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Abstract: Urban logistics consumes a large portion of energy resources worldwide. Thus, optimiza-
tion algorithms are used to define mobility modes, vehicle fleets, routing plans, and last-mile delivery
operations to reduce energy consumption such as metaheuristics. With the emergence of smart
cities, new opportunities were defined, such as carsharing and ridesharing. In addition to last-mile
delivery, these opportunities form a challenging problem because of the dynamism they possess.
New orders or ride requests could be placed or canceled at any time. Further, transportation times
might evolve due to traffic conditions. These dynamic changes challenge traditional optimization
methods to propose solutions in real-time to large-scale energy-optimization problems. Thus, a more
‘agile optimization’ approach is required to provide fast solutions to optimization problems when
these changes occur. Agile optimization combines biased randomization and parallelism. It provides
‘good’ solutions compared to solutions found by traditional optimization methods, such as in-team
orienteering problems. Additionally, these solutions are found in short wall clock, real-time.

Keywords: smart cities; carsharing; ridesharing; last-mile delivery; efficient energy consumption;
sustainability

1. Introduction

Energy is one of the vital resources in our daily life. In addition, it is the driving
factor for different sectors, such as industry and transportation, because of its role, its
consumption increases. As depicted in Figure 1, energy consumption increased by 50.9%
between 2000 and 2021 worldwide. Ahmad and Zhang [1] expect that energy consumption
will continue to rise. High energy demand triggers oil, gas, and coal prices to rise. In the
past years, gasoline prices increased by 127% between 2000 and 2021 on the west coast of the
United States (https://data.bts.gov/stories/s/5bfv-z8ek (accessed on 13 October 2022)).
These prices are influenced by increased demand, climate policies, etc. [2].

The transportation sector, with its air, train, marine, and road modes, offers various
services involving transporting people or goods between different locations. Despite the
contribution of this sector to society, it uses around 29% of the global energy consumed [3].
Because of the expected increase in energy demand, energy consumption and CO2 emission
by the transportation sector will also increase. Accordingly, actions should be taken to
define policies to reduce energy consumption as well as CO2 emissions. Sustainability
awareness is increasing, and recent research trends study the optimization of energy con-
sumption and reducing the emission of greenhouse gases. Figure 2 displays an exponential
increase in the number of publications after the financial crisis in 2008. Researchers have
investigated several approaches to increase energy efficiency [4,5] and studied energy
optimization in the transportation sector [6,7]. Several reviews have been published about
energy consumption in road transportation [6] and maritime transportation [8], just to
mention some. In addition, researchers have focused on transportation advancements such
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as hybrid and electric cars [9,10]. Approaches such as machine learning, mathematical
programming, simulation, and metaheuristics have been used intensively in optimizing
the transportation sector [11].

Figure 1. Energy consumption worldwide from 2000 to 2021 (source: https://www.statista.com/
statistics/265598/consumption-of-primary-energy-worldwide (accessed on 13 October 2022)).

Figure 2. Evolution of Scopus-indexed articles for energy consumption and emission optimiza-
tion problems.

Public transportation is a critical infrastructure used by citizens. Smart cities were
defined by advancements in information and communication technologies and big data.
In this context, new transportation solutions, such as carsharing and ridesharing, evolved.
Thus, passengers are no longer confined to using only public transportation; they might
arrange their flexible travel with the evolved solutions. Another advantage of utilizing
information and communication technology is the possibility of reducing CO2 emissions in
the transportation sector [12]. In addition, current purchasing trends involve shopping and
placing orders online, which require planning last-mile delivery services.

In this paper, we investigate problems raised in smart cities in the context of energy
consumption. We focus our study on problems related to transport and mobility in smart
cities, such as carsharing, ridesharing, and last-mile delivery. The study aims to identify
problems in smart cities and the optimization methods used to recommend solutions

https://www.statista.com/statistics/265598/consumption-of-primary-energy-worldwide
https://www.statista.com/statistics/265598/consumption-of-primary-energy-worldwide
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considering energy requirements and their efficient consumption. Transportation problems
are mostly NP-hard and large-scale. Therefore, the efficiency of exact optimization methods
is limited. As a consequence, modern optimization approaches are usually required to
solve these problems. These approaches could be machine learning, heuristics, or hybrid
approaches combining several methods. In any case, they should handle complex and
dynamic problems. Real-time problems in smart cities involve a large number of passengers
and customers. Hence, they are complex in terms of the problem size. In addition, these
problems are dynamic in terms of data updates, such as added orders and canceled trips.
Upon such changes, the problem parameters change and, accordingly, recommended
solutions that optimize energy consumption should be updated to reflect these changes.
This dynamic characteristic adds to the complexity of the defined problems in smart cities,
and because of its nature, it requires a quick update of solutions. Approaches, such as
metaheuristics, cannot provide fast solutions upon request in real-time. Thus, optimization
approaches should become agile in solving problems. Agile optimization (AO) algorithms
solve a given problem in short wall clock time and are candidates to solve raised problems
in smart cities.

The rest of the paper is arranged as follows. Section 2 illustrates energy consumption
and resources in cities. Next, Sections 3 and 4 discuss optimization problems related to
mobility in smart cities and last-mile delivery, respectively. The AO dedicated to optimizing
dynamic problems is presented in Section 5. Section 6 presents some dynamic problems
that are solved using agile AO.

2. Energy Requirements in Urban Logistics

This section presents a literature review on energy requirements in urban logistics.
The logistics industry is one of the fundamental and supportive sectors in any developed
economy, and it is highly correlated with energy consumption [13]. Specifically, urban
logistics needs energy resources for transportation, and using state-of-the-art technologies
in urban logistics leads to more optimal exploitation of energy resources.

