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Abstract: Transport sector models help provide strategic information for the future development
of the transportation sector. Such long-term scenarios are typically challenged by uncertainties.
Moreover, certain trends, such as the transition to zero-emission transportation systems and modal
shifts, as well as connected, shared and autonomous vehicles, are already apparent today. Therefore,
this paper investigates the impact of these trends on greenhouse gas emissions, as well as their
implementation in transport sector modeling thus far. The investigations are structured into the four
main parts of transport sector greenhouse gas emission calculation: activity, modal share, energy
intensity and fuel carbon intensity. Our analysis of the related effects reveals their importance to
the transportation sector of the future. Current models and scenarios widely consider trends such
as the modal shift and electrification. However, other trends such as the sharing economy and
automated driving are not commonly regarded in the context of transport sector modeling. The
coupling of the different types of models and collaboration among researchers from the different
fields is recommended for filling this gap.

Keywords: transport sector modeling; mobility trends; modal shift; fuel shift; shared mobility;
automated driving

1. Introduction

In planning the future energy system, possible pathways must be designed, analyzed,
and evaluated. Related work is mostly based on energy system model calculations. With
the transport sector ranking among the major carbon emission sources, climate change
mitigation efforts are expected to have a major impact on transportation systems over
the next few decades. Thus, politicians, industrial enterprises, scientists, and others are
interested in the sector’s future development. Typical questions include: Which drivetrain
and fuel should be used for which mode of transportation? What energy demands can be
expected in the coming decades? How will the sector’s greenhouse gas emissions develop?
All these questions are illuminated with the help of transport sector models, and possible
pathways are shown. Therefore, researchers have developed various models with different
focuses. In this paper, transport sector models are examined for their ability to answer
the above questions. Thus, our analysis reveals some possible strengths and weaknesses
in transport sector models with regard to these trends. Possible research gaps are made
visible, and should be closed in the future in order to improve model-based assessments in
the context of current research tasks.

Comparative reviews of some of these models have already been conducted. Edelen-
bosch et al. [1] investigate the modeling of the transport sector in eleven global integrated
assessment models (IAMs) that comprise not only transportation but also other sectors
of the energy system. Thereby, they focus on input and result comparisons. Their analy-
sis shows fuel shift to be the most important driver of greenhouse gas (GHG) emissions
reduction. Girod et al. [2] and Yeh et al. [3] also reviewed global transport sector models
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according to input and output. They partly discovered differences, e.g., in assumptions
regarding future travel demand. In contrast to this, Linton et al. [4] explored six different
methodologies for analyzing transport sector CO2 emissions. These range from microsimu-
lation on the small scale up to large-scale IAMs. Creutzig [5] also examines different types
of models and highlights the divergent backgrounds of the modelers. The first type of
models are IAMs, which are primarily developed by economists. The second concern the
transport sector and are usually developed by engineers. The third and final type of model
considered here are place-based one, which are developed by geographers and public
health researchers.

The focus of this paper is mobility trends in transport sector models, as these influence
the selection of suitable pathways for achieving near-zero GHG transport emissions. The
aim of this review is to qualitatively analyze how mobility trends influence GHG emissions
and how models methodically take such trends into account. In contrast to the reviews
conducted by Edelenbosch et al. [1], Girod et al. [2] and Yeh et al. [3], an analysis of input
or output values of the models or scenarios is not undertaken in this work.

McKinsey [6] describe future mobility trends using the abbreviation ACES. Deloitte [7],
Toyota [8], and Daimler [9] use the abbreviation CASE. The meaning behind these two is
the same, with only the order of the letters differing. In the case of the latter, future vehicles
are expected to be connected, autonomous, shared, and electrified. As vehicle connection
comes alongside vehicle automation, these two are combined in this paper under the
rubric of automated driving. In order to underline the importance for future transport
sector-related analysis, Figure 1 displays the projections by Litman et al. regarding the
uptake of autonomous vehicles [10].

Figure 1. Projected Autonomous Vehicle Sales, Fleet and Travel from 2030 to 2080. Adapted with
permission from [10].

They project that in 2050, every second vehicle will be autonomous. According to
their projections, the continuous uptake of the technology from 2030 onwards will result in
~30% fleet and 40% travel shares in 2050 [10]. Other studies offer similar projections for the
uptake of connected and autonomous vehicles [11,12]. Thus, the trend should definitely
not be neglected in long-term transport sector modeling.

Electrification as the last part of CASE disregards the possibility of shifting used fuel
without electrifying drivetrains, which is a possibility when decarbonizing, especially
heavier vehicles, apart from cars. As the abovementioned abbreviations merely focus on
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passenger cars, with the modal shift being another major trend in passenger and freight
transport, although it is not included. Still, this trend is also taken into account in this study.
The trends examined herein are therefore as follows: modal shift, fuel shift, shared mobility
and automated driving.

The analysis is structured according to the activity, modal share, energy intensity
and fuel carbon intensity (ASIF) method by Schipper and Marie-Lilliu [13]. Using this
basic method which was developed to calculate GHG emissions in the transport sector
a structured analysis should be guaranteed. Section 2 provides a short introduction to
ASIF as well as the model selection process. Subsequently, the boundary conditions of
the investigated models are analyzed in Section 3. This includes information on spatio-
temporal settings and sectoral coverage. Thereby, differences between the models in many
respects become obvious. Section 4 qualitatively analyzes the impacts of mobility trends on
the ASIF method. In doing so, the relevance of these trends for the calculation of future
GHG emissions becomes apparent. Finally, an investigation of mobility trends in transport
sector models is conducted in Section 5.

2. Method

This paper focusses on mobility trends, including their impacts on greenhouse gas
emissions, as well as their modeling in transport sector models. As the trends investigated
develop over a long period of time, the models should be capable of depicting such periods.
Furthermore, the models should include the impacts of the trends on at least a national level.

Figure 2 shows the modeling techniques required for calculating the greenhouse gas
emissions emitted by the transport sector according to Linton et al. [4] and Creutzig [5].
These techniques are used at different spatial and temporal scales. The spatio-temporal
settings of the models within one type are not exactly fixed, but can vary between each
other. Still, the relationship between model types can be depicted as in the figure. On
the one hand, traffic network models are used for small-scale simulations on a local and
short-term basis [14,15]. On the other, integrated assessment models are deployed for
long term projections on national or even global scales [16,17]. Agent-based models like
MATSIM focus on the behavior and motivations of a series of agents [18]. Compared to
system dynamics and techno-economic models, the focus of these is on a more regional
level. The model classes defined by Creutzig [5] can in part be understood as groupings
of the model classes, as per Linton. Traffic network and agent-based models correspond
to Creutzig’s place-based ones, which operate at the local level. Between the place-based
models and IAMs, Creutzig defines transport sector models, which include Linton’s System
Dynamics and techno-economic models.

Using the previously defined spatio-temporal criteria for the model selection in this
paper leads to the green highlighted zone. As the focus of this analysis is on transport-only
models, integrated assessment models are neglected in the model selection. Therefore,
transport sector models including system dynamics and techno-economic models for
calculating the greenhouse gas emissions of the transport sector are considered herein.

The underlying models were identified with the help of an extensive literature survey
in well-known databases (i.e., ScienceDirect, SCOPUS, Google Scholar, Wiley, Taylor &
Francis, SpringerLink), as well as the websites of various institutes in the field of energy
system analysis (e.g., those of the IEA, ICCT, and US national laboratories). In addition,
forward and backward snowballing was used to include as many relevant models as
possible. The literature was collected in the period from October 2019 to the end of 2020. In
order to only include current models, the last publication on the model must have been
after 2010. In addition, only analyses that take into account at least one of the defined
trends were included. Appendix A contains information on the 41 investigated models and
their properties.



Future Transp. 2022, 2 187

Figure 2. Model classification of different techniques to calculate GHG emissions from transport
based on Linton [4] and Creutzig [5].

The models differ with respect to their spatio-temporal settings and sectoral coverage
and these model characteristics are the first point of analysis in this study. In addition
to the spatio-temporal settings, the sectoral coverage of the models is also examined.
This comprises an analysis of the most relevant modes with respect to transport volume
and sectoral GHG emissions. These include especially street modes for passenger and
freight transportation like light-commercial vehicles (LCV) and heavy-duty vehicles (HDV).
Additionally, frequently discussed alternatives are considered and today’s most common
drivetrains and fuels investigated. The drivetrains range from the currently predominant
internal combustion engine vehicle (ICEV), to different hybridization stages, to battery-
(BEV) and fuel cell-electric vehicles (FCEV). The hybridization stages differ mainly in
terms of battery size increasing from hybrid electric vehicles (HEV) over plug-in hybrid
electric vehicles (PHEV) up to range-extender electric vehicles (REEV). Possible fuels form
a similarly broad list containing, e.g., conventional, bio-, and synthetic fuels.

