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Abstract: In this paper we assess the transit quality of service (QoS) from a user’s standpoint, using
smart data. A number of bus lines with different characteristics, operating in the Metropolitan Area
of Athens, were chosen as a case study. The data used were gathered by an Automatic Passenger
Counting (APC) system. APC technologies provide exact temporalized passenger counting along the
line for each service, thus assisting to better understand causalities of delays and avoid operational
problems. By employing archived APC data from buses running on crosstown routes between
15 January 2019 and 15 April 2019 we conducted a statistical analysis to explore occupancies and
assess QoS, including under a social distancing scenario. The passenger distribution along the stops,
the bus’s occupancy level, the stops that are maximum occupancy points and their rate of occurrence
and, lastly, the passenger’s average trip length during the day and the week are examined.

Keywords: public transportation; automatic passenger counting system; quality of service; smart
data; statistical analysis

1. Introduction

Public Transportation Systems play a determinant role in mobility and provide people
with access across different community services. Public Transit is a viable solution to
mobility issues, such as traffic and parking congestion, energy consumption, air, and
noise pollution. Bus networks are of vital importance in medium-sized cities, where rail
transportation is not available, but also, in larger metropolitan areas, where they function
as feeders or serve low-demand connections. A shift from cars to buses would preserve
mobility at a lower cost in both economic and environmental terms. Several external and
internal factors have a great impact on Public Bus Ridership, with the quality of service
being the main internal one.

Currently, the COVID-19 spread has greatly affected the Public Transportation Services.
Not only the government’s guidelines, successive lockdowns, and changes in working
habits, but also the population’s concern about public health and hygiene, have led to a
significant reduction of Public Transport use. New requirements, such as social distancing,
must be considered in Public Transport strategic, operational, and tactical planning, with
the key factor being the service capacity [1]. Several researches have been conducted
regarding the impact of the pandemic on the Public Transport System, and the main
findings refer to the restrictions on Public Transport use, the Smart Card avoidance, and
the need to improve Public Transport capacity and hygiene for the future [2,3].

Jenelius and Cebecauer [4] examined ticket validations from public transport authori-
ties from Stockholm, Västra Götaland, and Skåne in Sweden in the period March–May 2020.
They found that public transport ridership has been hit hard by COVID-19 compared with
other modes. The decrease in ridership, which was largest in Stockholm (ca 60%) and
smallest in Västra Götaland (ca. 40%), is attributed to the reduced number of active public
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transport travelers. It was also found that travelers switched from 30-day period tickets to
single tickets and travel funds, while sales of short period tickets dropped to almost zero.

Through a map-based analysis, Tiikkaja and Viri [5] studied changes in public bus
transport in Tampere, Finland in January and May 2020. Results indicate that there was
a great decrease in public transport ridership in most parts of Tampere. Public transport
frequencies were decreased but maintained at a sufficient level, while fill rates were smaller
in other parts of Tampere, except eastern bus routes. Rasca et al. [6]) analyzed ridership
data in Agder and Oslo, Norway and Innsbruck, and Vienna, Austria combined with public
data on the pandemic development (number of cases per day, measures taken to limit
contagion) in the period from January 2019 to February 2021.

Their research findings indicate that ridership decrease was directly proportional to
regional infection rates, the second wave of the pandemic had a lower impact on public
transport ridership, and that the post-lockdown ridership recovery in smaller urban areas
was more rapid. Aparicio et al. [7] combined subway, metro, bus, and tramways passenger
trip data in Lisbon, Portugal in a pre-pandemic month and a post-pandemic month. They
revealed that public transportation demand was considerably lower in those stations
located in areas outside of Lisbon municipality and in zones with lower incomes.

Existing literature about the impact of COVID on public transportation indicates
that there has been a massive reduction in its use. Ridership has been found to be as-
sociated with the Quality of Service [8]. The Quality of Service (QoS) is defined as the
overall measured or perceived performance of transit service from the passenger’s point of
view [9]. The concept of the Quality of Service is widely applied in field pf smart cities [10],
telecommunications [11,12], and UAVs [13]. To restore the public’s eroded trust in the
public transportation systems, mitigation measures such as social distancing were taken.
In this paper we examine the impact of social distancing on the transit Quality of Service
based on bus data, deriving from an Automated Passenger Counting (APC) system, which
is installed on the busses of Athens.