As shown in Figure 3, we can consider four main factors that influence the selection
of transportation energy sources. The factors can be grouped into technology, economic,
infrastructure, and urban form [14]. Technology is an impressive factor that can improve the
vehicles’ efficiency and also change the type of fuel in use. Pan et al. [15] present a review of
energy harvesting technologies for different applications in land transportation. In another
work, Jin et al. [16] discuss the development of intelligent transportation systems and the
role of technology in the advancement of this sector. In this work, the nanogenerator is
discussed as a new energy technology for self-powered intelligent transportation systems.
Further, economic factors such as fuel prices and incomes play an essential role in selecting
the economical type of fuel and vehicles. In this regard, Schislyaeva et al. [17] discuss the
economic condition of gas resources for the transportation sector. This article analyzes
the relationship of Russia with Turkey and the EU from the point of view of trilateral
economic relations. The infrastructure factor of each city consists of different modes, and
the level of services is the other main factor that influences the selection of transportation
energy. In this regard, Wang et al. [18] discuss the impact of transportation infrastructure
on energy efficiency. In this research, the relationship between transportation infrastructure
and industrial energy efficiency is evaluated. Finally, the urban form of each city, such as
density and residential centrality, also determines the type of transportation fuel. Kaza [19]
analyze the effectiveness of urban form on energy consumption in the transportation
sector. In this work, demographic, economic, and landscape characteristics of the cities are
analyzed to evaluate the consumption of energy in transportation.
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Figure 3. Decisive factors in the type of urban transportation fuel sources.

Figure 4 shows the relationship between urban density and transport-related energy
consumption [14].

Figure 4. Urban density and energy consumption.

Among different countries worldwide, the USA and Canada consume the most energy
in transportation. On the other side, Asian countries such as China and Japan use less
energy despite high population density. There may be two important reasons for this
opposite relationship between transportation energy consumption and urban density. First,
in non-dense countries, the average commuting distance increases, which explains the
higher energy consumption related to transportation. Second, shifting from a public and
non-motorized form of transportation to private automobile use is probably the other
reason for higher energy consumption in non-dense countries [20].

Recent analysis shows that transportation is responsible for 37% of CO2 emissions,
which is the highest reliance on fossil fuels of any other sector. Even during the COVID-19
crisis, the demand for transportation increased extensively, and it was one of the sectors
that were affected by the pandemic intensively [21]. The prediction models prove that by
increasing transportation demand, the Net Zero Emissions scenario requires transportation
emissions to fall by 20% by 2030. Achieving this drop requires implementing new policies
emphasizing the use of the least carbon-intensive travel methods and applying new opera-
tional models to expand energy-efficient behaviors [21]. Using alternative fuels for urban
transportation, such as Biofuels, natural gas, hydrogen, electricity, and hybrid vehicles,
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helps reduce CO2 emissions. However, these fuels have lower efficiency in comparison
with gasoline, and thus we need more of them. Generally, not only does producing these
fuels require notable capital investments, but also they need a more complicated storage
system in vehicles [20]. In the United States, petroleum products accounted for about 90%
of the total energy used in the logistics sector [22]. Gasoline is used in cars, motorcycles,
trucks, boats, and airplanes. Further, distillate fuels are mainly used by trucks, buses, trains,
and ships. Jet fuel is also used in airplanes and some types of helicopters [22].

In the last decade, research has been carried out on the energy requirements for
logistics. Recently, due to the expansion of cities and the advancement of technology, the
importance of urban logistics has increased, and many researchers have discussed the
role of energy in urban logistics. Gorcun [23] discusses the energy costs in urban logistics.
This study has shown that the energy costs in road transportation are related to different
factors such as distance, the type of vehicles, traffic flow rate, etc. Further, there is an
opposite relationship between the marginal energy costs of vehicles and the traffic flow rate,
which means that more traffic flow rates may reduce marginal energy costs. Further, the
speed of the vehicles is another factor that plays an important role in the total energy costs.
This study argues that defining the minimum speed for the roads, such as the maximum
speed, can control traffic congestion in order to have an optimum rate of traffic considering
the energy costs rate. In another work, Wu et al. [24] develop convex programming to
optimize the energy costs and component sizing of the plug-in fuel cell urban logistics
vehicle while satisfying vehicle power and battery health requirements. In this paper, four
different drive cycles are considered in order to achieve the optimal energy cost, battery
power, and energy capacity. Further, they investigated the power distribution to analyze
the different hydrogen prices and their impacts on plug-in fuel cell urban logistics vehicles’
fuel economy. Malladi et al. [25] optimize the size and the mix of the mixed fleet of electric
vehicles. Since the uncertain requests of the customers are revealed at the beginning of
each operational period, different models associated with each operational period for the
energy consumption of vehicles are considered. Two case studies show the functionality of
the proposed solution approach. In these studies, the total cost of ownership of a mixed
fleet with electric vehicles is calculated.

Recently, many publications have focused on environmental policies to reduce energy
consumption in urban logistics. For instance, Xu and Xu [26] have assessed the role of
environmental regulations in improving energy efficiency. This work applies a quantile
regression to analyze incentive and mandatory environmental regulations and their impacts
on energy efficiency and CO2 emissions in urban logistics. The researchers investigate
different cities in China to obtain results and provide information for the government to
apply various environmental policies in different cities. In another work, Jones et al. [27]
discuss freight transportation and using hydrogen vehicles instead of diesel-powered
vehicles by addressing the sustainability concerns in urban logistics. In this work, a
comprehensive analysis of the total costs of ownership and some other related policies
are presented. The results show that some kinds of diesel vehicles are still the most
competitive options.