In order to maintain technological openness, models should take into account the
modes, drivetrains and fuels listed in Table 1, which could be used depending on the
respective requirements.

Table 1. Considered modes, drivetrains, and fuels for analysis.

Modes Drivetrains Fuels

Bicycle ICEV Gasoline
Motorcycle HEV Diesel

Car PHEV Kerosene
LCV REEV CNG/LNG
HDV BEV Electricity
Bus FCEV Hydrogen
Rail Biofuels

Water Synthetic fuels
Air
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The focus of further conducted analyses is on mobility trends. On the one hand, this
includes the impacts on future greenhouse gas emissions by the transportation sector. On
the other, the consideration of mobility trends in the selected models is examined. Thereby,
the ASIF methodology is used to structure the different impacts and methodological aspects
of these trends.

The ASIF method was introduced by Schipper and Marie-Lilliu in 1999 to delineate
the effects of the transport sector on greenhouse gas emissions [13]. The methodology
breaks down the calculation of transport sector greenhouse gas emissions into four main
components. These parts become apparent in the mathematical equation below:

G = ∑
i,j

A · Si · Ii ·Fij (1)

The resulting greenhouse gas emissions G are dependent on the activity A, the modal
share Si, the energy intensity Ii, and the fuel carbon intensity Fi,j. The activity A describes
the total transport demand in passenger- or ton-kilometers (pkm or tkm). The modal
share S represents how much of the overall transport demand is covered by each mode (in
%). The energy intensity includes information on the mode-dependent fuel consumption
per delivered passenger- or ton-kilometer (MJ/pkm or MJ/tkm). Finally, the fuel carbon
intensity considers the emitted amount of greenhouse gas emissions of the used fuel
(gCO2-eq./MJ). Moreover, Schipper and Marie-Lilliu determine the modal energy intensity
based on three components [13]:

Ii = f ( Ei , Ci , Ui ) (2)

First, the technical efficiency E is considered, which is affected by the type of drive-
train and fuel that is used. Furthermore, vehicle characteristics are combined in factor C.
These comprise characteristics such as the vehicle mass or drag coefficients, which largely
influence the vehicle’s mechanical energy demand. U denotes the capacity utilization, con-
sidering the mode-specific statistical average of the load or passenger capacity utilization.

3. Boundary Conditions of Transport Sector Models

In this section, the spatio-temporal scope of the investigated transport sector models is
analyzed. Further analysis regarding the boundary conditions can be found in Appendix B.
This comprises the temporal, as well as spatial resolution. Additionally, the sectoral
coverage of the models is examined. Therefore, the considered modes, drivetrains, and
fuels are regarded.

As the models have been developed for answering different individual research
questions, the model approaches characterized by the boundary conditions differ. This can,
for example, include the temporal and spatial aspects. The spatio-temporal settings can be
divided into the overall scope and spatio-temporal resolution.

The time horizon of the analyzed models is dominated by the year 2050, as can be
seen in Figure 3. This is due to the fact that most of the models investigate possible
decarbonization pathways, which refer to climate targets in accordance with the Kyoto
Protocol [19]. Nevertheless, a small number of the models have a shorter time horizon.
Others are already starting to look at possible developments in the second half of the
century. This is especially the case for global models.

Aside from the described temporal scope, the geographic scope can also differ. Two
thirds of the models analyze the transport sector within national borders (Figure 3). In
contrast, eight of the models consider global development. Additionally, some multi-
country models analyze the European transport sector. Compared to other multi-country
models, the transport, energy, economics, environment (TE3) model, a system dynamics
model developed by Gómez Vilchez, does not cover the transport sector globally or at the
EU level. Instead, it comprises Germany, France, India, Japan, China, and the USA, which
are six of the most relevant passenger car markets in the world [20]. The consideration of
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larger parts of the world helps in calculating the costs of emerging technologies [20]. This
is due to the fact that their costs are largely affected by the learning rate and cumulative
production, which depend on global, rather than national markets.

Figure 3. Temporal and geographical scope of the investigated transport sector models underlining
the focus on national analyses up through the year 2050.

Overall, it can be summarized that transport sector models analyze on average the
transport sector on a national scale through 2050. Thereby, the analysis in Appendix B
shows the temporal resolution is on a yearly basis and the spatial resolution on a national
one. Section 4 shows that higher resolutions are necessary for various effects that result
from the different investigated trends.

Furthermore, the analysis has revealed the sectoral coverage of the investigated trans-
port sector models. For the most part, the models cover all of the most important means
of transport with respect to energy demand and greenhouse gas emissions. Furthermore,
they include the most promising drivetrain architectures. This is also the case for energy
carriers, whereby synthetic fuels, which could be a helpful pathway of decarbonization
for larger means of transport, are underrepresented. The inclusion of all relevant modes is
a precondition to correctly modeling the effects of modal shifts. The same applies to the
drivetrain technologies and the fuels used with respect to the trend in the fuel shift.

4. The Impact of Mobility Trends on the GHG Emission Calculation

Before analyzing the modeling of mobility trends in the models in Section 5, this
section provides a detailed overview of the trends’ impact on greenhouse gas emissions.
The effects are structured according to the ASIF methodology, which was introduced
in Section 2.
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4.1. Modal Shift

The first analyzed trend in the transport sector is the modal shift. It is one way of
reducing the overall greenhouse gas emissions by shifting the transport demand from
energy-intensive to less intensive modes. Therefore, it influences the modal split (S) in the
ASIF equation (see Equation (1)).

The benefits of shifting the transport demand from one mode to another with regard
to greenhouse gas emissions can result from several effects. For mass transportation modes
like public buses and railways, the specific energy demand per transport volume (I in
MJ/pkm) is lower compared to individual passenger cars [21]. This is due to the higher
occupancy rates which, on average, more than compensate for the higher vehicle-specific
energy consumption profiles of larger vehicles. The described effect could even become
strengthened by the modal shift if it leads to higher utilization rates of already available
capacities. Moreover, in the case of railways, the high share of electrified transport enhances
the positive effect on greenhouse gas emissions through higher powertrain efficiency. This
electrification is also the reason for a possible lower fuel carbon intensity (F) in the case of
high shares of renewables in electricity compared to fossil fuels.

Figure 4 shows the average greenhouse gas emissions of several passenger transport
modes for Germany in 2018.

Figure 4. Comparison of average GHG emissions for passenger transport modes in Germany 2018
(based on [22]).

It illustrates the large difference between passenger cars, as well as inland flights
and other public means of transport. This difference applies not only in Germany, but
worldwide [23]. Additionally, a switch to slow modes such as walking and cycling to
reduce GHG emissions is conceivable.

The reduction already possible today as a result of the modal shift illustrates the major
influence of this trend on transportation GHG emissions in the future. It directly leads to a
GHG emission reduction without the need for technological change. Instead, the reduction
is fully driven by user behavior.

4.2. Fuel Shift

Another major trend in the transport sector is fuel shift. This does not only mean
changes in the fuel, but in most cases also implies a switch to a different drivetrain. The
drivetrain change is often referred to as electrification, but this neglects the possibility of
only using renewable- instead of fossil-based liquid fuels in ICEVs. This is included in our
analysis, as it is a promising means of decarbonizing heavier vehicles.

The fuel shift has various effects on greenhouse gas emissions in the transport sector
and their calculation using the ASIF method. Both the energy intensity I and fuel carbon
intensity F are significantly altered by the trend.
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The switch from conventional ICEVs to electrified vehicles leads to an increase in
drivetrain efficiency. The higher the grade of electrification, the larger the improvement [24].
Switching to FCEVs decreases specific energy consumption as well, but not as much as in
the case of BEVs.

Especially in the case of plug-in hybrid vehicles, the usage pattern plays an important
role. On the one hand, the user might drive nearly all of their trips in fully electric mode
due to short distances and frequent charging requirements. On the other side, it is also
possible that only a small share of the overall mileage is driven electrically due to long
distances and infrequent vehicle charging.