The remaining paper is organized as follows: In Section 2 the literature review is pre-
sented, in Section 3 the study field, dataset, and methodology are presented, in Section 4 the
methodology is presented, and in Section 4 the analysis results are presented. Conclusions
are provided in Section 5.

2. Literature Review

APC data are becoming more available since APC devices have been increasingly
installed in vehicles and data accessibility is easier. The use of APC data can greatly impact
both passengers and agencies and improve the quality of Public Transport services [14].
Hammerle et al. [15] proved how useful APC data can be in evaluating Public Transport
services. There are plenty of technologies that are used to collect data depending on the
need and purpose of their usage, such as passive thermal, digital cameras with three-
dimensional vision, etc. [16]. APC systems prevail from manual traffic data collectors, as
they capture passengers both at the entry and exit level [17].

APC data are used in inferring the transit route level [18] but also in developing
an interactive data analytics platform in order to assess service quality and determine
service problems [19]. To better understand bus bunching in different spatial and temporal
levels, Feng and Figliozzi [20], with the use of APC data, were able to aid agencies in
developing efficient strategies in order to improve their level of service. Last but not least,
APC data were used in creating a systematic evaluation framework to quantify the impacts
of combined Public Transport services [21].

The use of APC data in dynamic models for the estimation of up-to-minute bus service
information has been proved to be a significant tool. Patnaik et al. [22] created a regression
model that estimates bus travel times and arrival information for passengers. Another
dynamic model was developed to not only better inform passengers, but also to examine
the variability on bus travel times for more accurate scheduling provision [23]. Chen and
Chen [24] simulated passenger demand and bus operation for fixed routes, using APC
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data, to predict and prevent irregularities on the bus routes. APC dynamic data were
deployed to develop a bus travel time model in order to cope with poor scheduling and
misleading information of bus arrival and departure times to passengers [25]. Similarly,
Nuzzolo et al. [26] showed how to use APC data in a mesoscopic model to upgrade Origin–
Destination (OD) matrices. Ji et al. [27] used APC data to derive OD flow matrices to
estimate transit route passenger OD flow matrices.

More recent studies employ the use of APC data to examine different aspects of
public transport usage. Jenelius [28] used real-time and historic APC data to extract
personalized predictive public transport crowding information in the public transport
network in Stockholm. Berrebi et al. [29] examined the consistency of APC data to analyze
ridership trends. With the use of data from four transit agencies, they found that the APC
data are consistent and complete. Martinez et al. [30] combined APC data and GTFS feed
from the transit agencies from two metropolitan areas in the USA to develop ridership
models and identify social distancing violations. Egu and Bonel [31] used APC data to
estimate the fare irregularity rate in Lyon. Kumar et al. [32] examined the quantification
of the increased possibility of disease spread from passenger interaction when traveling
between different origin–destination pairs and the evaluation of an aggregate measure
quantifying the relative risk of boarding at a particular stop of the transit route with the
use of APC data in Minnesota.

Table 1 summarizes the contribution of selected recent studies. While APC data have
been used to deal with issues raised by the pandemic, it is necessary to conduct a study
which would employ APC data and explore the impact of social distancing on the Quality
of Service.

Table 1. Contribution of recent studies.

Study Region Research Question

Jenelius [28] Stockholm, Sweden Personalized predictive public transport
crowding information

Berrebi et al. [29]

Portland, OR, USA
Miami, FL, USA

Minneapolis/St. Paul, MN, USA
Atlanta, GA, USA

Consistency of APC data for analysis of
ridership trends

Martinez et al. [30] Two metropolitan areas in the USA Development of ridership models and
identification of social distancing violations

Egu and Bonel [31] Lyon, France Fare irregularity rate
Kumar et al. [32] Minneapolis/St. Paul, MN, USA Extraction of origin–destination demand

3. Materials and Methods
3.1. Field and Dataset

The Municipality of Athens covers an area of approximately 39 km2 and has a pop-
ulation of 660,000 people, while the Greater Urban Area of Athens covers an area of
approximately 412 km2 and has a population of more than 3,000,000 people. The public
transportation of Athens is governed by OASA S.A. and its subsidiaries OSY S.A., which is
in charge of the approximately 300 bus lines and STASY S.A., which is responsible for the
subway and tram transport.