Based on the Paris agreement, global warming should be held below 2 degrees Celsius
to avoid harmful environmental consequences, such as biodiversity, food security, and so
on. Furthermore, according to the agreement, countries should diminish the production
of harmful pollutants in all sectors, such as logistics [28]. Thus, sustainability is another
hot topic related to energy requirements in urban logistics. Magazzino et al. [29] discuss a
methodology that helps to achieve a sustainable path in the European area. In this work,
the performance of logistics operations is evaluated by considering fossil fuels and their
pollution effects in the transportation sector. They use a macro-level time-series dataset
from 27 European countries from 2007 until 2018. An artificial neural network algorithm is
adapted to investigate the dynamic interactions between different logistics performance
indexes. Based on the results, they recommend new policies that help governments improve
the logistics sector to a more sustainable path.
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In another work, Wang et al. [30] discuss energy efficiency in logistics. In this work, a
sample of 216 prefecture-level cities for the period 2009–2017 in China is evaluated. They
use a stochastic frontier analysis based on the translog production function. They find that
digitalization, environmental regulations, and education positively correlate with energy
efficiency in different cities, while government intervention and road density correlate
negatively. Turoń et al. [31] discuss the environmental aspects of energy consumption in the
logistics industry. In this work, they determine the factors that affect energy consumption in
carsharing system vehicles and develop recommendations for carsharing users to optimize
the energy consumption of electric vehicles. According to the results, the most critical
factors in consuming energy are travel time, distance, and external temperature.

3. Energy Consumption Optimization Problems in Smart Cities

This section introduces the concept of a smart city, reviews of the most recent works
in energy consumption optimization, and ends by focusing on sustainability and smart
transportation projects. A smart city should be seen as the union of a smart economy, smart
people, smart governance, smart environment, smart living, and smart urban mobility [32].
However, some papers agree on a certain weakness: the lack of consensus and low inter-
operability between the different parts [33]. The definition of smart cities has changed
according to different actors and commentators with differing priorities and goals [34]. It
goes beyond being a technology-centric concept, including people and community needs
as well as sustainability concepts.

3.1. Energy Consumption Optimization Problems

Energy is an indispensable element in cities. It supports transport, industrial and
commercial activities, water distribution, food production, as well as buildings and infras-
tructure. Energy consumption increases with population growth and an increased number
of industrial activities. Therefore, cities need to manage their energy efficiency to reduce
energy consumption and meet sustainability goals.

Researchers have optimized energy consumption in cities in their work. For example,
in the context of Vehicle Routing Problem with Backhauls (VRPB), in which the customer
set is divided into those who require deliveries and those who require pickups, Koç
and Laporte [35] provide a comprehensive review of the existing literature, focusing on
the solutions, methods, and models that have been developed. Santos et al. [36] aim to
complement the work by Koç and Laporte [35] by analyzing the sustainable impacts on the
VRPB. Although it is usually modeled as a cost minimization problem, they show that some
studies include environmental objectives in the equation, such as the minimization of CO2
emissions and energy consumption. An example of this can be found in Chávez et al. [37],
in which a multi-depot VRPB is proposed where the objectives are the minimization of
the travel distance, travel time, and total energy consumption. It is solved by means of
a multiobjective algorithm based on an Ant Colony System. In Lin et al. [38], a review
of the state-of-the-art of Green Vehicle Routing Problems (GVRP) is provided, in which
they distinguish between the GVRP, Pollution Routing Problem (PRP), and VRP in Reverse
Logistics, offering a complete vision of the trends and future directions for GVRP.

Energy consumption optimization problems do not remain only in the field of trans-
portation. There are many other areas in which energy optimization must be applied in
smart cities. Shah et al. [39] provide a comprehensive review of energy optimization tech-
niques and scheduling in smart homes, evaluating factors such as thermal comfort, visual
comfort, and air quality, concluding that genetic algorithms have performed generally bet-
ter than other options. Yang et al. [40] present a web-based parallel genetic algorithm (GA)
optimization framework that aims to reduce the computational time of simulation-based
building energy optimization problems. They carried out some experiments on a testing
building in Spain, where the objective was minimizing energy consumption. In fact, results
show a reduction of about 15%, where the parallel GA took significantly less computational
time than a single GA. By performing further analysis, they also show that the correlation
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between south window shading of a solar radiation set point and building energy con-
sumption is positive. Solar radiation increases cooling energy consumption in summer,
while solar gain entering south-facing windows can reduce heating energy consumption
in winter. In the context of mobile terminal devices, Li et al. [41] aim to balance energy
consumption and delay, adopting a trade-off strategy that can realize optimal energy con-
sumption with a delay threshold. They model a three-layer fog-cloud cooperation system
by describing energy and delay functions with queue theory. González-Briones et al. [42]
provide state-of-the-art developments in Multi-Agent Systems and their application to
energy optimization problems. They recognize that this approach is commonly used due
to its robustness when assigning different tasks to agents and its capacity for the commu-
nication, cooperation, and coordination of agents. In their case study with an Intelligent
Building, an average reduction of energy consumption of 20.58% was obtained. In the
same line of building energy consumption, Papastamatiou et al. [43] present a decision
support framework for the assessment and optimization of energy use in buildings, as well
as reducing CO2 emissions and energy costs.

Ejaz et al. [44] cover various directions to investigate energy-efficient solutions and
energy harvesting for IoT devices in smart cities. Two case studies to illustrate the signif-
icance of energy management have been presented. The first case study uses a heuristic
for solving appliance scheduling optimization in smart home networks, which aims to
reduce electricity costs. The second case study covers the efficient scheduling of dedicated
energy sources for IoT devices in smart cities, utilizing a branch and bound algorithm.
Lu et al. [45] propose an architectural design of green wireless sensor networks for smart
cities, exploiting the collaborative energy and information transfer protocol and illustrating
the challenging issues in this design. Optimization techniques are used to support decision-
making, such as the work performed by Carli et al. [46]. They provide a decision-making
tool based on a quadratic integer programming formulation that aims to support the se-
lection of the optimal energy retrofit interventions on an existing street lighting system,
reducing energy consumption, and ensuring an optimal allocation.