Moreover, different driving regions influence the impact of the fuel shift. The efficiency
improvements of electrified drivetrains compared to conventional ones are in part a result of
recuperation. With a high proportion of constant driving, e.g., in rural areas or on freeways,
recuperation plays a subordinate role. In contrast, driving profiles that are characterized
by frequent acceleration and braking, which are typical for urban driving, lead to a high
potential for recuperation.

Next to the changes in energy intensity, the fuel carbon intensity is also influenced
by the fuel shift, as noted above. Figure 5 displays the well-to-wheel (WTW) fuel carbon
intensity divided into well-to-tank (WTT) and tank-to-wheel (TTW) values according to
the information provided in [25]. It illustrates the reduction potential of the fuel carbon
intensity through fuel shifts. Additionally, it becomes apparent that the fuel carbon intensity
of alternative fuels such as electricity and hydrogen are more dependent on the WTT rather
than the TTW component. Due to various possible WTT pathways for the different energy
carriers, this part of the fuel carbon intensity must be understood as a spectrum depending
on the energy mix instead of a fixed value. Especially for biofuels, the WTT fuel carbon
intensity underlies a wide range depending on the production pathway used.

Figure 5. Fuel carbon intensity for selected energy carriers in transportation based on [25].

Some studies show that the modal choice is also influenced by environmental is-
sues [26]. In case the modal choice does have such an environmental component, the fuel
shift could lead to a modal shift, and therefore also influence the modal share (S).

Overall, this subsection has shown the major impact of the fuel shift trend on GHG
emissions in the transportation sector.

4.3. Shared Mobility

The emerging trend for shared mobility could also lead to major changes in the
transport sector. In order to investigate the different impacts on the four stages of the ASIF
method, in Appendix C, a short distinction between different shared mobility concepts
like car-sharing, ridesharing and on-demand ride services was made based on the work
of Machado et al. [27]. The impacts of shared mobility on transport sector modeling are
manifold and, in the following, are structured according to the ASIF methodology.

Overall transport activity (A) can be affected by on-demand ride services. Especially
for people who are too young to drive cars or elderly people who can no longer drive, such
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a mobility on demand is an attractive option [28]. Not only for trips they would otherwise
have taken with other means of transport but also for new trips they may otherwise not
have made at all.

In case trips could have been made with other means of transport, shared mobility
would have an impact on modal shares (S). It is conceivable that trips by public transport,
private cars, and other means of transport could be replaced by this new mode of transport.
Therefore, shared mobility can influence the modal shift described in Section 4.1.

Furthermore, the energy intensity (I) is affected in different ways by shared mobility.
As the energy intensity of vehicles depends, inter alia, on the powertrain used, the choice
of technology when purchasing a vehicle is crucial to its overall energy intensity. The
factors driving purchasing decisions for vehicles differ for private and commercial buyers.
Whereas commercial buyers are more concerned with cost, private ones may be more driven
by other considerations. As shared vehicles are largely commercially owned, the purchase
decision and thus the energy intensity is influenced. Another point to note in this context is
the affected vehicle utilization. Shared vehicles amass a higher yearly mileage [29], which
leads to greater competitiveness among vehicles with low operation costs, which is another
aspect that may alter technology decisions. In addition, driving ranges must be adjusted in
order to cover the higher daily mileages with the lowest possible charging times.

A further impact on the energy intensity resulting from shared mobility is the “right-
sizing” effect. Without owning one vehicle for all purposes, users have the possibility to
adapt the vehicle in terms of size and other characteristics to the needs of each trip [30]. For
instance, a small vehicle with low battery capacity for short city trips or a large van with
an adapted drivetrain configuration for longer family trips. This enables the utilization of
vehicles to be optimized.

Another form of utilization optimization is achieved by ridesharing, which leads to
higher occupancy rates, and which are a major influencing factor on vehicle energy intensity
and thus the GHG emissions caused by a given transportation mode according to Schäfer
and Yeh [31]. Additionally, higher occupancy rates lead to less congestion, assuming that
no further passenger car activity is generated by shared mobility [32]. As congestion has a
considerable influence on the energy consumption of vehicles, the overall energy intensity
is further affected.

In the case of plug-in electric vehicles, shared mobility can have an impact on the
electricity carbon intensity (F) used for battery charging. This effect results from the change
in use and the resulting different loading times that influence the carbon intensity of grid
electricity [33].

In summary, shared mobility influences all components of the ASIF methodology. The
greatest impact can be expected in the context of energy intensity. However, the effect on
the modal share should not be underestimated.

4.4. Automated Driving

The final mobility trend considered is automated driving. The latter describes influ-
ences on the ASIF factors that are dependent on the level of vehicle automation. Therefore,
in Appendix D, a short introduction to the different stages of automated driving is provided.

In the following, the impacts of automated driving on the different parts of the ASIF
factors are described, primarily based on the work of Wadud et al. [34]. As noted above,
the effects depend on the degree of automation. Although some mechanisms already result
from level 1 vehicles, others require a high degree of automation.

The first effect on the ASIF factors arises from possible travel cost reductions due to
vehicle automation [35]. As the overall transport activity (A) partially depends on costs,
such a reduction would lead to increasing demand. Additionally, the change in costs would
affect the modal choice and therefore leads to different modal shares (S).

Older and younger people who cannot drive cars on their own are restricted in their
mobility [34]. A high level of automation whereby vehicle operators would not need
to perform tasks related to driving could also be used by members of these age groups.
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Thus, vehicle automation opens up new possibilities that could lead to increasing personal
mobility and a modal shift from other transport modes to passenger cars. Both effects
mentioned so far could be amplified if vehicle automation develops with the different
forms of shared mobility, as users would not have to own a vehicle, which is costly in the
case of low utilization rates.

The increasing comfort with higher levels of automation increases the attractiveness
of passenger cars. In particular, for longer trips it is an advantage to be able to engage in
other activities during the journey. This counterbalances such advantages of other modes,
such as rail, which affect passengers’ modal choices.

In addition to the effects on activity and modal share, various influences on energy
intensity (I) are made possible by vehicle automation. Some of these are at the level of
networks, others of vehicles. The exchange of information between vehicles themselves,
as well as infrastructural elements, can reduce congestion, which is a major driver of
fuel economy [34]. Less congestion would diminish the advantage of electrified vehicles
regarding fuel economy due to less recuperation being required.

Another mechanism that has an impact on fuel economy is so-called platooning. By
driving closer to vehicles in front, the air drag can be considerably reduced. This mechanism
achieves a greater effect, especially at higher speeds, due to the intensifying aerodynamic
effects that accompany increasing velocity. In particular, semi-trailers primarily drive on
freeways at nearly constant speeds, and are suitable for platooning, which is the reason for
testing the activities of vehicle manufacturers [36,37].

Furthermore, vehicle automation can lead to better fuel economy due to ecologically-
conscious driving. Different studies have shown the possible reductions in fuel consump-
tion if human drivers are trained in eco-driving methods [38]. It is therefore to be expected
that automated vehicles will also be able to improve fuel economy through eco-driving.
This effect would be strengthened by increasing connectivity between vehicles themselves,
as well as infrastructural elements [38].

One aspect of eco-driving is less acceleration. The acceleration capability of passenger
cars has increased over the last few decades [39]. Alongside higher maximum speeds,
this is the main reason for more powerful drivetrains being developed in recent years.
As passengers may find it uncomfortable to experience high acceleration in self-driving
cars, this could in turn result in lower average engine power. This in turn reduces vehicle
mass and therefore improves fuel economy. Wadud et al. cite improved crash avoidance
due to vehicle automation as another possible reason for reductions in weight and fuel
consumption [34].

However, these are not the only effects that decrease fuel consumption. The hardware
components of autonomous systems can lead to higher vehicle masses. Additionally, the
systems increase the electric demand required on top of other auxiliaries [40].

Figure 6 shows the possible changes in energy consumption due to vehicle automation
effects according to Wadud et al. [34]. Mechanisms that lead to reductions in fuel consump-
tion predominate. However, it becomes apparent that the changes resulting from individual
effects can vary widely. The overall impact thus depends strongly on the nature of the
individual effects, as the scenarios by Wadud et al. show. The total scenario results range
from a 40% reduction up to 100% increase in the total road transport energy demand [34].

