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Abstract: Many small and midsized cities around the world are expected to experience rapid
shrinking and aging of their populations in the near future. In Japan, these dramatic demographic
shifts have already begun in all but the largest cities, creating an urgent need to redesign public
transportation systems to accommodate the transit needs of smaller, older populations. Here we focus
on the specific case of Takamatsu, a medium-sized city with a population of 420,000 that is currently
redesigning its transit system to better serve an aging city with a declining working-age population.
We use the agent-based transportation simulation model MATSim to predict the ramifications of
Takamatsu’s transit system reforms on transportation behavior in the year 2050. Our analysis reveals
how the effects of Takamatsu’s transit reforms vary geographically and temporally, with societal
implications—particularly for the mobility of elderly residents—that we discuss.

Keywords: public transport; aging society; depopulation; agent-based simulation; land use and
transport integration; transportation planning; transportation policy; urban planning

1. Introduction

The shrinking and aging of the populations of small and medium-sized cities is
a phenomenon underway in many developed countries today [1,2], and predicted for
developing countries over the next 30 to 50 years [3]. Among the various public policy
issues posed by these rapid demographic shifts, one particularly urgent challenge is to
reform and redesign existing public transportation networks to serve smaller, older societies.
This task has been complicated in practice by the difficulty of predicting how transit system
reforms will affect future transportation behavior. In this paper, we present a method for
predicting the future performance of public transit systems, demonstrating the effectiveness
of our method by applying it to the specific real-world example of transportation reform in
Takamatsu, Japan.

The demographic trends mentioned above are exemplified in particular by many
small and mid-sized cities in Japan, where rapidly declining birthrates and rapidly ag-
ing populations are significantly revising both the supply and demand sides of public
transportation. On the demand side, cities with extensive motorization-driven sprawl see
geographically thinning populations with growing cohorts of elderly citizens no longer
able to drive—and thus face the challenge of providing public transportation services
to meet increasing demand with decreasing spatial density. On the supply side, Japan’s
shrinking population of workers makes it more and more difficult to recruit drivers for
labor-intensive public transportation services, where wages remain low due to the diffi-
culty of providing value-added services to compete with automobiles. These changes have
created an urgent need to reform and modernize Japan’s transit systems.

A basic tenet of Japanese transportation policy is that public transportation services
should be provided by an independently operating private sector. The government does
provide subsidies—as a form of social welfare to ensure transportation is available to

Future Transp. 2021, 1, 486–504. https://doi.org/10.3390/futuretransp1030026 https://www.mdpi.com/journal/futuretransp

https://www.mdpi.com/journal/futuretransp
https://www.mdpi.com
https://orcid.org/0000-0003-1774-4308
https://doi.org/10.3390/futuretransp1030026
https://doi.org/10.3390/futuretransp1030026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/futuretransp1030026
https://www.mdpi.com/journal/futuretransp
https://www.mdpi.com/article/10.3390/futuretransp1030026?type=check_update&version=2


Future Transp. 2021, 1 487

citizens without access to private vehicles—but subsidy amounts are limited in practice by
persistent criticism of the injection of public funds into the private sector.

Thus, Japan’s public transit systems must be reformed to achieve sustainability for an
aging and declining population. Many municipalities have begun to address this challenge
by formulating master plans, covering both transportation and land use, in accordance with
national policy. These plans aim to maintain urban amenities amid shrinking populations
by compactifying residential areas to increase population densities and interconnecting
residential hubs via public transportation to improve access to key urban destinations.
The objective of these initiatives is to preserve the quality of urban life despite declining
populations, and public transportation reforms are central to achieving this goal.

As a specific example illustrating all of these general trends, this study focuses on one
particular medium-sized Japanese city: the city of Takamatsu in Kagawa Prefecture, which
in 2010 had a residential population of 420,000 and a working population of 230,000. In
2015, the Takamatsu City Office formulated a public transit master plan with two main
initiatives: building new stations—to be developed as transportation nodes—on an existing
rail line and reorganizing the network of bus routes into a trunk-feeder network serving
the transportation nodes. The existing bus route network consists of long-distance lines
running radially from the city center to the suburbs, with many sections running parallel
to rail lines. The redesigned network aims to provide services better matched to demand,
which varies by geographical sector (city center, near suburbs, or outer suburbs), and to
extend a certain level of service to areas not currently accessible by public transit.