The reviewed papers that cover an optimization technique implementation are sum-
marized in Table 1. This analysis aims to show the wide variety of areas in which energy
optimization can be applied, along with different methods.

Table 1. Summary of optimization techniques used in different fields.

Paper Context Technique Objective Advantages

Chávez et al. [37] Multi-depot VRPB. Ant Colony System.
Minimization of the travel
distance, travel time, and
total energy consumption.

The proposed algorithm is a novel
metaheuristic approach that obtains
good results within short computing
times.

Yang et al. [40] Building energy
optimization.

Parallel Genetic
Algorithm.

Reduce computational time
of simulation-based building
optimization problems.

Lower computational times
compared to single GA.

Li et al. [41] Mobile terminal
devices.

Fog-cloud cooperation
system, Nonlinear
programming, SPML.

Balance energy consumption
and delay.

Trade-off strategy that can realize
optimal energy consumption with a
delay threshold.

González-Briones et al.
[42] Intelligent Buildings. Multi-Agent Systems. Energy consumption

optimization.

MASs are going through constant
evolution and thanks to their
multiple characteristics, they are a
very suitable approach to modeling
systems in the field of energy
optimization.

Ejaz et al. [44] IoT devices in smart
cities.

Heuristic,
Branch-and-Bound.

Reduce electricity costs,
scheduling of dedicated
energy sources for IoT
device.

Heuristics are efficient algorithms to
solve the NP-hard integer
programming problem.
Branch-and-Bound offer similar
results compared to exhaustive
search but with less complexity.

Lu et al. [45] Wireless sensor
networks.

Dual decomposition,
subgradient-based
methods.

Maximizing transmission
rate performance.

Decomposes the problem into
smaller problems.



Future Transp. 2022, 2 875

Table 1. Cont.

Paper Context Technique Objective Advantages

Carli et al. [46] Street lighting systems. Quadratic Integer
Programming.

Select optimal energy retrofit
interventions.

Allows simultaneously
reducing energy consumption
while ensuring an optimal
allocation of the retrofit actions
among the various street
lighting subsystems.

3.2. Sustainability and Smart Urban Mobility

The World Health Organization (WHO) data shows that almost all of the global
population (99%) breathe air that exceeds WHO guideline limits and contains high levels
of pollutants, with low and middle-income countries suffering from the highest exposures
(https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 13 October
2022)). In Europe, road transport constitutes the highest proportion of overall transport
emissions. In 2019, it emitted 72% of all domestic and international transport greenhouse
gas emissions. For these reasons, sustainability and smart urban mobility are topics that
should be taken into account in our cities. Smart urban mobility is defined by Lyons [34]
as: ‘connectivity in towns and cities that is affordable, effective, attractive and sustainable’.
In this subsection, we will review some recent works on these concepts. As part of the
solutions proposed in the existing smart mobility literature, concepts such as carsharing
and last-mile delivery are becoming very popular.

In the context of urban mobility, Calvet et al. [47] interviewed 16 entities from different
sectors, such as food distribution, construction, transportation, hospitality, and public
administrations, to gain insights into the main concerns about logistics in cities. They
conclude that e-commerce growth has multiplied the number of destinations and reduced
the average size of the parcels and time window restrictions for entering cities. At the end
of their study, they propose an agile optimization approach to handle the current raised
problems and converge to sustainable smart cities. In another work, Peyman et al. [48] re-
view the state-of-the-art of IoT in intelligent transportation systems and identify challenges
posed by cloud, fog, and edge computing in ITS. They develop a methodology based on
agile optimization algorithms for solving a dynamic ridesharing problem (DRSP) in the
context of edge/fog computing. A numerical example considering a DRSP is provided, in
which the potential of employing edge/fog computing, open data, and agile algorithms
is illustrated. Martins et al. [49] provide a review of recent works on optimization prob-
lems related to ridesharing and carpooling, classifying them according to the employed
solving methodology, then identifying the main challenges and tackling the need for agile
optimization techniques.

A particular service belonging to smart urban mobility is carsharing. This service
allows users to pick up a car, use it, and bring it back to a parking lot, paying just for the
usage. The service reduces vehicle ownership, urban congestion and polluting emissions
(gas and noise), and offers cheaper mobility options for the population while freeing up
parking spaces. Shared cars might be electric or non-electric. Some of the most mentioned
challenges include the relocation of the vehicles and route scheduling. Further, in the case
of electric cars, the location of charging stations and charging scheduling. In addition,
electricity consumption is affected by driving and environmental conditions. Therefore,
electricity consumption should be modeled to estimate the actual charge status of the cars
during the day.

The number of works related to carsharing services has rapidly increased over the
last few years (Figure 5). Some of the most recent works on carsharing optimization are
described next. Bruglieri et al. [50] address a three-objective relocation problem in the
context of one-way electric carsharing. One-way refers to users being able to return a
car to a station different from its original one. The objectives include: maximizing the
number of relocation requests served, minimizing the duration of the workers’ longest route
when relocating the cars among stations, and minimizing the number of workers. They

