given a training dataset D =
{
(x1, y1), (x2, y2), · · · ,

(
xN, yN

)}
, a strong classifier C(x)

is generated by the following steps:
Initialization of the weight value distribution of the training data, W1 = (w11, · · · , w1i,

· · · , w1N, ), w1i =
1
N , i = 1, 2, · · · , N, m = 1, 2,· · · , M (m is the times of iteration).

Using the training dataset as the weight distribution Wm to learn, we obtain the basic
classification Cm(x) according to the Gini indexes of different influencing factors k.

The classification error rate of Cm(x) is calculated as follows:

em = P(Cm(x) 6= yi) =
N

∑
i=1

wmiI(Cm(x)) 6= yi

We calculate the “amount of say”, am of Cm(x) according to its classification error em

am =
1
2

log
1− em

em

4.1.3. Gradient Boosting Decision Tree (GBDT)

GBDT is one of the boosting algorithms. The motivation is to combine several weak
models to produce a powerful ensemble. Similar to other boosting algorithms, GBDT
builds the additive model in a greedy way.

We assume that F(x) is an approximation function of the dependent variable y based

on a set of independent variables x. F(x) can be expressed as F(x) =
M
∑

m=1
γmhm(x), where

hm(x) represents the basic functions that are usually called weak learners in the context
of boosting. The loss function can be defined as L(y, F(x)) = log

(
1 + e−yF(x)

)
. Similar to

other boosting algorithms, GBDT builds the additive model in a greedy fashion: The initial
model is problem-specific, and for the least-squares regression, one usually chooses the
mean of the target values. Gradient Boosting attempts to solve this minimization problem
numerically via the steepest descent [24].
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4.1.4. Extreme Gradient Boosting (XGBoost)

A variant of gradient-boosted regression trees is Extreme Gradient Boosting (XG-
Boost) [25]. Due to a number of optimizations—simplifying the objective functions but
maintaining the optimal computational speed—XGBoost is a very fast and efficient tree-
boosting algorithm [26].

The XGBoost method is based on the processes of additive learning. The first learner
is fitted based on the input data, then according to the residuals of the first learner, a second
learner is then fitted to reduce the residual of the first weak learner. The model’s final
prediction is a summary result of each learner. The python interface to XGBoost, available
through package XGboost, is used.

4.1.5. Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a supervised linear classifier that constructs
hyperplanes to classify labels [27]. We consider a training set represented by {(xi, yi)}

N
i=1,

where xi is the n-dimensional dependent variable and yi represents the independent
variable, assume yi = 1 represents the positive group and the independent variable yi = −1
represents the negative group. SVM maps each input point xi in the feature space H and
finds a decision surface that separates binary points. The python interface to SVM, available
through the package SVM from scikit-learn, is used.

4.1.6. k-Nearest Neighbor (k-NN)

As one of the non-parametric classifiers, k-Nearest neighbor (k-NN) is one of the most
commonly used methods [28]. In k-NN, crash records are represented by independent
variables as a point in the feature space. When classifying one record of severity, the k-NN
classifier assign points based on the distance between the point and the points in the
training dataset. In this study, the Euclidean distance is used.

In this study, the python interface to k-NN, available through the package Nearest
Neighbors from scikit-learn, is used.

4.2. Data-Balancing Techniques

To test the effectiveness of sampling balancing techniques in detecting the severity
level of a large-truck crash, three commonly used resampling approaches were selected to
balance the training datasets: The synthetic minority oversampling technique (SMOTE),
Random undersampling (RUS), and mixed techniques.

• SMOTE: Using k-Nearest Neighbors, this method aims to create synthetic instances
for minority classes [29]. Depending upon the amount of over-sampling required,
neighbors from the k nearest neighbors are randomly chosen.

• RUS: Aims to balance the class distribution by randomly eliminating the number of
instances of the majority class until the dataset is balanced [3]. The major disadvantage
of RUS is that it can delete instances that could be important for data analysis.

• The Mixed technique: This method combines both SMOTE and RUS techniques. In
this method, the instance number of the minority class is increased while the instance
number of the majority class is discarded until the classes are balanced, while the
dataset size remains the same as the original dataset size [16].

These three resampling techniques are performed in the program python, and the
package “imbalanced-learn” is used.

4.3. Study Design

This research was designed to predict the severity level of a large-truck crash based
on the comparison of different classification models. As mentioned in the data description
section, the final cleaned dataset was divided into a dedicated training dataset (which
contains records from the year 2016 to 2018) and a dedicated testing dataset (which contains
records from the year 2019). As shown in Figure 2, three resampling techniques including
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random undersampling, oversampling, and mixed sampling were implemented on the
training dataset to create three correspondingly balanced datasets. Together with the
original dataset, which is kept the same as the training dataset, a total of four datasets
were used to develop different prediction models. Since six classifiers, including four
classification tree-based ML models (XGBoost, AdaBoost, RF, and GBDT), and two non-
tree-based ML models (SVM and k-NN), were selected in this study, combined with the
four datasets, a total of twenty-four prediction models were developed. The effects of
class-balancing techniques on model prediction performance were tested by comparing the
performance of different models. Figure 2 shows all the modeling scenarios.
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Figure 2. Study Scenarios.