According to Wadud et al., the fuel carbon intensity (F) is influenced by three effects
that potentially alter the technology decisions of vehicle buyers [34]. Firstly, autonomous
vehicles could drive to stations in an unattended mode. Thus, the user’s acceptance of
alternative fuels such as electricity and hydrogen is increased, because the low density
of charging infrastructure or fueling stations is not as inconvenient as it is without self-
driving cars. Secondly, small driving ranges represent a barrier for users. As autonomous
vehicles could charge more often without additional time for the driver, this could reduce
the hurdle for vehicles with small driving ranges. Thirdly, self-driving cars can push the
trend of shared mobility. The higher mileages of such shared vehicles make vehicles with
low operational costs more economical, although they could require a higher one-time
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investment for alternative vehicles in early market phases. All three stated effects could
speed up the market penetration of alternative fuels.

Figure 6. Changes in energy consumption due to vehicle automation [34].

The previous section described the manifold impacts of the considered mobility trends
on the different factors of the ASIF method and thus the overall GHG emissions of the
transport sector. Although the modal shift primarily influences the modal share (S), the fuel
shift effects are more related to energy intensity (I) as well as fuel carbon intensity (F). It is
also shown that the trends should not be considered in isolation, but in aggregated form, as
they can influence one another. Shared mobility and autonomous driving in combination
in particular can affect the modal and fuel shifts in principle.

5. Mobility Trends in Transport Sector Models

The following section presents an analysis of mobility trends in the transport sector
models. Thereby, the extent to which the previously described effects are investigated in
the transport sector models is analyzed below.

5.1. Modal Shift

The modal shift is modeled in the transport sector models in different ways. These
are described in the following section. An important precondition to investigate the effects
of modal shifts on the energy demand and GHG emissions of the transport sector is the
inclusion of all major means of transport. As was analyzed in Appendix B.2, most of the
examined models fulfill this requirement.

A simple way of including a modal shift is to exogenously assuming it. In such a case,
the shift from one transportation mode to another is defined by the user as an exogenous
percentage parameter [41].

Another methodology for modeling the modal shift is via elasticities. Brand et al.
calculate the travel demand T according to Equation (3) [42]:

Tn

Tn−1
=

GDPn

GDPn−1

EGDP
· NHHn

NHHn−1

ENHH
· RCn

RCn−1

ERC
(3)

The travel demand in year n is dependent on the gross domestic product (GDP), the
number of households (NHH) and a factor for the relative vehicle ownership and operating
costs for the demand segments (RC). The relationship between the travel demand change
and change in each of these parameters is calculated with the help of elasticities (Ex). The
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elasticity (ERC) includes the shift from one mode to another. In case the costs of providing
one pkm or tkm changes relative to one another, the modal shift takes place. Therefore, the
modal shift is dependent on monetary factors using the methodology applied by Brand
et al. [42].

The most common means of modeling the modal choice and thus also the modal
shift is via discrete choice models. The principles of such discrete choice models can be
found in a study by Ben-Akiva [43]. In order to calculate the share of mode i, the following
multi-nomial logit (MNL) type equation is used [44]:

Sharei =
exp(λ ·Costi)

∑i exp(λ ·Costi)
(4)

where λ is a factor that represents the sensitivity of the mode’s share to the different
costs [44]. The basic form of the MNL-type equation is the same for all models. The share
can be calculated on an aggregated geographical level [45] or for each of the considered
regions [44]. Furthermore, Mittal et al. consider trip distance categories in their modal
choice [46].

The main difference between the models using discrete choice results from deviating
factors Cx that are included in the total considered cost. Furthermore, these cost types can
be weighted by deviating αx:

Cost = ∑
x

αx ·Cx (5)

Travel time is the most important influencing factor aside from travel cost [47]. Thus,
it is included in most of the models.

Mittal et al. calculate the cost of a mode based on the weighted prices of the different
drivetrain technologies used and the monetary cost of time. These travel time costs are
dependent on the GDP, population, annual working hours, as well as the door-to-door
travel speed, of the investigated modes [46].

Similarly, Wang et al. include the travel time cost, which they determine by employing
the ratio of hourly income and vehicle speed. Furthermore, they make use of the possibility
of weighting the factors when calculating the overall cost. Thus, travel time costs, for
example, may have less influence than the fuel cost. Additionally, Wang et al. split up the
fuel cost from other vehicle-related costs, such as the purchase price, maintenance cost, and
taxes. Therefore, the influence of the fuel cost on the modal choice can be highlighted [45].
This could lead to different modal choices if the drivetrain and, consequently, the fuel cost
of a mode change.

Apart from costs related to vehicles and travel time spent by passengers, infrastructure
costs are another cost factor the influences the societal cost of transport. Girod et al.
consider these costs in terms of the non-energy cost of the different modes if the costs are
not subsidized by the government. Otherwise, these costs do not influence travel behavior
and should therefore not be considered [44].

Another difference in the TRAVEL model of Girod et al. compared to other models
is the endogenous calculation of the weight of time costs. The analysis by Schäfer et al.
showed the temporal constancy of the daily travel time in various countries with different
levels of development [48]. Therefore, Girod et al. include this travel time budget as an
additional boundary condition. If the travel time budget is exceeded, the weight of travel
time costs is increased until the condition is met [44].

The analysis shows how the modal shift effects on the modal share (S) are modeled
in the literature. The inclusion of modal shift in transport sector models has been a major
topic in research during the last decades. The most widely used discrete choice models
allow consideration of various parameters affecting the modal shift.

5.2. Fuel Shift

The fuel shift effects identified in Appendix B.2 are manifold. The modeling of these is
analyzed and described in the following subsection.
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The basis for modeling the fuel shift is the inclusion of the most important drivetrains
and fuels available in the investigated time horizon. As noted in Appendix B.2, this
precondition is fulfilled by most of the models. Only some drivetrain alternatives like
REEVs are underrepresented, although they may attain not insignificant shares in the future
transport sector. The same applies to synthetic fuels, which are predicted to play a major
role in the decarbonization of shipping and aviation [49].

In most of the analyzed models, the fuel consumption of the considered modes
and drivetrains is an exogenous assumption. Others carry out drive cycle calculations to
determine the fuel consumption [50,51]. In contrast to other models, Belmonte et al. assume
fuel consumption to be constant over time, except in the case of BEVs [51]. Therefore, they
also neglect technological improvements for vehicles (aerodynamics or mass reduction)
and drivetrains.

In order to consider regional effects on fuel consumption, six of the models differ
between typical types of regions, e.g., urban and rural areas. Within the Renewability
modeling framework, this is achieved by means of exogenous assumptions [52]. Siskos
et al. take into account different speed bands, as depicted in Figure 7 [53]. The overall
fuel consumption is determined by activity shares for these defined speed bands, and
the corresponding specific fuel consumption values. The activity shares are exogenously
assumed depending on the investigated geographical area. By changing these shares,
the effect of increasing or decreasing congestion on fuel consumption can also be taken
into account.

Figure 7. Speed-dependent fuel consumption and share of vehicle activity in [53] to show the
dependency of overall fuel consumption on user specific transport demand.

Belmonte et al. weight different ARTEMIS drive cycles depending on trip length.
Although short trip fuel economy is dominated by the city cycle, longer trips include a
greater share of the highway cycle [51]. Furthermore, they consider different shares of
electric driving for PHEVs depending on trip length. The longer the trip, the lower the
electric driving share due to low battery capacities and so low electric ranges of PHEVs [50].

As most of the models do not differentiate between geographical areas, they neglect
the differences in fuel consumption behavior of drivetrain architectures (see Section 4.2)
and the deviating fields of application that result.

Alongside the above-outlined modeling of energy intensity (I), the modeling of fuel
carbon intensity (F) is another important point to analyze regarding fuel shift trends.
Almost all models employ exogenously-determined carbon emission factors for the investi-
gated fuels. In most cases, these emission factors are split into WTT and TTW segments.
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Conventional fuel emissions are dominated by the TTW segment and WTT production
alternatives do not have major impacts on the overall carbon emissions (see Figure 5).
Therefore, fixed time-independent carbon emission factors correspond to conventional
fuels’ carbon emission behavior.

For alternative fuels, the WTT emissions can vary, largely depending on the fuel pro-
duction technology used [25]. Therefore, the shares of the different production technologies
must be determined. This can either be performed exogenously or endogenously. For
example, Belmonte et al. assume the share of electrolysis for global hydrogen production to
be increasing from 10% in 2020 up to 20–70% in 2050 depending on the chosen scenario [51].
In contrast, Yabe et al. model the electric power supply and thus calculate the technology
shares, as well as the corresponding WTT CO2 emissions, endogenously [54].