https://www.who.int/health-topics/air-pollution#tab=tab_1
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solve it by applying mixed integer linear programming (MILP). Lai et al. [51] propose an
optimization model based on MILP for optimal routing and charging scheduling of electric
vehicles in a carsharing service, considering a multi-temporal and multi-task operation.
The proposed model formulates the decision-making process for various electric vehicle
states (i.e., charging, parking, transporting), as well as additional constraints representing
state transitions, working hour requirements, and neutral energy position of batteries. In
another work, Lu et al. [52] investigate the vehicle relocation problem with operation teams
encountered by a carsharing company in China. A mathematical model is first built to
describe the problem. An adaptive large neighborhood search (ALNS) algorithm is applied
to efficiently find the relocation pairs of stations and the visiting routes of operation vehicles.
In the context of shared autonomous electric vehicles, Ma et al. [53] propose a combined
optimization problem to simultaneously locate charging stations and optimize the fleet
size and routes to minimize total costs. They formulate a mixed-integer nonlinear model
and find a solution using a genetic algorithm. Chang et al. [54] tackle the real-time vehicle
relocation and staff rebalancing problem in the one-way carsharing system, employing a
new deep learning algorithm. They predict the inflows and outflows at each station and
solve a two-phase integer programming model using an ALNS-based heuristic to optimize
the process of vehicle relocation and staff rebalancing with cooperative relocation strategies.
They show, for a specific case in China, that the profit of four carsharing companies can
be increased by 25.49%. An interesting discussion on how people perceive carsharing is
provided by Hartl et al. [55], where they show that interviews with users indicate that the
sustainable impact of carsharing is perceived as a positive side effect rather than the main
argument for carsharing. Consumers are more concerned about the price of the service, the
easiness to use, and flexibility, so this should be taken into account by policy-makers and
marketers in order to promote carsharing services because of sustainable benefits.

Figure 5. Evolution of Scopus-indexed articles for carsharing or car-sharing.

Table 2 summarizes the main targeted objectives in the context of carsharing along
with the methodology used in the reviewed papers.



Future Transp. 2022, 2 877

Table 2. Main targeted objectives in the reviewed carsharing papers.

Paper Context Technique Objective

Bruglieri et al. [50] One-way electric carsharing Mixed Integer Linear Programming Three-objective relocation problem

Lai et al. [51] Electric carsharing Mixed Integer Linear Programming Optimal routing and charging
scheduling

Lu et al. [52] Carsharing Adaptive Large-Neighborhood
Search

Vehicle relocation with operation
teams

Ma et al. [53] Shared autonomous electric
vehicles

Mixed Integer Nonlinear model,
Genetic Algorithm

Locating charging stations,
optimizing fleet size and routes

Chang et al. [54] One-way carsharing Heuristic, Deep learning algorithm Vehicle relocation and staff
rebalancing

4. Energy Consumption in Last-Mile Delivery

Last-mile delivery is the most expensive and least efficient portion of a supply chain. It
accounts for more than 70% of the energy consumption in a distribution channel [56]. The
concern about delivering parcels to a specific address increased during the COVID-19 pan-
demic leading to the raised importance of last-mile deliveries. Therefore, researchers have
studied energy efficiency and its consumption in cities. Some models were built to estimate
energy efficiency [57] and gas emissions [58], and the number of publications increased,
as depicted in Figure 6. Analysis based on collected data showed that energy efficiency is
reduced in city centers compared to other parts of the cities because of traffic jams, traffic
lights, and crossing pedestrians [59]. As a result, different optimization problems were
defined in the context of last-mile delivery in cities, such as capacitated pollution-routing
problems with pickup and delivery [58]. Several studies have recommended replacing
the use of diesel cars in last-mile delivery with more environmental and sustainable so-
lutions [59]. In addition, increased city traffic triggered studies to analyze traffic, energy
consumption, and gas emissions in cities.

Figure 6. Evolution of Scopus-indexed articles for last-mile delivery.

One of the recommendations is to replace traditional vehicles with electric vehicles [60].
The utilization of electric vehicles aims to reduce emissions in urban areas [61]. However,
they possess new types of challenges, such as short driving range, limited battery capacity,
and required charging infrastructure. Thus, an analysis of these challenges and the effect of
electric vehicles on energy consumption in last-mile delivery has been investigated [62].
For example, Napoli et al. [63] investigated the location of charging stations to reduce
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energy usage. In the study, the considered recharging stations were based on renewable
energy. Iwan et al. [61] studied the effect of the specificity of a delivering area on the energy
consumption of a specific electric vehicle. Another work has considered integrating electric
vehicles with the grid net [64]. In this work, electric vehicles could be charged or recharged
and used as energy storage. The problem was modeled as a vehicle routing with a time
window and time-variant price. These different analyses prove the suitability of electric
vehicles for urban last-mile deliveries.

Electric vehicles could be unmanned aerial vehicles (UAVs) or drones. These vehicles
do not face traffic jams in urban cities and could be used to deliver parcels to customers.
Although UAVs are flexible, they have several drawbacks, such as low battery capacity
and limited delivery distances and times. Therefore, the costs and energy consumption
associated with UAVs become topics to be studied [65]. Energy consumption is related to
different environmental conditions and flight patterns [66] and is affected by the battery
weight and the weight of the carried parcel [67]. In addition, studies show that the carbon
footprint is reduced by using UAVs in last-mile delivery [68]. Problems involving UAVs
are formulated as VRPs [67,68]. Real-world problems are characterized by uncertainty and
dynamicity. Thus, these characteristics should be considered in problem formulation and
an approach used to solve it [69].

In order to handle limited battery capacity, approaches combining UAVs and other
vehicles have been proposed, including crowdsourced vehicles [70,71]. UAVs are carried
by electric vehicles, trucks [71], or even buses [72]. The vehicles travel along their route,
and a UAV leaves the vehicle near its destination to deliver parcels. The vehicles could play
a role in charging UAVs and, hence, help to increase the delivery distance and time that
UAVs cover. In this approach, energy consumption is reduced. It is affected by the carried
weight and the environmental conditions [71,72], and the delivery capacity presented by
delivery time and distance increase. In the end, the UAVs could return to the vehicles to
be recharged. This cooperation between vehicles and UAVs could be extended to utilize
public transportation (buses), raising synchronization issues in such problems [73].

Instead of UAVs, autonomous delivery robots might deliver parcels for the last mile [74,75],
e.g.: delivery at a university campus. Autonomous delivery robots reduce energy con-
sumption and CO2 emissions [74]. Further, in a hybrid system of vehicles and autonomous
delivery robots, the vehicles could be used to recharge the autonomous delivery robots or
replace their batteries [75].