The dataset received by the Athens Urban Transport Organization (OASA S.A.) in-
cludes spatiotemporal GPS data and archived data obtained by an APC system for the seven
following bus lines: 154 (St. Elliniko—A. Glyfada—Pan/ma Voulas), 237 (Ano Ilioupoli—
St. Dafnis), 242 (St. Katechaki—Polytechneioupoli), 732 (Ag. Fanourios—Akadimia—
Z. Pigi), 171 (St. Elliniko—Varkiza), 550 (P. Faliro—Kifisia), and 608 (Galatsi—Akadimia—
Nekr. Zografou). The route type, length, number of bus stops—from origin to destination
and from destination to origin—and the period the data were collected are summarized in
Table 1. For circular lines there is no differentiation between the number of stops, as the
origin is also the destination. The bus lines are visualized in Figure 1.
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3.2. Notation

The following notation is used in this paper.
αimax = Percentage that each stop appeared to be a Point of Maximum Occupancy
c = bus capacity
k = time period
M = number of itineraries
nai = number of alighting passengers after each bus stop i
nbi = number of boarding passengers after each bus stop i
nobi = number of passengers remaining on board after each bus stop i
ρ = bus occupancy rate during the service
zimax = number of times each stop appeared to be a Point of Maximum Occupancy

4. Methodology

After a data cleaning procedure, boarding and alighting data per bus stop and bus
service are extracted. Boarding/alighting data include the date, the departure and arrival
time of the bus, and the boarding/alighting passenger volumes at each bus stop. We
conducted three types of statistical analyses: (i) per bus stop, (ii) per time of the day, and
(iii) per day.

Over the years, researchers have suggested various ways to assess the Quality of
Service of a transit system. Polzin et al. [33] used service coverage, service span, frequency,
and travel demand as performance measures. Hensher et al. [34] introduced the Service
Quality Index, which takes into account 13 attributes (Bus travel time, bus fare, ticket type,
frequency, time of arrival at the bus stop, time walking to the bus stop, seat availability on
the bus, information at the bus stop, access to the bus, bus stop facilities, temperature on
the bus, the driver’s attitude, and general cleanliness on board). With the use of APC/AVL
data, Pi et al. [19] analyzed the system’s performance with the use of passenger waiting
time, stop-skipping frequency, bus bunching level, bus travel time, on-time performance,
and bus fullness. The Transit Capacity and Quality of Service Manual (TCQSM) introduces
many indicators for the assessment of the Quality of Service [35]. The Payload Quality of
Service is measured in a scale from A to F, with A indicating the best Quality of Service and
F the worst. Quality of Service A corresponds to up to 50% of seated load, B corresponds to
up to 80% of seated load, C corresponds to up to 100%, D corresponds to up to 125%, E
corresponds to up to 150%, and F corresponds to higher than 150%.
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In this study, we employ APC data from different bus lines that are part of Athens’
public transportation system in order to assess the provided Quality of Service. Our
perspective is not only to cover the route of the bus line as a whole, but to focus on the bus
stops as well as some that might offer lower a Quality of Service than others of the same
line. To capture these complexities, we introduce the following indicators: occupancy rate,
points of maximum occupancy, and passenger volumes per stop. Crowded busses and high
volumes lower the Quality of Service. The occupancy rate offers insights as to whether the
bus is crowded, the points of maximum occupancy demonstrate whether there are more
passengers than seats in the bus, etc. In Section 5, we exemplarily present the results for
the 171 bus line (from destination to origin) for Mondays to Fridays from 15 January 2019
to 28 February 2019. In the destination to origin direction, there are 34 bus stops, however
one was not operational during the period studied, reducing the number to 33.

Based on the boarding and alighting data, we extract the average number of passengers
boarding (nb), and alighting (nα) at each bus stop (i), the average number of passengers
remaining on board after passing from the bus stop (nobi) as well as the bus occupancy rate
(ρ) during the service.