However, the quantitative impact of such reforms on the usability of public trans-
portation is difficult to evaluate. In particular, the creation of new transit routes—and the
elimination of old ones—affects different subregions in different ways, and the nature of
these geographical variations must be understood before one can assess whether or not
transit reforms have achieved their intended goals. One must also ensure that transporta-
tion policy remains consistent with land-use planning. To evaluate the usability of public
transportation quantitatively; however, it is necessary to assess the public transportation
routes and the set of the station and stop locations, frequency of service, and timetable.
In addition, to evaluate the trunk feeder system of the public transport, it is necessary to
consider the connection of the routes.

In this study, we apply MATSim (Multi-Agent Transport Simulation) [4], an agent-
based traffic simulation model, to evaluate various measures of urban traffic, taking into
account the factors discussed above. More specifically, we prepare MATSim models
incorporating the spatial layouts and operating schedules of Takamatsu’s transit networks—
before and after redesign—and use these models to simulate transportation choices made by
Takamatsu residents. We analyze simulation results to characterize geographical variations
in public transit availability—and how they impact demand for public transit services—
and apply this analysis to anticipate how transportation demand may evolve through 2050,
touching on transit-policy issues of relevance for future aging societies.

Needless to say, the target of this study, a city in Japan, exhibits several specialized
attributes reflecting conditions unique to Japan. (For example, in comparison to Europe,
Japan has less stringent land-use restrictions and smaller public transit subsidies.) Nonethe-
less, we expect the findings of this study—with some revising of assumptions—will be of
broad utility as a point of reference, simply because the challenge of public transit reform
involves several common features. In particular, our methods are of direct relevance for
analyzing transit policy in Asian cities seeking to address motorization-driven sprawl with
limited transportation subsidies.

The remainder of this paper is organized as follows. Section 2 reviews relevant previ-
ous work. Section 3 discusses the subject of our analysis, input data sources, and scenarios
for future projections. Section 4 describes our model and our method for calibrating it.
Section 5 presents the results of our analysis, and Section 6 summarizes our conclusions
and their ramifications for the design of sustainable public transit policies in aging societies.
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2. Literature Review

The reform of public transit systems has been the subject of many studies from various
perspectives. A significant portion of these studies approach the design and scheduling of
public transportation networks mathematically (as reviewed in [5]). However, the wide
range of operating modes, legal systems, demand conditions, and policy requirements en-
countered in public transit systems requires that network-design problems be customized
to address individual conditions in specific local contexts. For this reason, it is difficult to
create general-purpose design tools for public transportation networks. In Japan, math-
ematical network-design techniques are rarely used; instead, experts and stakeholders
design networks empirically, taking into account the specific constraints relevant for the
particular situation at hand.

Redesigning transportation networks changes the usability of public transit systems
and affects demand for public transportation [6]. Needless to say, demand for public
transport does not depend solely on the quality of public transportation services, but is
also greatly affected by the availability of automobiles and other factors. On the other hand,
in highly automobile-dependent societies the social exclusion of people who cannot use
automobiles becomes problematic, necessitating the provision of public transit services as a
matter of policy [7]. In addition to young people commuting to school [8,9], policy measures
are also needed to address the mobility of the elderly [10]. These studies have revealed the
need to improve and promote public transportation and to plan the location of destination
facilities for these populations. In developed countries, in particular, the growing number
of older drivers has made road safety and mobility for the elderly an increasingly urgent
issue [11–15]. In addition, some researchers have noted that the dependence of the elderly
on cars can reduce their physical activity [16,17] and affect their health [18–20]. In turn,
the impact of mobility on quality of life for older citizens has also been examined [21–23].
These studies suggest that the need for public transportation will become more acute as
societies age.

On a separate note, the privatization of public transport has been touted as a means
of improving operational efficiency, increasing user convenience, and reducing public
subsidies—but studies have also demonstrated that privatization does not always benefit
users [5,24]. In regulated transport markets, transport operators generally receive subsidies
and permission to wield monopoly powers, in return for which they are expected to cap
fares and operate unprofitable routes [5]. On the other hand, in 2002, the Japanese govern-
ment amended its Road Transport Act to relax entry regulations, allowing new operators
to enter profitable routes and existing operators to withdraw from unprofitable routes; the
new policy approach was quickly observed to have unanticipated consequences, including
service reductions in areas—typically small- and medium-sized cities in remote areas of
Japan—where operators were permitted to eliminate transit routes. (Similar effects have
also been observed to follow deregulation in the United Kingdom [25].) Japan responded
to this situation in 2020 by declaring that negotiations among multiple transportation
operators were exempt from the Antimonopoly Law, making it possible for operators to
discuss route restructuring for public transportation networks at public transportation
advisory board meetings in local governments.