4.4. Prediction Evaluation Measures

To evaluate the prediction performance of the model, there were mainly two types
of evaluation measures. The first one is threshold-based measures, such as sensitivity,
precision, specificity, and the F-measure, which rely on one specific threshold. Since
all these measures are decided based on one specific threshold, they cannot provide a
comprehensive evaluation of the model performance. This problem can be solved by using
non-threshold-based measures, such as ROC-AUC [30].

A Receiver Operator Characteristic (ROC) curve is a graphical plot used to show the
diagnostic ability of binary classifiers. A ROC curve is constructed by plotting the true
positive rate (TPR) against the false positive rate (FPR) [17], where TPR is the ratio of
actual positive instances to all positive instances and FPR is the ratio of actual negative
instances to all negative instances [31]. According to this definition, the area under the
curve (AUC) indicates the performance of classifiers in separate classes. ROC-AUC values
close to 1 describe a highly accurate classifier whereas values close to 0.5 describe a bad
classifier [4]. Since there is no specific threshold for ROC-AUC, it can be used to evaluate a
prediction model’s overall performance. In addition, ROC-AUC is not biased against the
majority class [3]. Therefore, in this study, ROC-AUC is selected as the evaluation measure.
In the following parts, ROC-AUC will be simplified as AUC.

5. Results and Analysis

The evaluation has two parts. First, to test the effects of different resampling tech-
niques, the performances of different ML models developed using different training
datasets were compared. After that, by using the training dataset that can provide the best
performance, the results of different prediction models are further compared and analyzed.
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5.1. Imbalanced versus Balanced Training Datasets

This section aims to investigate the effects of sample-balancing techniques on the
model’s prediction ability. The original training dataset contained 61,983 crashes in which
the severity distribution was 44,905 PDO crashes, 14,159 SLIG crashes, and 2919 KSEV
crashes. Three new balanced datasets were created: RUS, SMOTE, and Mixed. Table 3 shows
the total number of instances across all datasets and their distribution by severity level.

Table 3. Number of Instances in Original and Balanced Training Datasets.

Datasets Total PDO SLIG KSEV

Original dataset 61,983 44,905 14,159 2919

Balanced
datasets

SMOTE 134,715 44,905 44,905 44,905

RUS 8757 2919 2919 2919

Mixed 61,983 20,661 20,661 20,661

As shown in Table 3, in the RUS dataset, the number of instances in the resulting
datasets for all classes was reduced to the size of the minority class (2925 instances for
KSEV). In the SMOTE dataset, the number of instances was increased to 44,905 instances for
the PDO class. Finally, in the mixed dataset, the total number of instances of the dataset was
kept the same at 61,983 crashes, yet the number of instances was evenly distributed among
different classes (the number of instances of the major class was reduced to 20,661 and the
number of the instances of the minority class was increased to 20,661).

For each training dataset (original, SMOTE, RUS, and Mixed), six different ML-based
modeling methods were applied to develop different models. All the parameters for each
model were optimized separately through the function GridSearchCV from scikit-learn
until the best AUC score was reached. The testing results of models developed from
balanced datasets were then compared with those developed from the original dataset.
The AUCs of different models developed from different training datasets are derived and
summarized in Table 4. According to the results presented in Table 4, the following findings
can be obtained:

Table 4. Overview of AUC Using Different Datasets.

Severity
Levels Datasets

Crash Severity Prediction Models

XGBoost GBDT RF AdaBoost k-NN SVM

PDO

Original 0.59 0.60 0.58 0.58 0.53 0.53
SMOTE 0.57 0.57 0.57 0.55 0.55 0.51

RUS 0.57 0.58 0.55 0.57 0.51 0.53
Mixed 0.53 0.53 0.55 0.53 0.52 0.50

SLIG

Original 0.57 0.58 0.56 0.51 0.53 0.54
SMOTE 0.55 0.55 0.52 0.51 0.52 0.51

RUS 0.50 0.51 0.51 0.50 0.51 0.52
Mixed 0.52 052 0.53 0.49 0.50 0.50

KSEV

Original 0.72 0.72 0.70 0.71 0.62 0.51
SMOTE 0.70 0.69 0.70 0.67 0.61 0.50

RUS 0.71 0.72 0.70 0.71 0.62 0.51
Mixed 0.63 0.62 0.67 0.63 0.57 0.55

Bold: best results for each experiment.