The number of passengers remaining on board after each bus stop is calculated in
Equation (1).

nobi = nobi−1 + nbi − nai (1)

The average occupancy rate (ρ) of the bus is calculated in Equation (2).

ρ =
nobi

c
(2)

The bus occupancy rate refers to the seated and upright passengers in the bus. In this
study we examine two thresholds for the bus occupancy rate. The first one is at 40% and
is considered to be a threshold for level of service change, as at this point, all bus seats are
occupied, and the passengers have to travel standing upright. Based on the TCSQM, the
first threshold corresponds to level C. The second one is at 20%, which demonstrates that
half of the seats are occupied for social distancing. Based on the TCSQM, the first threshold
corresponds to level A. Even though the dataset comes from a period before the pandemic of
COVID-19, it is important to see how such a measure would influence the Quality of Service.

The percentage that each stop appeared to be a Point of Maximum Occupancy (αimax)
is calculated in Equation (3).

αimax =
zimax

M
(3)

Following the analysis per stop, we calculate the average distance covered by pas-
sengers per time period. The average distance covered by passengers per time period is
presented in Table 2. The dataset is divided into a number of periods of time to better assess
the passenger behavior. The time periods are selected in such a way so as to include hours
with similar traffic conditions. Those represent different travel purposes, such as trips from
home to work, and also different traffic contexts (peak and off-peak hours).

Table 2. Characteristics of bus lines.

Line Length (km) Type of Route Stops
O-D

Stops
D-O Capacity Period

154 16.2 Circular 51 - 103 15 January 2019 to 15 April 2019
171 13.1 Linear 37 34 155 15 January 2019 to 28 February 2019
237 13.3 Circular 47 - 103 15 January 2019 to 15 April 2019
242 7.5 Circular 20 - 155 15 January 2019 to 15 April 2019
550 20.9 Linear 56 56 155 15 January 2019 to 28 February 2019
608 15.5 Linear 42 43 155 15 January 2019 to 28 February 2019
732 12.7 Linear 46 45 102 15 January 2019 to 15 April 2019
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For the 154, 171, 237, and 242 bus lines, we select four groups:

• k = 1 7:00 a.m.–10:00 a.m.
• k = 2 10:00 a.m.–2:00 p.m.
• k = 3 2:00 p.m.–6:00 p.m.
• k = 4 6:00 p.m.–12:00 p.m.

For the 550, 608, and 732 bus lines, we select five groups:

• k = 1 5:00 a.m.–7:00 a.m.
• k = 2 7:00 a.m.–10:00 a.m.
• k = 3 10:00 a.m.–2:00 p.m.
• k = 4 2:00 p.m.–6:00 p.m.
• k = 5 6:00 p.m.–12:00 p.m.

In the latter case, a group has been added, as the lines start operating two hours earlier
than the previous ones. For each of these groups, we present the average travel distance
covered by the passengers. Additionally, the average passenger distance is calculated per
day of the week and is presented in Table 3. Increased passenger distances lead to lower
perceived Quality of Service, in particular for the non-seated passengers.

Table 3. Passenger travel distance (km) per bus line and time period.