The upshot of these observations is that the behavior of transit operators cannot
be explained by the simple economics of profit motives alone; one must also consider
the dense thicket of legal conditions and political demands that constrain the provision
of transit services. For this reason, the plethora of mathematically minded strategies
that researchers have proposed for setting up networks and schedules—which include
mathematical optimization [26], heuristic approaches [27], and genetic approaches [28,29]—
have been almost entirely ignored by Japanese practitioners, who choose instead to define
transit routes via empirical methods capable of addressing situation-specific problems.

Some studies have used service schedule timetables—as prepared by transit operators
themselves for use by customers—as sources of input data for transit system analysis. This
approach has been facilitated in recent years by the many cities that have begun to offer
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timetable data in digitized form, with GTFS (general transit feed specification) emerging as
a convenient standard format. One study employed GTFS data for Cincinnati to calculate
travel times to shopping destinations, using the results to estimate the spatial distribution
of food deserts based on the times of day at which they were reachable [30]. Another study
in Helsinki used GTFS to obtain a Pareto set of transportation routes considering travel
time, the number of transfers, and waiting time [31].

Also relevant to our work is the paradigm of Transit Oriented Development (TOD), a model
of urban structure designed to take maximal advantage of public transit systems [32–35]. Since
the efficiency of public transportation in a given region depends on the spatial distribution
of users throughout the region, increasing the density of activity centers in the vicinity of
transit stations can increase the use of public transportation and decrease dependence on
automobiles. Transportation researchers and practitioners have noted the advantages of
TOD ever since Calthorpe [32] proposed the concept in the late 1980s; for example, the
recent example of Japanese land-use planning discussed above reflects the concept of TOD
as a background.

The existing public transportation network in Takamatsu, our focus in this study,
consists of long bus and rail lines emanating radially outward from the city center; these
do not extend to population clusters in suburban areas, and it is difficult to adapt the level
of service they provide to accommodate regional variations in demand. To address this
situation, in 2015 Takamatsu’s municipal government adopted a Regional Public Transport
Network Formation Plan involving several initiatives: building two new stations on the
existing Kotoden–Kotohira railroad line, developing these stations into local transit hubs,
and reconfiguring the city’s public transit network as a trunk feeder network linking
railroads and buses. In this way, the project seeks to establish a newly reconstituted transit
system closely fitted to the characteristic demand profiles observed in the city center, in
suburban regions, and further afield.

However, the redesign of Takamatsu’s transit network will naturally bring about
changes in usability, and these changes will vary from place to place. In the current plan,
the reformation of the transportation network remains a blueprint, and the impact on the
usability has not been assessed. It is essential to understand the effects of the reformation
to implement the plan and build consensus, and it is also necessary to consider measures
to compensate for any decrease in usability caused by the reformation.

This study evaluates the impact and ramifications of the transit reform proposal
currently under consideration in Takamatsu by analyzing the effects of the restructuring as
felt in 2010 and in 2050 by a smaller, older population. We use MATSim to conduct agent-
based microsimulations capable of analyzing user responses to geographical and temporal
changes in usability; this capability is important, because network shapes and schedules
have a dominant impact on usability, as previous studies have shown. To analyze the
redesign of transit networks, we conduct sensitivity analyses for two possible scheduling
scenarios (necessary as Takamatsu’s plans do not yet specify a timeline for reforms). We
also consider two distinct land-use scenarios: one in which suburbanization proceeds
without impediment, and one in which land-use regulations are imposed to compactify
the population distribution. A feature of our study is the detailed spatio-temporal insight
it lends into the effects of transit reforms and land-use policies in aging Japanese cities—a
valuable source of input for the design and evaluation of sustainable land-use and public
transit policies in aging societies.

3. Target Region, Input Data, Future Scenarios

Figure 1 shows the location of the city of Takamatsu in Kagawa Prefecture, the focus
of this study. The municipal government expects that the 2010 population of 420,000 will
decrease to 370,000 by 2050, with the share of the population aged 65 and over growing
from 23.2% to 37.1% over that period—making Takamatsu a vivid example of a shrinking,
aging city.
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Figure 1. The focus of this study: the city of Takamatsu in Japan’s Kagawa prefecture.

To characterize the spatial distribution of the current population, we use mesh-based
population statistics based on the 2010 census. This dataset tabulates gender- and age-
resolved population data on a geographical mesh with mesh elements of approximate
size 500 m times 500 m. To project future population distributions for 2050, we use SILO
(Simple Integrated Land Use Orchestrator) [36,37], a micro land-use model that considers
changes in households using the cohort-component method. We generate future population
distributions under two distinct scenarios: the Business as Usual (BAU) scenario, in which
trends toward suburbanization continue unchecked into the future, and the Draconic
scenario, which imposes strict land-use regulations to achieve population compactness.