In the case of mixing the production pathways, emissions can also be time-dependent,
which is especially important for electric charging, as described in Section 4.2. Therefore,
Pichlmaier et al. use hourly WTT emission factors for electricity, which are calculated by
an energy supply model. Their results indicate higher mean emission factors for charged
electrical energy compared to the overall average in each investigated year. The greatest
difference of +10 gCO2/kWh occurs in 2035 [55]. Thus, electricity supply and demand
should be temporally-resolved in order to correctly calculate the fuel carbon intensity.

The overall effect of the fuel shift on transport sector emissions depends on the technol-
ogy’s adoption by decision makers. The question concerns the reason why buyers choose
a particular technology. Therefore, modeling of the technology choice is analyzed in the
following. Figure 8 provides an overview which criteria were used in the investigated models.

Figure 8. Criteria for vehicle technology choice.

Firstly, the exogenous and endogenous modeling of technology shares for the trans-
portation modes should be differentiated. In ten of the investigated models, the shares were
exogenously assumed. Thus, these models do not endogenously include user behavior or
decision processes.

Another eight models conducted a monetary comparison of the drivetrain technologies.
In these cases, the decision was mostly taken with the help of a total cost of ownership
(TCO) analysis. Thereby, different vehicle cost types were taken into account, and can be
categorized into one-time investment costs (purchase), fixed (e.g., taxes), or variable (e.g.,
fuel costs) operating costs. These costs are usually specifically calculated per kilometer
and thus include the vehicles’ mileages. As the TCO can be calculated from the system
viewpoint on the one hand, and from that of the user on the other, the cost types considered
may differ [56]. As an example, Pichlmaier et al. employ the system view and thus neglect
the tax advantages of different drivetrain technologies [55]. Although Yabe et al. only
utilize monetary criteria for the technology choice as well, their concept differs compared
to the others mentioned above [54]. As their model also comprises the power supply, these
costs are also included in the overall optimization function. Thus, the effects of the transport
sector on the power sector are taken into account when choosing the drivetrain technology.
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Many analyses have shown that in reality, vehicle purchasing decisions are not only
made based on economic (monetary) criteria but are also influenced by other factors [50]. As
depicted in Figure 8, most of the investigated models include non-monetary criteria next to
the previously described monetary ones in order to model the technology choices in a more
realistic manner. In such cases, discrete choice models comparable to those described in
Section 5.1 for modal shift modeling are used. The different drivetrain technology properties
are weighted with the utility function in order to model the influence of these factors on
purchasing decisions. Often-considered non-monetary factors include range anxiety and
the availability of refueling/recharging infrastructure, which plays an important role for
alternative drivetrain technologies such as FCEVs and BEVs [57]. Harrison et al. developed
a more advanced discrete choice modeling approach [58]. The determined utility function,
including all other criteria, was multiplied by a factor called willingness in order to consider
what was introduced by Struben and Sterman in 2008 [59]. With the help of this factor,
Harrison et al. took into account marketing and word of mouth, which increase the
awareness of potential buyers of new technologies. If this factor is too low, the technology
is not considered in the buyers’ consideration set [58].

Belmonte et al. were the only researchers to model the technology choice endogenously
based solely on non-monetary criteria. The objective function was minimized in their
optimization model and includes the LCA greenhouse gas emissions of the transport sector.
Thus, their investigations focus on the minimum achievable GHG emission potential [51].

In nearly one third of the investigated models, different buyer types are categorized
due to different usage patterns and priorities of decision-makers. These categories can
be defined based on various socio-economic parameters. Brooker et al. [60] and Siskos
et al. [53] use income as a classification criterion. Meanwhile, Manley et al. classify
according to buyers’ housing types [61]. Trost instead differentiates between private and
commercial buyers [50]. Furthermore, he includes a willingness to pay more to account
for different adopter groups in accordance with Rogers [62]. Thus, the cheapest drivetrain
is not always chosen, but rather the alternative with the lowest GHG emissions within a
cost range.

If not only one year, but many years are exogenously modeled, the defined boundaries
can be set in order to include market ramp-up models such as the S-curve model for the
fuel or drivetrain shift [62]. Therefore, in the TRAN model, maximum penetration levels
are set as an upper boundary, depending on the years in the market [63].

The manifold effects of fuel shift are considered very differently in the investigated
models. For example, the modeling of vehicle energy consumption ranges from exogenous
assumptions to detailed user groups and speed-dependent modeling. Within the analyzed
models, the choice of technology is affected by both monetary and non-monetary criteria.

5.3. Shared Mobility and Automated Driving

Due to the large interactions and likely combination of shared mobility and au-
tonomous driving in the future, these two trends are often discussed together in the
transport sector modeling literature. Thus, an analysis regarding the modeling of these
trends is also combined in this section.

First of all, it should be noted that these two trends are still mostly not taken into
account in transport sector models. Adolf et al. assume a lower motorization rate for
younger people in their model as a result of car-sharing [64]. Hacker et al. make similar
exogenous assumptions regarding transport demand due to car-sharing and autonomous
driving [65]. In their “Limitless” scenario, the average trip length is increased by 10%, and
work trips by even 20%, due to autonomous driving. In some cases the effects are chosen in
contrast to each other. Although the occupancy rate in the “Limitless” scenario is assumed
to decrease from 1.47 to 1.4 due to the increasing number of empty trips by autonomous
vehicles, car-sharing leads to an increase in the occupancy rate in the “Regional” scenario
to 1.6 [65]. This demonstrates the great uncertainty regarding the actual impact of the
two trends.
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Zimmer et al. discuss the influence of autonomous driving, but do not include it in
their models. In contrast to this, they model car-sharing as a separate alternative mode [66].
Due to a lack of data, the parameters for the modal choice are based on a combination of
car and public transport values. Furthermore, car-sharing mode is assumed to be available
dependent on the modeled year and region type. The full availability of this new mode is
reached in cities with more than 100,000 inhabitants in 2030 and in those with more than
50,000 inhabitants in 2050. Compared to the previously mentioned assumptions by Adolf
et al., the motorization rate decreases in the “Renewability” scenarios due to car-sharing.
The difference is that this does not change in relation to the age group, but as a function of
the type of region.

Xie et al. expanded the MA3T model in order to investigate the effects of shared and
autonomous vehicles on diverse transportation-related research questions, such as future
drivetrain shares [67]. Therefore, they used a similar methodology, as previously described
by Zimmer et al. To consider automated vehicles and shared mobility a nested multinomial
logit model comprises four passenger car modes, as is shown in Figure 9.

Figure 9. New modes to include vehicle automation and shared mobility in MA3T-MC [67].

Whereas Zimmer et al. only introduce one alternative mode for car-sharing, the four
alternatives by Xie et al. represent the possible combinations of automated or human-
driven and personal or shared vehicles. Thus, they not only consider car-sharing but also
vehicle automation, as well as the combination of both. Aside from consideration of the
mode choice process, Xie et al. also take into account the impacts of vehicle automation
on fuel consumption and therefore the energy intensity (I) with the help of the following
equation [67]:

ConsumptionCAV = ConsumptionHV ·(1 − ReductionCAV) + AddLoadCAV (6)

The fuel consumption of connected, autonomous vehicles (CAV) is derived from the
human-driven vehicle (HV) fuel consumption, an assumed relative reduction, and an
additional electric load by the autonomous system’s components.

The results of Xie et al. demonstrate some effects of vehicle automation and shared
mobility. First of all, the number of sold vehicles increases disruptively in 2030 due to the
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substantial benefits. Furthermore, the share of BEVs is higher due to vehicle automation.
However, it is dependent on the additional electric power load. Higher sensor loads lead
to higher PHEVs and lower BEV shares [67].

Overall, Adolf et al. [64], Hacker et al. [65], and Zimmer et al. [66] only take the effects
of car-sharing on transport demand into account. Xie et al. include the impacts of vehicle
automation and shared mobility in a more detailed manner [67]. The results of the MA3T-
MC model highlight the importance of doing so. None of the investigated models consider
vehicle automation for freight transport, although platooning in particular is capable of
reducing vehicle fuel consumption by more than 10% [36].

5.4. Comparison of Mobility Trends

The previous subsections dealt with the mobility trends separately. Thus, the interac-
tions, as well as the consideration of these in the investigated models, are now compared.
Figure 10 depicts the influence of the analyzed mobility trends on the different parts of
ASIF, as well as each other, as described in Section 4. Furthermore, the diagram includes
information on the quality of current models with respect to the depicted interactions.