For the tree-based ML methods (XGBoost, AdaBoost, RF, and GBDT), the overall
results indicate that the original training dataset works better at predicting all three levels
of severity when compared to the balanced datasets. This result is consistent with the
findings of Liu et al. (2013) [32]. This result reflects a trade-off between specificity and
sensitivity. With the original dataset, classifiers tend to perform better at predicting classes
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with majority instances and produce lower accuracy over classes with minority instances.
Once the dataset is balanced, the accuracy of predicting the minority classes may be
increased although at the cost of reducing the prediction accuracy of majority classes.
Schlögl et al. (2019) substantiated that a trade-off between accuracy and sensitivity was
inherent to imbalanced classification problems [14].

For non-tree-based ML methods (k-NN and SVM), the original dataset also works
better. Taking the k-NN classifier as an example, the original dataset works better than the
balanced datasets in SLIG- and KSEV-level prediction. Only the SMOTE dataset produced a
relatively better PDO-level prediction than the original dataset. The overall results indicate
that the original dataset works better in predicting most levels of severity when compared
to the balanced datasets. Similar results are obtained for the SVM classifier.

According to Oommen et al. (2010), the imbalanced training dataset will not affect the
maximum-likelihood logistic regression model performance if the training dataset has a
similar distribution as the testing dataset [4]. In this study, as presented in Figure 1, the
distribution of large-truck crash injury severity in training and testing datasets is very
similar. Since using an imbalanced training dataset did not affect the model performance
for all the tested ML-based models, it seems that Oommen’s conclusion is also applicable
to ML-based models.

5.2. Prediction Performance of Machine Learning Models

Based on the above results, since there is nearly no improvement achieved by data
balancing the training dataset for ML-based models, the original dataset was finally chosen
to develop the final prediction models for ML-based models. To make a detailed comparison
of the final six models, Figure 3 presents ROC curves of different severity levels.
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Figure 3. Comparison of Prediction Performance of Different Models. (a) ROC curves of PDO-
level crash prediction. (b) ROC curves of SLIG-level crash prediction. (c) ROC curves of KSEV-level
crash prediction.

As shown in Figure 3a, these curves can be divided into two groups, with one group
consisting of tree-based models (XGBoost, AdaBoost, RF, and GBDT) and the other group



Future Transp. 2022, 2 953

consisting of non-tree-based models (SVM and k-NN). It indicates that the prediction
performances of four tree-based ML models are better than the non-tree-based models for
predicting PDO-level crashes. The GBDT model showed the best prediction performance.

Similar to Figure 3a, there are two groups of curves in Figure 3b. The difference
between these two groups is not as significant as that shown in Figure 3a. One of the
tree-based ML methods (AdaBoost) showed relatively low performance, while the other
three tree-based algorithms (XGBoost, RF, and GBDT) still performed well. However, GBDT
still showed the best results.

As shown in Figure 3c, the four tree-based ML model curves (XGBoost, AdaBoost,
RF, and GBDT) are highly overlapped and superior to the other two non-tree-based ML
model curves. The two non-tree-based curves are highly separated, and SVM showed the
weakest performance.

Overall, all tree-based ML models (XGBoost, AdaBoost, RF, and GBDT) outperform the
non-tree-based ML models (SVM and k-NN) at all three severity levels of crash predictions.
This result is consistent with Chang and Chien (2013) [10]. They also demonstrated that
classification tree analysis is an effective approach for analyzing the injury data of truck
crashes. Among the four tree-based models, the GBDT model performs better than the
other models.

6. Conclusions and Recommendations

This research was designed to predict the severity level of large-truck crashes based
on the comparison of different classification models (XGBoost, AdaBoost, RF, GBDT, SVM,
and k-NN). In order to determine the appropriate training dataset for each model, three
sampling strategies, namely RUS, SMOTE, and Mixed, were employed to test the effects
of data-balancing techniques on the prediction performance of ML-based modeling. The
following are the key findings of this study, along with some corresponding recommendations:

• For XGBoost, GBDT, RF, AdaBoost, k-NN, and SVM tested in this study, using an
imbalanced training dataset did not affect the model performance. In fact, the original
dataset works better in predicting all three levels of severity when compared to the
balanced datasets. Therefore, we would recommend using the training dataset that
has a similar distribution as the prediction distribution to train the selected ML-based
models.

• Classification tree-based ML models (XGBoost, AdaBoost, RF, and GBDT) perform
relatively better than the non-tree-based ML models (SVM and k-NN) at all three
severity levels. Among them, the GBDT model performs best.

As a result, the results of this study can be used to predict a reported crash whose
severity is not known. Moreover, the modeling procedure can provide insight into the
selection and development of ML models for large-truck crash severity prediction.

One limitation of the study is that the types of ML models used in this research are
limited and the results of resampling may not be applicable to all kinds of ML models. In
the future, the authors will further test the effectiveness of resampling in neural network
modeling, Naive Bayes modeling, and so on. Furthermore, the modeling approach used in
this study can be expanded to analyze other traffic safety problems such as crash frequency
for different types of road function systems. In addition, it would also be interesting to
explore the results of smaller data-balancing intervals.
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