Bicycles and tricycles are another means of sustainable last-mile delivery [60], and
most researchers recommend using bicycles or tricycles [76]. de Mello Bandeira et al. [77]
suggested using electric tricycles for delivery in urban areas, which has an advantage over
electric or small size vehicles concerning sustainable dimensions such as CO2 emissions.

Solutions to handle last-mile delivery in urban areas are not limited to vehicles or
autonomous-driven vehicles. Instead, parcel lockers become a suggested solution to reduce
energy consumption and CO2 emission for parcel delivery [56,78]. Increased utilization
of parcel lockers was noticed during the COVID-19 pandemic [56]. One of the challenges
associated with this problem is to plan the locations of these lockers to satisfy the expected
demand [79].

5. Agile Optimization

The next generation of transportation and logistics systems of smart cities requires
using on-demand economy and e-commerce, big data, the internet of things, and zero-
emission vehicles in ridesharing and carsharing modes [80]. Since most smart cities’
problems are large-scale, NP-hard, and dynamic that require making decisions in a rapid
computational time, using the exact methods or even metaheuristics does not fulfill the
requirement and is not a good option. Thus, we need methods that find near-optimal
solutions and solve the problem in a very short computational time. Smart cities’ mobility
problems demand real-time optimization as well as re-optimization every few seconds
because of frequent changes in data regarding traffic jams, parking lots, and other facilities.
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As a solving methodology, AO is a tool for dynamic and real-time optimization
problems [80] and is based on Biased-Randomization (BR) and parallel runs. BR is a
solution approach that uses randomization in a heuristics procedure [81]. This approach
changes the deterministic environment of a heuristic into a probabilistic one. In a heuristic
used to solve an optimization problem, a list of solution candidate elements is defined and
sorted according to the constructive heuristic logic. This logic could be the shortest travel
distance or travel time, depending on the considered problem. Then, a greedy solution is
constructed by selecting the first element from the candidate list in each heuristic iteration.
The first element is the best candidate with respect to the considered logic aiming to
optimize the solution. Hence, the constructed solution is greedy and remains the same each
time the heuristic is applied. This greedy solution represents a solution for the considered
problem, but there is no guarantee that it is an optimal solution. This solution might be a
good solution, but the combination of the candidates might not form the best solution.

In order to construct different variants of the greedy solution, BR assigns a selection
probability to each candidate element in the list. In such a way, the elements on the top of
the list have the highest probability of being selected compared to the other elements in the
list (Figure 7). Thus, BR uses the logic behind the heuristics based on randomization and
probabilities. The selection probability can follow different probability distributions, such
as a geometric distribution. The geometric distribution has one parameter, p, that refers to
the selection probability of the first element in the candidate list. The second element is
assigned a lower selection probability, as shown in Figure 7. Since the selection of elements
in BR is based on probabilities, different variants of the greedy solution are constructed in
each run of the biased-randomized heuristic. For example, one solution could start with
element e1 and another with e3 from Figure 7.

Figure 7. The selection probability of elements in the list of candidates.

The construction of solutions by the heuristic or the biased randomized heuristic is
fast. Elements in the list are ranked and assigned selection probabilities, and an element is
selected randomly according to its selection probabilities. Thus, running several executions
of the biased randomized heuristic in parallel (utilizing multi-threads) constructs several
solution variants during the same clock time; thousands of solutions could be generated
from the BR algorithm execution if thousands of executions are run in parallel. Multi-
threads or parallel processors could be utilized to run the executions. These variants differ
from the greedy solution because of the biased randomized selection of elements, but
they are constructed according to the same heuristic logic. The solution that outperforms
the others will be selected among the generated solution variants. Combining the biased
randomized approach and the parallel execution forms AO illustrated in Figure 8. It is
noted that the execution time of all threads in Figure 8 is instantaneous. Thus, a large
number of variants of the greedy solution are constructed in an extremely short time.

Flexibility, high capability of parallelization (easy to execute in parallel), and ability to
generate solutions for dynamic problems in a short computational time are some advan-
tages of applying AO to transportation mobility in smart cities’ problems. These problems
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are dynamic in nature. In addition, AO does not need many intensive parameters, which
makes it an effective and high-quality solution approach [49]. If the geometric distribution
is selected for the biased randomized behavior, then one parameter, p, should be defined.

Figure 8. Schematic illustration of an agile algorithm.

6. Problems Solved Using Agile Optimization

After describing problems related to carsharing, ridesharing, and last-mile deliv-
ery in cities with respect to energy, this section presents some of the problems solved
using AO algorithms. Table 3 lists articles and the solved problems considered in this
section. These articles define an optimization problem and use an AO algorithm to
solve it. A comparison between the best-found solutions (BFS) and the solutions ob-
tained by an AO algorithm (AOS) are tabulated in Table 3. The BFS could be the best-
known solution in the literature or the best-found solution determined using an opti-
mization algorithm other than AO. For example, for the team orienteering problem pre-
sented in Panadero et al. [82], the average best-known solution for the solved instances
is 126, and the average of solutions found by an AO algorithm is 124.69 for the same in-
stances. Panadero et al. [82] studied instantaneously solving team orienteering problems.
The team orienteering problem definition could be used to define UAV routing that is
related to smart city mobility. The percentage differences between BFS and AOS (gaps) are
plotted in Figure 9.

Table 3. Selected problems solved using an AO algorithm.