Figure 10. Impact of mobility trends on each other and parts of ASIF, as well as their modeling quality
in transport sector models. * is defined in the figure as further explanation.

The differences between the mobility trends become directly evident. The influences
of modal and fuel shifts are mostly exerted on parts of ASIF. Effects such as the change
in modal share due to the modal shift are easy to follow and modeled with good quality
in most of the investigated models. The same applies to the different energy intensities
due to the fuel shift. Still, most of the models utilize static fuel carbon intensity values for
energy carriers that do not include possible differences, e.g., between the average charged
electricity and average total electricity generation. Therefore, further improvement should
be made to the details in order to correctly model the overall effects.

In contrast to the modal and fuel shifts, the influences of vehicle automation and
shared mobility are manifold. The trends do not only implicate changes in the ASIF factors
but also the effects on other trends. Therefore, these two trends have an impact on nearly
all parts of transport sector GHG emission calculations. However, most of the interactions
have a smaller influence compared to the major impacts of the modal and fuel shifts.
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Additionally, the effects are often associated with great uncertainties, as can be seen in the
wide range in the results presented by Wadud et al. for the impact of automated driving on
GHG emissions [34]. Nevertheless, the effects should not be disregarded.

As most of the analyzed models do not consider the effects of vehicle automation and
shared mobility at all, the modeling quality of these trends is very low. Only a few consider
shared mobility and the higher occupancy rates in their models. However, the MA3T-MC
results are sufficient evidence of the significance of closing the modeling gap, which can be
seen in this research field.

In order to incorporate the effects of automated driving and shared mobility into the
models, sufficient modeling depth is required with respect to all parts of the ASIF.

As a basic extension, it is advisable to define new modes, as undertaken by Fei Xie
& Lin [67] that represent the different possible combinations of automated and shared
mobility arrangements.

In order to determine the changed activity, as well as the modal share, the elasticity
approach is insufficient. Here, people’s behavior must also be taken into account, which is
why an approximation of the transport sector models to agent-based models seems to be
useful. In addition to the model-internal extension, model coupling is a suitable approach.

The introduction of new modes, as mentioned above, simplifies inclusion of the effects
of automated driving and shared mobility on energy and fuel carbon intensity. If one
does not wish to rely solely on exogenous assumptions, in-depth modeling is required.
Adapted driving cycle simulations are an appropriate means of determining changes in
fuel consumption due to automation. In connection with shared mobility, the proportion of
empty runs or the occupancy of vehicles must be included. Again, further local analyses
using place-based models (agent-based and traffic network models) can help.

As the effects on fuel carbon intensity arise from their time dependence, either time
series instead of constant values must be used, or modeling of the power plant fleet, as
undertaken by Yabe et al. [54], must be included in the model. Especially in the case of
intelligent charging and V2G, it is recommended to represent the power sector in a more
detailed manner. There is also the possibility of coupling models to IAMs, which include
all sectors and can provide information on the power plant fleet or time-dependent fuel
carbon intensities.

Figure 11 summarizes the recommended transport sector model adaptations. First,
these include model internal ones, such as the defining of new modes. Secondly, model
extension and the usage of modeling techniques from both other model classes (place-based
and IAMs), such as the modeling of different user groups or the power sector, are indicated
by the overlapping segments. Finally, information flow via model-coupling is the last
recommended model adaptation.

Figure 11. Overview of recommended transport sector model adaptations.
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Overall, it is clear that an approximation of the different types of models and academic
disciplines is necessary to correctly determine the impacts of automated and shared driving
on a large scale.

6. Conclusions

In this paper, transport sector models were analyzed with a focus on four major trends
in the transport sector—modal shift, fuel shift, shared mobility and automated driving.
The scope of the investigated models ranges from the national, to the multinational, to
the global scales. Furthermore, some of the models’ projections end before 2050, whereas
others are already starting to look at the second half of the century. The analysis shows
national models projecting through 2050 to be the average.

Although some of the models include passenger cars as the only mode or solely
consider street vehicles, the majority consider the most relevant modes with respect to
transport volume and GHG emissions. Therefore, these fulfill the precondition of being
able to analyze modal shift effects. The same applies to the coverage of drivetrains and
possible fuels. Nevertheless, a preference for analyzing BEVs and electricity as future
drivetrains and fuels, respectively, can be identified. In particular, alternatives such as
REEVs or synthetic fuels are given much less consideration in the investigated models.

The analysis of the possible impacts of mobility trends based on the ASIF method
highlights the manifold effects of these trends. The modal shift primarily leads to a change
in the modal shares (S). Furthermore, the modal shift can influence the occupancy rates of
the different modes.

In contrast to the modal shift, the fuel shift, which mostly also includes a drivetrain
shift, mainly touches the energy intensity (I) and fuel carbon intensity (F) parts of the ASIF
equation. The degree of the effect depends strongly on user behavior. Thus, the driving
region (urban vs. rural) has an impact on the potential for reducing fuel consumption
through electrification. Furthermore, for hybrid vehicles, the electric driving share relates
to the driving distance. In addition, the charging times influence the carbon intensity of the
charged electricity.

Shared mobility affects the activity (A), the modal shares (S), and energy intensity
(I). Younger and older people tend to be more mobile if mobility-on-demand concepts are
made available. Therefore, the overall activity increases due to shared mobility. Due to
the different properties of such a mode, especially with respect to travel cost and time, the
modal shares of other modes change. Additionally, the energy intensity of passenger cars
decreases because ridesharing leads to higher occupancy rates. In particular, in the case of
autonomous taxis, the last point is debatable, since there will be empty trips that at least
diminish the effect of higher occupancy rates to some degree.

Alongside empty trips, vehicle automation has various impacts on the energy intensity
(I) of vehicles. Moreover, the activity (A) increases because of autonomous vehicles, as
these offer the possibility of using driving time for other activities and present new mobility
possibilities to younger and older people who are not able to drive on their own. This
change in passenger car characteristics also affects the modal shares (S). Furthermore,
autonomous and shared vehicles have different usage profiles compared to human-driven
ones, and therefore influence the choice of drivetrain when new vehicles are bought. This
is an example of the interdependency between the analyzed trends.

Overall, the analysis indicates the influence of shared mobility and automated driving
to be much more diverse compared to the modal and fuel shift, and increased interdepen-
dencies with the other trends are also apparent.

In Section 5, an overview of the consideration and modeling of mobility trends in
transport sector models was presented. The modal shift was taken into account in about
half of the analyzed models. In most cases where it was not considered, the reason was the
lack of different modes. The modeling of the modal shift was performed either exogenously
or endogenously. For endogenous modal shifts, either elasticities or discrete choice were
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used, with the latter predominantly utilized. The primary mode characteristics considered
in these models are the travel cost and time.

All of the investigated models consider the fuel shift. Nevertheless, the level of
detail varies widely across the models. Although some of the models exogenously define
the future shares of drivetrains, others exogenously determine, e.g., fuel consumption
and technology choice for different user groups. The literature shows the importance
of differentiating between usage profiles for correctly calculating the quantitative effects
of the fuel shift on energy demand or GHG emissions. Therefore, a high level of detail
with respect to user preferences and vehicle-specific usage patterns is recommended for
endogenously modeling the fuel shift.

The usage profile and thus the technology choice is strongly influenced by the trends
in shared mobility and automated driving. As projections indicate increasing shares of
autonomous vehicles that could also be in shared usage after 2030, these trends should not
be neglected in long-term modeling. However, the analysis showed an underrepresentation
of these two trends in the investigated models. Furthermore, the modeling was dominated
by exogenous assumptions, especially regarding transportation activities and occupancy
rates. Due to high uncertainty, these assumptions were also sometimes contrasting. Only
Xie et al. [67] include the effects of vehicle automation on fuel consumption. Furthermore,
they introduce three new modes in order to represent the combinations of car-sharing and
autonomous vehicles.

The literature review showed the large gap between the modeling of mobility trends.
Whereas the modal and fuel shifts were mostly considered, car-sharing and vehicle au-
tomation is underrepresented although it is considered to reach an non-negligible share in
the investigated time horizons. This gap should be filled in future in order to evaluate the
interdependent effects of mobility trends and to project quantitative numbers for future
transport energy demand or other transportation-related topics. For this, necessary model
improvements are, on the one hand, internal to the model, such as defining new modes
or adapted driving cycle calculations and, on the other, by extension or coupling to other
model types. Agent-based models, for example, help to assess the impact of autonomous
and shared driving on vehicle activity and utilization. Moreover, the coupling to IAMs can
serve to better map interactions with the power sector, which are becoming increasingly
important due to the analyzed trends. Thus, the coupling of the different types of models
and the collaboration of the different academic fields is recommended as a possible means
of filling this gap.
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Appendix A. Model Information

Table A1. Spatio-temporal properties and sectoral scope of investigated models.