Figure 2 shows population distributions for Takamatsu City at present (left) and in
the future under the BAU (center) and Draconic (right) scenarios. In the BAU scenario,
the population in the city center decreases as suburbanization proceeds; in contrast, the
Draconic scenario restricts the habitable area to the city center and two suburban cores.
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(Business As Usual) scenario; (c) in 2050 under the Draconic scenario.

SILO models household location choices and estimates that, in the Draconic scenario,
nighttime population densities in 2050 will be higher in the suburbs than in the city center;
this reflects the concentration of residential locations in the suburbs, where real-estate
prices are lower than in the city center due to broad swaths of regulated land. This
example indicates that simple regulations on suburban development can produce highly
nonuniform population distributions. The 2050 population of Takamatsu is estimated to be
330,000 in the BAU scenario and 310,000 in the Draconic scenario, with the difference being
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due to land-use restrictions and the corresponding dispersion of residential locations; note
that both scenarios predict populations much smaller than the municipal government’s
estimate, mentioned above.

The 2012 Takamatsu Metropolitan Area Comprehensive Urban Transportation Sys-
tem Survey (denoted as the “Takamatsu Person-Trip Survey” or TPTS) reports a traffic
volume of some 1.1 million trips per day to and from Takamatsu City, with 63.6% of trips
made by private vehicles, 27.5% by walking or biking, and 6.7% by public transportation.
Segregating transit use rates by age group, the survey finds that children (15 and under)
and the elderly (65 and over) respectively use public transportation for 6.5% and 3.9% of
their journeys, rates lower than the overall average; nonetheless, public transportation is
recognized as a necessary option for those without access to private vehicles.

In this study, we approximate Takamatsu’s existing public transit network and its
operating schedules based on data from transport operators; this data was provided in the
form of a GTFS dataset by one operator, and as digitized timetables by all other operators.
In what follows we refer to this existing network as N0. To determine the bus route
network of the redesigned future transit system we referred to materials prepared in 2016
for the advisory board of the Takamatsu City Regional Public Transportation Reformation
Implementation Plan.

In this study, we assume that the redesign discontinues some existing bus routes,
reducing the total length of bus routes from 919 km to 877 km. To ensure that the total
volume of service provided by the redesigned network (the total travel distance in vehicle-km)
remained unchanged from that of N0, we compensated for the reduction in travel distance
by increasing the frequency of routes. For this we considered two scenarios: case N1, in
which only new bus routes in the redesigned network are assigned higher frequencies than
routes in N0, and case N2, in which frequencies are increased for existing routes with high
geographical density of demand. The total vehicle-distances traveled in our networks are
31,100 km/day for N0 and around 31,400 km/day for N1 and N2.

The geographical layouts of the existing and future public transportation networks,
with daily link frequencies, are shown in Figure 3. Please note that N0 includes many
direct routes from city center to suburbs, while N1 and N2 have more feeder routes in the
east-west direction. Network N0 includes 919 km and 1584 links of public transport routes,
while N1 and N2 include 877 km and 1492 links of public transport routes.
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accessed on 29 August 2021). To account for both transit traffic and traffic flows into and
out of Takamatsu, our network must encompass a broad spectrum of roads, from major
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highways traversing Kagawa Prefecture to narrow alleyways in downtown Takamatsu. As
a result, the network used for our analysis contains 5337 km of roads and 18,540 links.

4. Models and Calibration

For each agent, MATSim requires a daily transportation plan consisting of an origin, a
destination, and start and end times for activities at the destination. The agent chooses the
departure time, the means of transportation, and the route to travel to obtain a high score
for a given activity. The basic procedure of our demand estimation follows the orthodox
four-step model [38], but we introduce some assumptions to simplify the analysis. At the
same time, we introduce a sampling technique to convert the aggregated demand into
MATSim inputs. In this section, we describe our method for choosing agent destinations
for transportation plans and our technique for calibrating MATSim to match transportation
assignments to the current situation.

4.1. Generating Method of Transportation Plan

In this study, we use a gravity-type model to generate origins and destinations for
agents. We assume that the volume of traffic increases with increasing population at the
origin and number of workers at destination and with decreasing distances between origins
and destinations (ODs). The traffic volume is given by

Qijk = αk0Nαk1
ik Wαk2

j exp
(
θkDij

)
(1)

where Qijk is the traffic volume of attribute k between origin i and destination j, Nik is
the population of attribute k at residence i, Wj is the number of workers at destination
j, Dij is the road network distance between ij, and αk0, αk1, αk2, θk are parameters (θk < 0).
We determine parameter values separately for each agent attribute by maximizing a log-
likelihood function:

LL = −∑
i,j

(
Qijk −Qijk

)2
(2)

Here Qijk is the OD traffic observed in the base year for the attribute in question. The
parameter values obtained by this procedure are listed in Table 1.