Reference Problem Acronym BFS AOS

Panadero et al. [82] Team Orienteering Problem, set 1, maximization TOP 126 124.69

Almouhanna et al. [83] Location Routing Problem with a Constrained
Distance, Barreto’s set, minimization LRPCD 3637.84 3655.15

Martins et al. [84] Two-echelon Vehicle Routing Problem with Pickup
and Delivery, tight inventory, minimization 2E-VRP 2023.43 2450.44

Martins et al. [80] Uncapacitated Facility Location Problem,
minimization UFLP 1,200,339 1,236,828

According to Figure 9, BFSs outperform solutions found by the AO algorithm for
the selected problems. However, BFSs usually require extremely long computational
times to find optimal or near-optimal solutions since they perform an intensive search and
exploration of the solution space. The computational time depends on the size of problem
instances (size of solution space) and the stopping criteria of the used optimization methods.
In addition, for large-size problem instances, the optimal solution is not guaranteed. On
the contrary, AO algorithms follow a fast heuristic behavior in constructing a solution
and possess a biased randomized behavior to construct variant solutions of the heuristic
solution. Because of the BR and parallelism utilization, AO algorithms construct many
solutions in a short wall clock time that could be less than a second. Thus, these algorithms
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logically explore the solution space for feasible and promising solutions with respect to the
objective function of the considered optimization problem.

Figure 9. Absolute gap difference between BFS and AOS for the selected problems with respect to
the BFS.

Furthermore, referring to Figure 9, the gap between the BFS and AOS is relatively small.
A trade-off between both approaches exists; ‘good’ solutions are found in an extremely
short time using AO algorithms, and better solutions might be found using traditional
optimization methods over a long computation time. Given that the AO algorithms found
these solutions in a short search time, the relatively small gap between solutions could be
negligible in cases requiring fast, promising solution recommendations, such as solving
real-world optimization problems that require instantaneous solutions to changed inputs.
Thus, the AO algorithm characteristics enable solving real-time optimization problems. As
mentioned previously, these characteristics described raised mobility and energy problems
in smart cities.

7. Conclusions

Problems demanding real-time solutions (dynamic problems) are challenging to solve.
These problems emerge because of dynamic changes in problem inputs. In the context
of city mobility, these changes might be new orders, cancellation of trips or orders. The
dynamic characteristic in optimization problems becomes evident in real-world problems
triggered by advancements in information and communication technology. Thus, the
concept of smart cities raises the need to handle problems related to optimizing routing
time and distance and, hence, reducing energy consumption and gas emission. Carsharing
and last-mile delivery are examples of such problems.

The agile optimization presented in the manuscript is based on biased randomization
behavior and parallel execution of a heuristic. Thus, in a short wall clock time, many
solutions are constructed according to heuristic logic, and the best solution among them can
be identified. Adapting this approach enables defining a promising solution to optimization
problems that require instantaneous solutions. An example of a successful implementation
of this approach is found in Tordecilla et al. [85].

Various optimization problems in the context of smart cities are defined, and the AO
can propose solutions to these problems in real-time. The defined initiatives to reduce
energy consumption are a candidate to be solved using AO. In addition, other problem
characteristics in the real world could be considered, such as stochastic and fuzzy uncer-
tainty of travel times. Further studies should consider the reliability of shared cars and
their impact on energy consumption and related decisions.
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6. Bektaş, T.; Ehmke, J.F.; Psaraftis, H.N.; Puchinger, J. The role of operational research in green freight transportation. Eur. J. Oper.
Res. 2019, 274, 807–823. [CrossRef]

7. Corlu, C.G.; de la Torre, R.; Serrano-Hernandez, A.; Juan, A.A.; Faulin, J. Optimizing Energy Consumption in Transportation:
Literature Review, Insights, and Research Opportunities. Energies 2020, 13, 1115. [CrossRef]

8. Psaraftis, H.N.; Kontovas, C.A. Speed models for energy-efficient maritime transportation: A taxonomy and survey. Transp. Res.
Part C Emerg. Technol. 2013, 26, 331–351. [CrossRef]

9. Casella, V.; Fernandez Valderrama, D.; Ferro, G.; Minciardi, R.; Paolucci, M.; Parodi, L.; Robba, M. Towards the Integration of
Sustainable Transportation and Smart Grids: A Review on Electric Vehicles’ Management. Energies 2022, 15, 4020. [CrossRef]

10. Wang, N.; Tang, G. A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis.
Sustainability 2022, 14, 3371. [CrossRef]

11. Faulin, J.; Grasman, S.E.; Juan, A.A.; Hirsch, P. Sustainable Transportation: Concepts and Current Practices. In Sustainable
Transportation and Smart Logistics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–23.

12. Chatti, W. Moving towards environmental sustainability: Information and communication technology (ICT), freight transport,
and CO2 emissions. Heliyon 2021, 7, 08190. [CrossRef] [PubMed]

13. Rashidi, K.; Cullinane, K. Evaluating the sustainability of national logistics performance using Data Envelopment Analysis.
Transp. Policy 2019, 74, 35–46. [CrossRef]

14. Newman, P.; Kenworthy, J. Sustainability and Cities: Overcoming Automobile Dependence; Island Press: New York, NY, USA, 1999;
pp. 69–72.

15. Pan, H.; Qi, L.; Zhang, Z.; Yan, J. Kinetic energy harvesting technologies for applications in land transportation: A comprehensive
review. Appl. Energy 2021, 286, 116518. [CrossRef]

16. Jin, L.; Zhang, B.; Zhang, L.; Yang, W. Nanogenerator as new energy technology for self-powered intelligent transportation
system. Nano Energy 2019, 66, 104086. [CrossRef]

17. Schislyaeva, E.; Evgrafova, I.; Butakova, N.; Mishalchenko, Y. The EU–Russia–Turkey energy triangle: Legal and economic
conditions of gas transportation via the TurkStream pipeline. Transp. Res. Procedia 2022, 63, 1984–1990. [CrossRef]

18. Wang, N.; Zhu, Y.; Yang, T. The impact of transportation infrastructure and industrial agglomeration on energy efficiency:
Evidence from China’s industrial sectors. J. Clean. Prod. 2020, 244, 118708. [CrossRef]

19. Kaza, N. Urban form and transportation energy consumption. Energy Policy 2020, 136, 111049. [CrossRef]
20. Rodrigue, J.P. The Geography of Transport Systems, 5th ed.; Routledge: New York, NY, USA, 2020; pp. 285–330.
21. IEA. Transportation: Improving the Sustainability of Passenger and Freight Transport; International Energy Egency: Paris, France, 2012.