Model/Author Ref Spatial Scope Temporal Scope Spatial Resolution Temporal Resolution Sectoral Scope
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Renewbility III [66] Germany x x x x x
ASTRA-DE [68] Germany x x x x
VECTOR21 [69] Germany x x x x x

VM-SIM [70] Germany x x x x x
Shell [64] Germany x x x x x
TraM [71] Germany x x x x x

TEMPS [65] Germany x x x x x
Trost [50] Germany x x x x x

Belmonte et al. [51] Germany x x x x x
SERAPIS [72] Austria x x x x x
UKTCM [73] UK x x x x x
STEAM [74] Scotland x x x x x

DTReM-LV [75] Latvia x x x x x
UniSyD [76] Iceland x x x x x

Shepherd et al. [77] UK x x x x x
TMOTEC [45] China x x x x x

MA3T [67] US x x x x x
ParaChoice [61] US x x x x

ADOPT [60] US x x x x x
CPREG [78] China x x x x x

Hao et al. [79] China x x x x x
LEAP [80] China x x x x x

Palencia et al. [81] Japan x x x x x
Gambhir et al. [82] China x x x x x

Ou et al. [83] China x x x x x
Yabe et al. [54] Japan x x x x x

TRAN [63] US x x x x x
PTTMAM [58] EU x x x x

ASTRA-EC [68] EU x x x x
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Table A1. Cont.

Model/Author Ref Spatial Scope Temporal Scope Spatial Resolution Temporal Resolution Sectoral Scope
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TE3 [20]
Germany, France,

India, Japan, China,
US

x x x x

HIGH-TOOL [84] EU x x x x
PRIMES-

TREMOVE [85] EU x x x x
TRIMODE [86] EU x x (x) x
TRAVEL [44] global x x x x x

AIM/Transport [46] global x x x x
MOVEET [87] global x x (x) x

MoMo [88] global x x (x) x
RoadMap [41] global x x (x) x

ITEDD [89] global x x (x) x
Khalili et al. [90] global x x x x x

ForFITS [91] global x x (x) x

Table A2. Considered modes, drivetrains and energy carriers in investigated models.

Model/Author Ref Modes Drivetrains Energy Carriers
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Renewbility III [66] x x x x x x x x x x x x x x x x x x x x x x
ASTRA-DE [68] x x x x x x x x x x x x x x x x x x x x x
VECTOR21 [69] x x x x x x x x x x x x

VM-SIM [70] x x x x x x x x x x x x
Shell [64] x x x x x x x x x x x x x
TraM [71] x x x x x x x x x x x x x x x x x x x

TEMPS [65] x x x x x x x x x x x x x x x x x x x x
Trost [50] x x x x x x x x x x x x x x

Belmonte et al. [51] x x x x x x x x x x x x x
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SERAPIS [72] x x x x x x x x x
UKTCM [73] x x x x x x x x x x x x x x x x x x x x x
STEAM [74] x x x x x x x x x x x x x x x x x x x x x

DTReM-LV [75] x x x x x x x x x x x x x x x x x
UniSyD [76] x x x x x x x x x x x x x x

Shepherd et al. [77] x x x x x x
TMOTEC [45] x x x x x x x x x x x x x x x x x x x x x

MA3T [67] x x x x x x x x x x x x x
ParaChoice [61] x x x x x x x x x x x x x x

ADOPT [60] x x x x x x x x x x x x x
CPREG [78] x x x x x x x x x x x x x x x

Hao et al. [79] x x x x x x x x x x x
LEAP [80] x x x x x x x x x x x x x x x x

Palencia et al. [81] x x x x x x x x
Gambhir et al. [82] x x x x x x x x x x x x x x x x

Ou et al. [83] x x x x x x x x x x x x x x
Yabe et al. [54] x x x x x x x

TRAN [63] x x x x x x x x x x x x x x x x x x x
PTTMAM [58] x x x x x x x x x x x x x

ASTRA-EC [68] x x x x x x x x x x x x x x x x x x x x x
TE3 [20] x x x x x x x x x x x x

HIGH-TOOL [84] x x x x x x x x x x x x x x x x x x x x x x
PRIMES-TREMOVE [85] x x x x x x x x x x x x x x x x x x x

TRIMODE [86] x x x x x x x x x x x x x x x x x x x x x x
TRAVEL [44] x x x x x x x x x x x x x x x x x x x

AIM/Transport [46] x x x x x x
MOVEET [87] x x x x x x x

MoMo [88] x x x x x x x x x x x x x x x x x x x x x
RoadMap [41] x x x x x x x x x x x x (x) x x x x x x x

ITEDD [89] x x x x x x x x
Khalili et al. [90] x x x x x x x x x x x x x x x x x x x x

ForFITS [91] x x x x x x x x x x x x x x x x x x x x x x
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Table A3. Considered mobility trends in investigated models.

Model/Author Ref Mobility Trends
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Renewbility III [66] x x x x
ASTRA-DE [68] x x x
VECTOR21 [69] x

VM-SIM [70] x
Shell [64] x x
TraM [71] x

TEMPS [65] x x x x
Trost [50] x

Belmonte et al. [51] x
SERAPIS [72] x
UKTCM [73] x x
STEAM [74] x x

DTReM-LV [75] x x
UniSyD [76] x

Shepherd et al. [77] x
TMOTEC [45] x x

MA3T [67] x x x
ParaChoice [61] x

ADOPT [60] x
CPREG [78] x

Hao et al. [79] x
LEAP [80] x

Palencia et al. [81] x
Gambhir et al. [82] x

Ou et al. [83] x
Yabe et al. [54] x

TRAN [63] x
PTTMAM [58] x

ASTRA-EC [68] x x x
TE3 [20] x

HIGH-TOOL [84] x x
PRIMES-TREMOVE [85] x x

TRIMODE [86] x x
TRAVEL [44] x x

AIM/Transport [46] x x
MOVEET [87] x x

MoMo [88] x x
RoadMap [41] x x

ITEDD [89] x x
Khalili et al. [90] x x

ForFITS [91] x x

Appendix B. Boundary Conditions of Transport Sector Models

In addition to Section 3 in this section, further boundary conditions of the investigated
transport sector models are analyzed. This comprises the temporal, as well as spatial
resolution. Additionally, the sectoral coverage of the models is examined. Therefore, the
considered modes, drivetrains, and fuels are regarded.

Appendix B.1. Spatio-Temporal Settings

The temporal resolution provides insight into the consideration of time-dependent
effects. These become relevant for the transport sector, especially in terms of electricity
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demand. Although fuel stations for other energy carriers compensate for intra-day fluc-
tuations due to standard installed on-site storages, charging stations for electric vehicles
do not include comparable storage, as they are predominantly directly connected to the
electricity grid. Therefore, the electric power must either be simultaneously generated to
meet demand or must be retained by integrated electricity storage systems.

More than half of the analyzed models have a yearly resolution, as can be seen in
Figure A1. Thus, these cannot take into account the intra-day peaks in electricity demand
caused by electric charging. Only six of the 41 investigated models are specified to include
a higher temporal resolution.

Trost employs three typical days to investigate the effect of electric charging. These
three typical days comprise a working day, representing Monday through Friday, Sat-
urdays and Sundays. Each of these is divided into day and night periods, for which
different proportions of electrically-coupled vehicles are assumed for various charging
capacities [50].

Pichlmaier et al. also take into account the dependency of a high temporal resolution
on the energy carrier. Although the demand for electrical energy is resolved hourly, it is
resolved daily for methane and hydrogen and annually for liquid fuels [55].

Figure A1. Temporal (a) and spatial (b) resolution of the investigated transport sector models.

The analysis of the possible effects on energy infrastructures requires spatial resolution.
These infrastructures play an important role in the transition to BEVs and FCEVs, which
are two promising decarbonization solutions. This effect can be considered by models
with higher spatial resolutions. Furthermore, a high spatial resolution can help include the
differences in transport demand, as well as vehicle-specific fuel consumption in different
types of regions.

Furthermore, Figure A1 shows that most of the investigated models analyze the
transport sector on a country level. Six of the global models even combine countries into
larger regions. As they do not focus on infrastructural questions, a high spatial resolution
is not necessarily required.