Table 1. Results of parameter estimation for the gravity model.

Parameter t-Value

α0 α1 α2 θ α0 α1 α2 θ

Male

5–9 2.07 × 10−4 0.870 1.020 −0.342 5.55 33.53 45.27 −44.66

10–14 5.20 × 10−6 0.738 1.465 −0.267 8.02 34.12 83.05 −51.75

15–19 5.28 × 10−4 0.394 1.092 −0.251 5.04 20.97 48.94 −39.48

20–24 4.74 × 10−3 0.614 0.586 −0.117 - 22.67 38.83 −29.44

25–29 1.65 × 10−3 0.408 0.906 −0.204 7.94 21.71 52.18 −30.62

30–34 5.01 × 10−3 0.489 0.727 −0.170 6.55 27.37 40.36 −35.89

35–39 1.53 × 10−2 0.494 0.657 −0.200 - 32.32 - −40.42

40–44 2.01 × 10−1 0.401 0.399 −0.164 13.49 21.88 29.93 −31.77

45–49 3.48 × 10−2 0.431 0.544 −0.136 4.45 22.20 24.82 −37.78

50–54 2.01 × 10−2 0.670 0.471 −0.156 9.17 32.29 31.73 −39.31

55–59 3.51 × 10−2 0.839 0.331 −0.195 17.64 33.98 20.93 −33.47

60–64 1.26 × 10−3 0.921 0.683 −0.199 - - - −49.51

65–69 8.07 × 10−4 1.396 0.486 −0.256 - 69.17 36.18 −48.67

70–74 1.39 × 10−4 0.602 1.156 −0.236 11.96 22.35 68.01 −47.28

Over 75 2.37 × 10−2 0.827 0.423 −0.247 - - - −47.04
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Table 1. Cont.

Parameter t-Value

α0 α1 α2 θ α0 α1 α2 θ

Female

5–9 1.43 × 10−2 0.569 0.787 −0.432 3.38 27.85 22.92 −38.40

10–14 1.15 × 10−2 1.383 0.276 −0.369 3.09 33.52 9.46 −35.23

15–19 6.22 × 10−2 0.406 0.521 −0.182 14.81 20.27 41.09 −33.54

20–24 8.53 × 10−4 0.631 0.857 −0.233 10.19 22.89 47.39 −30.25

25–29 2.02 × 10−3 0.649 0.772 −0.201 - 32.50 89.74 −40.00

30–34 1.72 × 10−3 0.727 0.850 −0.344 5.47 35.58 39.89 −45.09

35–39 3.90 × 10−2 0.636 0.571 −0.295 16.49 32.18 40.07 −38.38

40–44 2.17 × 10−1 0.542 0.441 −0.294 11.08 28.75 30.14 −35.77

45–49 6.79 × 10−4 1.131 0.640 −0.234 5.40 39.67 31.29 −42.70

50–54 3.43 × 10−3 0.786 0.691 −0.247 15.14 37.02 47.93 −45.81

55–59 3.27 × 10−4 0.882 0.869 −0.216 - 40.10 70.45 −51.46

60–64 5.20 × 10−3 0.908 0.586 −0.237 9.56 40.22 37.65 −49.41

65–69 1.51 × 10−4 0.435 1.259 −0.263 15.23 15.63 69.60 −40.54

70–74 1.06 × 10−2 0.701 0.684 −0.390 5.54 24.30 32.39 −34.59

Over 75 8.98 × 10−3 1.218 0.250 −0.358 2.74 27.42 12.74 −42.96

The estimated parameter values for all attributes satisfy the sign condition. Most
parameters are statistically significant, but the t-values of some parameters are not properly
estimated. Our parameter-estimation methods leave room for improvement—for example,
age group categories could be aggregated—but this is a topic for future work.

We obtain average parameter values for all ODs by minimizing Equation (2). To
ensure that OD traffic estimates agree with observed data, we introduce an adjustment
term δijk chosen to satisfy the following equation for each OD and each attribute:

ˆQijk = α∗k0N
α∗k1
ik W

α∗k2
j exp

(
θ∗k (Dij + δijk)

)
(3)

Here α0*, α1*, α2*, θ* are the parameter estimates. Solving Equation (3) for δijk yields

δijk =
1
θ∗

ln

 Qijk

α∗0 N
α∗1
ik Wα∗2

j

− Dij (4)

This shows that, as long as δ* is non-zero and the logarithm of the quantity in paren-
theses can be computed, there is a uniquely defined value to which δijk may be tuned to
ensure exact agreement between estimates and observations. However, OD traffic volumes
are given only for zones in the TPTS. In this study, the zones are given by mesh, so the ad-
justment factor is applied to the mesh zone whose center of gravity is within the person-trip
zone. Furthermore, we assume the volume of trip generation is given as described below,
and the destination choice probability Pk(j|i) is given by the following equation using the
OD traffic volume ˆQijk estimated using the above parameters and the adjustment factor.