Bus Line
5:00–7:00 7:00–10:00 10:00–14:00 14:00–18:00 18:00–00:00

Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd

154 4.1 0.8 3.9 0.4 4.5 0.8 4.0 0.4

171
O⇒D 5.6 0.6 5.5 0.2 5.9 0.7 5.7 1.0
D⇒O 5.8 0.4 5.5 0.5 5.7 0.4 5.5 0.3

237 2.9 0.1 2.8 0.2 2.9 0.1 2.5 0.4
242 2.8 0.2 2.8 0.4 3.0 0.5 3.2 0.3

550
O⇒D 7.5 1.5 5.9 0.6 5.6 0.6 5.5 0.4 4.4 0.5
D⇒O 5.4 1.8 5.4 1.2 5.8 1.0 5.3 1.0 5.7 1.0

608
O⇒D 3.0 0.3 3.1 0.2 2.8 0.1 2.7 0.1 2.6 0.2
D⇒O 3.1 0.3 3.1 0.2 3.1 0.1 3.2 0.2 3.1 0.1

732
O⇒D 3.7 0.3 3.2 0.2 2.7 0.2 2.8 0.2 2.8 0.3
D⇒O 3.5 0.4 2.9 0.2 2.9 0.2 3.2 0.2 3.1 0.2

5. Results

The 171 bus line displays a significant increase in the occupancy percentage, which is
observed as we get closer to the last stops in comparison with the first ones. This may be
attributed to the fact that the line connects Varkiza (a seaside suburb of Athens) to Elliniko
Metro Station. As Figure 2 shows, most boarding passengers enter the bus at the beginning
of the route, while most of them alight at the end of the route.

As a result, the vehicle occupancy, which is presented at Figure 3, increases steadily
until the last stops, as it approaches Elliniko station.

Figure 4 presents the percentage that each stop had the maximum occupancy among all
other stops, which means that in that specific route it was the Point of Maximum Occupancy.
It seems that the last stops are most likely to be the Points of Maximum Occupancy. As
demonstrated by Figures 2 and 3, most of the passengers are directing to the last stops,
approaching the Metro Station, leading to a comparatively higher occupancy rate at the
last bus stops. This translates in a significant drop of the Quality of Service at the last bus
stops, with more people being crowded inside the bus.
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Figure 5 elaborates on the information presented in Figure 4 by demonstrating the
occupancy percentage of the vehicle only at the stops where the maximum occupancy was
observed. By examining these specific stops, we find that the number of passengers in the
vehicle is kept at a fairly low level, well below the level of service change threshold. This
means that there are more seats in the vehicle than onboard passengers. Nonetheless, the
introduction of social distancing measures would have a negative impact on the Quality of
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Service, as most of these bus stops would find themselves with an occupancy level that is
above the relevant threshold. This suggests that, in the case of such measures, the operator
should monitor the demand for bus trips and, if it remains high, then more buses should
be employed in order to maintain a high Quality of Service.
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Figure 5. L171: Occupancy percentage in the vehicle at the stops where Maximum Occupancy was
observed.

Stops That Were Not a Point of Maximum Occupancy on Any of the Examined Routes Have
Been Omitted

The statistical analysis per day focuses on the average travel distance covered by
passengers per day of the week. In Table 3, the passenger travel distance (km) per bus line
and time period is presented. By examining the average value and standard deviation of
the distance travelled, we notice that the distances are longer and with higher uncertainty in
the time periods which are associated with trips from/to the work and school. This shows a
fall in the Quality of Service during these time periods. This is not unexpected, as the traffic
is heavier in these hours, with more vehicles circulating. In Table 4, we extend this analysis
by presenting the average travel distance per passenger per day for all of the bus lines. The
comparative table of travel distance per day shows that the passengers travel the longest on
Mondays, while the rest of the days follow with small differences. This may be attributed
to the heavier traffic conditions in the beginning of the week. The perceived Quality of
Service worsens during the days and hours that longer average passenger distances are
observed, particularly for those who travel in an upright position.

Table 4. Travel distance (km) per passenger per day and bus line.

Bus Line
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

M Sd M Sd M Sd M Sd M Sd M Sd M Sd

154 4.4 0.5 4.3 0.3 4.2 0.7 4.0 0.6 4.0 0.9 4.6 1.2

171
O⇒D 5.4 1.2 5.5 0.4 6.0 0.2 5.7 0.3 5.6 0.6 5.5 0.2 6.2 0.2
D⇒O 5.8 0.5 5.9 0.3 5.6 0.5 5.6 0.4 5.4 0.5 5.7 0.3 6.3 0.3

237 3.0 0.1 2.7 0.4 2.6 0.1 2.9 0.1 2.9 0.1 2.7 0.1 2.7 0.07
242 3.2 0.3 2.8 1.1 2.8 0.1 2.8 0.1 2.9 0.4

550
O⇒D 5.5 0.6 5.8 0.9 5.9 0.7 5.8 1.0 5.8 1.5 6.4 0.8 5.2 1.1
D⇒O 4.4 2.0 6.1 1.0 5.2 0.2 6.1 1.5 5.5 0.6 7.7 0.0 4.9 0.9