For China and the USA, models exist that simulate future energy demand via the
transport sector on a state level [63,78]. Peng et al. do not include the influence of regional
energy demand on the transmission infrastructure for energy carriers [78]. The transporta-
tion sector demand module of the National Energy Modeling System (NEMS), developed
by the U.S. Energy Information Administration, calculates the future energy demand of the
transport sector in the USA on a state level as well [63]. The model itself cannot be used to
analyze the influence on the infrastructure. However, with the help of model coupling to
another NEMS module, the effects can be investigated.

Other models calculate the transport demand on a regional level, but investigate the
energy demand on a national level instead [66,68].

Overall, it can be summarized that transport sector models analyze on average the
transport sector on a national scale through 2050. Thereby, the temporal resolution is on a
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yearly basis and the spatial resolution on a national one. Section 4 shows that higher reso-
lutions are necessary for various effects that result from the different investigated trends.

Appendix B.2. Sectoral Coverage

Passenger and freight transport demand can be met by different modes. These in turn
can be equipped with various drivetrain architectures. Finally, different energy carriers
provide the required power. To obtain an overview of the sectoral coverage, an analysis of
the inclusion of diverse technological possibilities in transport sector models is conducted
in the following subsection. The considered modes range from different street vehicles
to rail, water, and air. Considered drivetrains are conventional ICEVs, different levels
of hybridization, as well as BEVs and FCEVs. Finally, the energy carriers comprised of
conventional fuels (gasoline, diesel, and kerosene) and alternatives such as electricity,
hydrogen, biofuels, and synthetic fuels are appraised.

Figure A2 displays how many models contain the different means of transport. It can
be seen that cars are included in all of the selected models. The reason for this is the high
share of transport sector energy demand arising from passenger cars. Some of the models
focus on passenger cars and do not take any other transport mode into account at all.

Bicycles are the least considered mode. A reason for this could be their low influence on
the overall energy demand and greenhouse gas emissions in the transport sector. Although
the burgeoning market for electric bikes for people and freight leads to rising electricity
demand for this means of transport, it still makes up only a small share of the overall
transport energy demand due to low specific energy demand [92]. Motorcycles are generally
considered in global transport sector models because they play an important role in the
transport sectors of less developed countries.

Gambhir et al. [82], Peng et al. [78], and Ou et al. [83] only model road transport
modes, as these are the main drivers for rising energy demand in the Chinese transport
sector. This leads to a lower overall consideration of rail, water, and air transport in the
analyzed models, as can be seen in Figure A2.

Figure A2. Considered modes in transport sector models.

Only six of the models include all modes of transport considered in our analysis. Eight
further models consider all modes, except for bicycles. Adding the four models that only
disregard two-wheelers yields 18 models that take into account the most important modal
drivers of energy demand and greenhouse gas emissions in the transport sector. Section 4.1
emphasizes the importance of including several modes in the context of mobility trends.

As noted above, the modes can be equipped with different drivetrain architectures.
Due to a lack of information, it is not possible to analyze the considered drivetrains by
mode. Therefore, Figure A3 depicts the number of models that include the investigated
drivetrains for passenger cars. For three of the models, no information on the modeled
drivetrains is available.

All models for which such information is available consider ICEVs and BEVs. Peng
et al. [78] and Palencia et al. [81] do not include PHEVs though. The less electrified HEVs
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are also not taken into account in five of the models. FCEVs are included in the same
number of models as HEVs. By far the least attention is paid to REEVs. Overall, a slight
preference for including BEVs as an alternative drivetrain technology in the analysis can
therefore be identified in some of the models.

The right diagram in Figure A3 shows the number of considered drivetrains (out of
the drivetrain architectures included in the upper diagram) in the investigated models. It
is apparent that most of the models include all listed drivetrain architectures, except for
REEVs. In three of the models, only three different drivetrain architectures are taken into
account for the analysis. Shepherd et al. [77] and Ou et al. [83] consider ICEVs, PHEVs, and
BEVs. In contrast to this, Peng et al. do not consider hybrid drivetrains at all [78].

It should also be noted that the drivetrain variety in the models can be expected to be
the highest for cars, and especially hybrid variants, which are often not considered as other
means of transportation.

Figure A3. The relevance of different drivetrain architectures for passenger cars in transport sec-
tor models.

The final characteristic of the models, which is examined with respect to the sectoral
level of detail, are the fuels. As with the drivetrains, not all fuels are used for all of
the modes.

Gasoline and electricity are considered in all of the models, as they all include ICEV
and BEV drivetrain technologies, as described above. Moreover, the number of models that
take hydrogen into account as a possible energy carrier for the transport sector is related to
the number of models that consider FCEV drivetrain technology. CNG is another alternative
energy carrier that is included in most of the investigated transport sector models. Biofuels,
and especially synthetic fuels, are not explicitly noted in many publications. However,
it could be that the models implicitly switch from conventional gasoline and diesel to
synthetic variants without mention.

The evaluations of the number of fuels considered per model indicate that six or
more of the selected fuels were included in the models. Only five models consider fewer
fuels. Yabe et al. [54] and Shepherd et al. [77] disregard all fuels, except for gasoline
and electricity. Palencia et al. [81] investigate gasoline, electricity and hydrogen in their
analysis. Pfaffenbichler et al. [72] disregard hydrogen, but instead include diesel as a
second conventional fuel alongside gasoline.

The analysis in this subsection has revealed the sectoral coverage of the investigated
transport sector models. For the most part, the models cover all of the most important
means of transport with respect to energy demand and greenhouse gas emissions. Fur-
thermore, they include the most promising drivetrain architectures. This is also the case
for energy carriers, whereby synthetic fuels, which could be a helpful pathway of decar-
bonization for larger means of transport, are underrepresented. The inclusion of all relevant
modes is a precondition to correctly modeling the effects of modal shifts. The same applies
to the drivetrain technologies and the fuels used with respect to the trend in the fuel shift.
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Figure A4. Fuels in transport sector models.

Appendix C. Shared Mobility Concepts

In the following a short distinction between different shared mobility concepts is made
based on the work of Machado et al. [27].

They classify five major concepts of shared mobility [27], namely:

• Car-sharing
• Personal vehicle sharing
• Ridesharing
• On-demand ride services
• Bike-sharing

Car-sharing is classified as a transportation mode in which a single vehicle is used
by several people [93]. It can be organized in a station-based or free-floating manner. In a
station-based system, vehicles must be returned to defined stations. In contrast, in a free
floating system, they can be returned to any location within a specified zone.

Personal vehicle-sharing is similar to car-sharing, the main difference being the type
of vehicle owner. In the case of personal vehicle-sharing, the vehicle is owned by one or
more persons, whereas in the case of car-sharing vehicles are owned commercially.

Another concept of shared mobility is ridesharing, wherein similar trips according to
paths and departure times from multiple travelers are combined using the same vehicle.
Such carpools can be regular or spontaneous. A classic example is the carpooling of
colleagues between home and work. New technological possibilities have made it easier to
also pool trips among people who are strangers to each other.

On-demand ride services are characterized by their door-to-door nature. Vehicle
owners are paid to deliver rides to other people who book and pay for their trips via
smartphones. This service is personalized and highly flexible [94].

Next to the outlined concepts that refer to cars as shared vehicles, bike-sharing is a
further shared mobility option that is comparable to car-sharing.

Appendix D. Levels of Vehicle Automation

According to the SAE [95], the degree of vehicle automation is classified into six levels
(0–5), ranging from no automation (level 0) to full automation (level 5). The classification
is based on the distribution of tasks between the driver and the vehicle. As the entire
dynamic driving task is performed by the system from level 3 upwards, a key distinction
between the levels is made at this point. Aside from the task distribution, it is important to
consider in which driving modes the system is capable of executing its functions. Only full
automation (level 5) is able to do so for all driving modes. When people refer to self-driving
or autonomous vehicles, they usually mean those at level 5.

Oftentimes, the connectivity of vehicles is in conjunction with the automation of the
driving task. On the one hand, vehicles themselves can be networked and exchange infor-
mation regarding parameters such as velocity or information on prevailing traffic conditions
(vehicle-to-vehicle, V2V). On the other hand, vehicles can be connected to infrastructural
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elements such as traffic lights (vehicle-to-infrastructure, V2I). Further connection to other
elements such as pedestrians and networks is also conceivable (vehicle-to-x, V2X) [96].
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