Pk(j|i) =
ˆQijk

∑j
ˆQijk

(5)

This formulation is an attempt to estimate the OD demand by mesh zone. When the
population and employment numbers of the mesh zone are applied to Equation (3), the
conservation law of travel demand by PTPS zone is not necessarily satisfied. Therefore, we
approximate the attractiveness of the destination zone by the OD traffic volume estimated
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in Equation (3), and estimate the destination share in Equation (5). Then, by multiplying the
share of destinations and trip generation by the agent, we estimate the travel demand for
OD. We assume that all agents make at least one trip per day from their home and return
home from their destination. We determine each agent’s times of departure from home
and destination by random sampling from PTPS data for each segment of the agent. We
also assume that some agents of working age (15 to 64) make business trips; we determine
the (present-day) volume of business traffic as the difference between the road-traffic
volume estimated from the 2010 Road Traffic Census and the traffic volume to/from home
estimated by our model. To estimate the future volume of business traffic, we assume
that the ratio of business traffic to home traffic for working-age agents does not change
from 2010 to 2050; then the future business-traffic volume is obtained by multiplying
the present-day business-traffic volume by the ratio of the 2050 and 2010 working-age
populations. OD pairs for business traffic are sampled from the OD pairs to/from home
calculated above. We set departure times for business traffic by sampling home-related
trips for the working-age population.

To exclude walking and bicycle journeys from our analysis, we first create a mode-
choice logit model [39] with three transportation-mode options: car, public transportation,
and walking/bicycling. In this model, the probability Prijk(m) that an agent of attribute k
chooses transportation mode m to travel from origin i to destination j is

Prijk(m) =
exp

(
Vijkm

)
∑m′={car,pt,walk} exp

(
Vijkm′

) (6)

where Vijkm is the utility of mode m for the i→ j journey, defined by

Vijkm = βkm + βk1Tijm (7)

where Tijm is the time required for the i→ j journey via mode m and βkm, βk1 are parameters.
Denoting by Rijk(m) the observed value of the share of i→ j journeys completed via mode
m, the parameters are calculated to maximize a log-likelihood function of the form

LL(βk) = ∑
ij,m

Rijk(m) ln Prijk(m|βk) (8)

with βk =
{

βk1, βk,pt, βk,walk

}
. Having determined values for βk, we introduce an adjust-

ment term τijkm for the utility of each mode and choose its value to maximize the modified
likelihood function

LL
(

τijk

)
= ∑

m
Rijk(m)

(
Vijkm + τijkm

)
− ln ∑

m
exp

(
Vijkm + τijikm

)
, (9)

after which the mode-choice probabilities are given by

Prijk(m) =
exp

(
Vijkm + τijkm

)
∑m′={car,pt,walk} exp

(
Vijkm′ + τijkm′

) (10)

Table 2 lists values of βk obtained for each gender and age group.
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Table 2. Results of parameter estimation for the transportation mode choice model.