608
O⇒D 3.1 0.2 2.9 0.2 2.9 0.1 2.7 0.2 2.7 0.2 2.8 0.2 3.0 0.2
D⇒O 2.8 0.1 3.2 0.2 3.0 0.1 2.5 0.1 3.0 0.2 3.1 0.1 3.4 0.2

732
O⇒D 3.2 0.3 2.9 0.2 2.8 0.4 3.0 0.2 2.9 0.2 2.6 0.3 3.2 0.3
D⇒O 3.1 0.1 3.1 0.2 2.8 0.2 3.1 0.2 3.0 0.2 2.8 0.2 3.5 0.4
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In the following Tables: O stands for Origin, D for Destination, M for Mean, and Sd
for standard deviation.

6. Discussion

This study focused on the assessment of the Quality of Service offered by various
bus lines operating in the wider Athens Area. Based on selected indicators, a drop in the
Quality of service was observed at the last stops of the bus route, as the passenger volumes
and, consequently, the occupancy rates increase. Moreover, it was observed that during
rush hours (i.e., hours associated with travelling from/to work and schools), the Quality of
Service drops. The introduction of social distancing measures would lower the Quality of
Service even more, as the occupancy would remain at a level above the desired threshold.

If the number of buses were to increase that would mean that the occupancy level
would fall, thus making the social distancing scenario successful. Based on these findings,
it is suggested that the number of buses available in every line should increase in situations
in which the Quality of Service falls.

Regarding the study limitations, we should note at this point that the data used did
not include a social distancing event having taken place during the time the data were
gathered. Thus, we did not take into consideration how the bus operator actually handled
the situation and if the measures taken were successful at keeping a high Quality of Service.
The study also has shortcomings, most notably associated with the availability of the
archived APC data and missing data.

7. Managerial Insights

Dealing with the uncertainty caused by the COVID-19 pandemic has been a challenge
for the transit agencies. The restrictive measures taken, such as the lockdowns, reduced
ridership and subsequent revenues sharply. The recovery period brought new measures
such as social distancing, which needs to be implemented so that high hygiene standards
are maintained. This new reality highlights the need for the managing authorities of the
transit agencies to adjust existing concepts such as the Quality of Service.

In this paper we suggest a reconceptualization of the Quality of Service given the
constraints brought about by the need for social distancing. It is found that the level of
service enjoyed by passengers falls once the social distancing measures are in place. For
this reason, transit agencies should reconsider (i) the scheduling of their services, (ii) the
capacity of the vehicles used, and (iii) examining the introduction of a complementary
transport offer in rush hours to cover the demand without compromising the Quality of
Service.

8. Conclusions

The present article undertook a statistical analysis of key bus traffic characteristics such
as the passenger flows per bus stop, the bus occupancy, and the average distance covered
per passenger. Moreover, the Quality of Service was assessed under the existence and
non-existence of social distancing measures. The existence of social distancing measures
was found to be of negative influence on the Quality of Service, with occupancy levels well
above the acceptable threshold. The study findings are necessary to highlight the need for
a different approach to passenger service given the pandemic mitigation measures. This
different approach should entail a more efficient utilization of resources through scheduling
and procurement so that public transport would maintain its attractiveness.

Future research includes a more detailed analysis, which will employ archived data
from an Automatic Vehicle Location tracking system. This would help us determine the
headway and, as a result, identify the rate at which the buses must depart from the first
stop for the Quality of Service to be kept high. We should not forget to mention that looking
into the peak hours would give us a better understanding of the situation the passengers
are dealing with daily and, if needed, we could consider an increase of the bus frequency
at those time-zones only. In the near future we could be looking at a platform utilizing
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real time integrated data from both AVL and APC tracking systems, which would provide
information and act as a guide to the public transport managers.

Finally, AVL data can also be used in order to study the delays during the day of the
bus lines. Moreover, traffic load data per hour and per day, knowledge of the road network,
the unique characteristics of the various areas, and the demand should all be taken into
consideration in order to identify and solve congestion problems through the redesign of
the public transit network.
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