Available online: https://www.iea.org/ (accessed on 13 October 2022).
22. U.S. Energy Information Administration (EIA). Energy Use for Transportation. 2022. Available online: https://www.eia.gov/

(accessed on 13 October 2022).
23. Gorcun, O.F. Reduction of Energy Costs and Traffic Flow Rate in Urban Logistics Process. Energy Procedia 2017, 113, 82–89.

[CrossRef]
24. Wu, X.; Hu, X.; Yin, X.; Li, L.; Zeng, Z.; Pickert, V. Convex programming energy management and components sizing of a plug-in

fuel cell urban logistics vehicle. J. Power Sources 2019, 423, 358–366. [CrossRef]

http://doi.org/10.1016/j.egyr.2020.07.020
http://dx.doi.org/10.1016/j.irfa.2022.102286
http://dx.doi.org/10.1016/j.eneco.2019.05.019
http://dx.doi.org/10.3390/en14175322
http://dx.doi.org/10.1007/s11831-021-09596-5
http://dx.doi.org/10.1016/j.ejor.2018.06.001
http://dx.doi.org/10.3390/en13051115
http://dx.doi.org/10.1016/j.trc.2012.09.012
http://dx.doi.org/10.3390/en15114020
http://dx.doi.org/10.3390/su14063371
http://dx.doi.org/10.1016/j.heliyon.2021.e08190
http://www.ncbi.nlm.nih.gov/pubmed/34729432
http://dx.doi.org/10.1016/j.tranpol.2018.11.014
http://dx.doi.org/10.1016/j.apenergy.2021.116518
http://dx.doi.org/10.1016/j.nanoen.2019.104086
http://dx.doi.org/10.1016/j.trpro.2022.06.220
http://dx.doi.org/10.1016/j.jclepro.2019.118708
http://dx.doi.org/10.1016/j.enpol.2019.111049
https://www.iea.org/
https://www.eia.gov/
http://dx.doi.org/10.1016/j.egypro.2017.04.023
http://dx.doi.org/10.1016/j.jpowsour.2019.03.044


Future Transp. 2022, 2 883

25. Malladi, S.S.; Christensen, J.M.; Ramírez, D.; Larsen, A.; Pacino, D. Stochastic fleet mix optimization: Evaluating electromobility
in urban logistics. Transp. Res. Part E Logist. Transp. Rev. 2022, 158, 102554. [CrossRef]

26. Xu, B.; Xu, R. Assessing the role of environmental regulations in improving energy efficiency and reducing CO2 emissions:
Evidence from the logistics industry. Environ. Impact Assess. Rev. 2022, 96, 106831. [CrossRef]

27. Jones, J.; Genovese, A.; Tob-Ogu, A. Hydrogen vehicles in urban logistics: A total cost of ownership analysis and some policy
implications. Renew. Sustain. Energy Rev. 2020, 119, 109595. [CrossRef]

28. Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris
agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [CrossRef]

29. Magazzino, C.; Mele, M.; Schneider, N. A new artificial neural networks algorithm to analyze the nexus among logistics
performance, energy demand, and environmental degradation. Struct. Chang. Econ. Dyn. 2022, 60, 315–328. [CrossRef]

30. Wang, D.; Li, J.; Tarasov, A. Technical and energy efficiency of urban logistics in China: Empirical analysis of 216 prefecture-level
cities. Math. Probl. Eng. 2021, 2021, 6671890. [CrossRef]
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61. Iwan, S.; Nürnberg, M.; Jedliński, M.; Kijewska, K. Efficiency of light electric vehicles in last mile deliveries–Szczecin case study.
Sustain. Cities Soc. 2021, 74, 103167. [CrossRef]

62. Fiori, C.; Marzano, V. Modelling energy consumption of electric freight vehicles in urban pickup/delivery operations: Analysis
and estimation on a real-world dataset. Transp. Res. Part D Transp. Environ. 2018, 65, 658–673. [CrossRef]

63. Napoli, G.; Micari, S.; Dispenza, G.; Andaloro, L.; Antonucci, V.; Polimeni, A. Freight distribution with electric vehicles: A case
study in Sicily. RES, infrastructures and vehicle routing. Transp. Eng. 2021, 3, 100047. [CrossRef]

64. Lin, B.; Ghaddar, B.; Nathwani, J. Electric vehicle routing with charging/discharging under time-variant electricity prices. Transp.
Res. Part C Emerg. Technol. 2021, 130, 103285. [CrossRef]

65. She, R.; Ouyang, Y. Efficiency of UAV-based last-mile delivery under congestion in low-altitude air. Transp. Res. Part C Emerg.
Technol. 2021, 122, 102878. [CrossRef]

66. Kirschstein, T. Comparison of energy demands of drone-based and ground-based parcel delivery services. Transp. Res. Part D
Transp. Environ. 2020, 78, 102209. [CrossRef]

67. Dorling, K.; Heinrichs, J.; Messier, G.G.; Magierowski, S. Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man
Cybern. Syst. 2016, 47, 70–85. [CrossRef]

68. Chiang, W.C.; Li, Y.; Shang, J.; Urban, T.L. Impact of drone delivery on sustainability and cost: Realizing the UAV potential
through vehicle routing optimization. Appl. Energy 2019, 242, 1164–1175. [CrossRef]
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