Parameter t-Value

β1 βpt βwalk β1 βpt βwalk

Male

5–9 −7.61 × 10−3 −3.72 1.11 −97.5 −28.5 163.5

10–14 −9.21 × 10−3 −4.14 2.48 −97.3 −12.1 260.8

15–19 −1.06 × 10−2 0.30 2.74 −77.8 12.5 130.5

20–24 −1.73 × 10−2 −2.44 0.74 −60.5 −31.3 34.6

25–29 −1.21 × 10−2 −2.79 0.11 −62.1 −37.5 8.4

30–34 −2.30 × 10−2 −1.95 0.78 −84.4 −40.5 50.9

35–39 −2.32 × 10−2 −2.90 0.33 −90.2 −37.6 25.7

40–44 −1.56 × 10−2 −2.65 −0.03 −78.9 −51.6 −2.5

45–49 −2.21 × 10−2 −2.40 0.45 −83.0 −43.2 29.0

50–54 −1.63 × 10−2 −2.41 0.21 −67.0 −48.3 13.6

55–59 −1.39 × 10−2 −3.24 −0.08 −75.8 −42.4 −6.5

60–64 −1.43 × 10−2 −4.07 0.07 −131.6 −35.7 8.8

65–69 −7.67 × 10−3 −4.56 −0.31 −86.8 −33.4 −42.3

70–74 −1.10 × 10−2 −4.50 0.11 −120.1 −28.7 15.4

Over 75 −9.77 × 10−3 −4.56 0.14 −135.1 −28.9 24.1

Female

5–9 −6.95 × 10−3 −5.80 1.01 −85.8 −5.9 145.4

10–14 −4.02 × 10−3 −3.03 2.07 −48.3 −34.8 262.6

15–19 −1.17 × 10−2 0.63 2.51 −68.8 27.0 101.2

20–24 −1.43 × 10−2 −1.69 0.58 −70.6 −49.4 37.0

25–29 −2.92 × 10−2 −1.80 0.45 −54.8 −42.3 20.8

30–34 −2.86 × 10−2 −3.80 0.55 −117.6 −21.8 51.8

35–39 −2.34 × 10−2 −3.16 0.20 −119.0 −49.0 20.6

40–44 −2.95 × 10−2 −3.68 0.46 −149.8 −29.3 52.7

45–49 −2.99 × 10−2 −2.35 0.51 −106.5 −58.2 41.2

50–54 −2.69 × 10−2 −3.63 0.52 −140.8 −29.2 50.8

55–59 −1.83 × 10−2 −3.44 0.38 −127.5 −41.0 38.8

60–64 −1.63 × 10−2 −4.36 0.30 −161.2 −28.3 42.3

65–69 −1.30 × 10−2 −4.13 0.48 −147.9 −30.6 69.0

70–74 −9.73 × 10−3 −4.68 0.58 −130.6 −18.2 92.8

Over 75 −1.11 × 10−2 −3.88 0.87 −139.9 −29.4 134.4

The utility function above is quite simple, using only travel time as an explanatory
variable. Usually, mode choice models use the cost of travel and mode-specific factors
such as ridership and congestion. Some studies also consider the impact of socioeconomic
factors such as income, household size, and demographics on mode choice. Our study
focuses on changes in travel time due to the redesign of public transportation networks
and does not consider changes in transportation costs or fares. Furthermore, it does not
consider socioeconomic changes other than demographics and residential location. Rather,
we focus on the effects of population decline and aging. Therefore, we estimated a mode
choice model for each age and gender segment. This segmentation allows us to reflect
demographic changes in the estimation of future mode choice.
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Using these models, we estimate OD traffic volumes—by modes other than walking—
for the current and future populations, then create transportation plans for MATSim. The
total number of trips per day was estimated to be 1,185,000 in 2010, 876,000 in 2050 under
BAU, and 777,000 in 2050 under Draconic. The projected 2050 populations of Takamatsu
are 330,000 under BAU and 310,000 under Draconic. Fewer trips per capita are predicted
for Draconic than for BAU, reflecting the greater prevalence of walking and biking in the
Draconic scenario.

4.2. Calibration of MATSim

In this study, we also use MATSim to estimate transportation choices made by agents.
A parameter of the car use in MATSim was adjusted to reproduce the observed share of car
and public transportation in 2012 to and from Takamatsu City. The number of agents used
in the simulation was 10% of the population, and the scaling factor for traffic capacity was
adjusted to reproduce the average daily road speed in 2010.

After this calibration, the model estimate for the ratio of car trips to public transit trips
is 0.91:0.09, to be compared to the observed ratio of 0.90:0.10; the model estimate for the
12 h average travel speed in Takamatsu is 30.5 km/h, to be compared to the observed value
of 31.3 km/h reported by the Road Traffic Census. Thus, our calibration technique enables
the model to represent average traffic conditions with reasonable accuracy.

5. Results

We used MATSim to predict the transportation-mode ratios and average travel times,
distances, and speeds expected in 2050 under the various population evolution and transit
reform scenarios discussed in Section 3, with results tabulated in Table 3.

Table 3. Simulation results.

Population Scenarios 2010 2050 2050_Draconic

Network Scenarios N0 N1 N2 N0 N1 N2 N0 N1 N2

C
ar

Share 0.907 0.889 0.891 0.928 0.914 0.914 0.922 0.904 0.904

Average travel time (second) 998 989 1.008 825 834 833 878 877 868

Average travel length (meter) 11.164 11.295 11.280 10.778 10.884 10.881 10.425 10.519 10.522

Average speed (km/h) 40.3 41.1 40.3 47.0 47.0 47.0 42.7 43.2 43.7

Pu
bl

ic
tr

an
sp

or
t

Share 0.093 0.111 0.109 0.072 0.086 0.086 0.078 0.096 0.096

Average travel time (second) 2.310 2.155 2.159 2.208 2.095 2.099 2.261 2.161 2.202

Average travel length (meter) 5.158 4.918 4.921 4.762 4.669 4.645 4.789 4.749 4.844

Average speed (km/h) 8.0 8.2 8.2 7.8 8.0 8.0 7.6 7.9 7.9

We first note that the redesign of public transportation networks under the 2010
population increases the share of trips using public transportation from its present value
of 9% to 11%, while reducing the average time and distance of public transit journeys by
7% and 5%, respectively. The average travel speeds for N1 and N2 are 2% faster than that
of N0, although we note that these speeds are calculated based on total travel times and
distances, including both transit and walking trips. On the other hand, the average distance
traveled by private vehicles increases by about 1% in both scenarios, with average travel
time decreasing slightly in N1 and increasing slightly in N2. As a result, the N1 scenario
yields a slight improvement on average speed, while the average speed in N2 is nearly
unchanged from its current (N0) value.

Next, under the BAU scenario, the share of trips using public transport in 2050 is
predicted to decrease relative to 2010 values—to 7.2% for N0 and 8.6% for N1 and N2. This
decrease in public transport use has two causes: reduced access to public transportation
due to suburbanization and higher car-travel speeds made possible by the reduction in
road traffic accompanying population decline. Indeed, under BAU the average road-traffic
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speed is 47 km/h in 2050—an increase of 17% over 2010 values—while the average speed
of public transportation decreases by 3% over the 40-year interval. This finding may
reflect increased distances of access to and egresses from the public transport, as well as an
increase in transfers.

The Draconic scenario also predicts a decrease in public transit use from 2010 to 2050,
but the magnitude of the decline is smaller in this case than in the BAU scenario. This
reflects the relatively lower road-traffic speed predicted for Draconic as compared to BAU,
as well as the higher probability of choosing public transport due to the geographical
concentration of residential locations. However, the average speed of public transportation
is also lower for Draconic than for BAU, due to longer access, egress, and transit times;
thus, this scenario cannot be considered an implementation of TOD principles. In the
Draconic scenario, the share of journeys made by public transport decreases to 7.8% if the
public transportation network is left unchanged (the N0 case), but remains near 9.6% if the
network is redesigned (N1, N2 cases).

Figures 4 and 5, respectively, show the average travel time for public transit journeys
and the average speed of road transportation. Travel times for public transportation are
shorter in the redesigned networks (N1/N2, dashed curves) than in the existing network
(N0, solid curves). Waiting and access times are longer in the early morning due to the
lower route frequencies, but after 8 a.m., we see that travel times remain nearly unchanged
throughout the day. At most times of day, the shortest travel times occur in the N1 and N2
variants of the BAU case. In these scenarios, road speeds are relatively high, and journeys
that are time-consuming by public transportation are most often made by car—leaving
public transport to be used only for shorter trips.
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Figure 6 shows the spatial distribution of public transportation users—at their depar-
ture points—for the case of the N0 network. The overall number of users decreases from
2010 to 2050, but the characteristics of the spatial distribution—specifically, the presence of
large numbers of users in central areas, with fewer users in suburban areas—remainsunchanged.
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Figure 8 shows the difference in the number of transit passengers predicted with and 
without network redesign for the BAU and Draconic scenarios. Figure 8a,b show the dif-
ference in the number of passengers per day predicted by N1 and N2 of the network re-
design scenario and N0 of the baseline scenario for the BAU case. Here the blue line shows 
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(c) 2050 Draconic. The value plotted for each mesh square indicates the number of transit users whose departure point lies
in the square.

The quantity plotted in Figure 7 is the difference between the Draconic-predicted and
BAU-predicted numbers of public transit trips, assuming network scenarios N0 (left), N1
(center), and N2 (right). In these plots, red pixels indicate locations from which more public
transportation journeys are expected to originate under BAU than under Draconic; blue
pixels indicate locations from which more journeys are expected under Draconic. For all
network scenarios, we observe a proliferation of red pixels near the city center and of blue
pixels in suburban regions, indicating fewer transit journeys predicted to originate from
the city center—and more predicted to originate from suburbs—for Draconic compared to
BAU. However, the difference is relatively small for N0, and the decrease in the number
of trips from the city center appears larger in N1. In the Draconic scenario, the spatial
dispersion of residential locations results in low traffic volumes; population growth in
suburban areas then spurs an increase in public transportation trips from suburbs, with
fewer trips originating from the city center.
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Figure 8 shows the difference in the number of transit passengers predicted with
and without network redesign for the BAU and Draconic scenarios. Figure 8a,b show the
difference in the number of passengers per day predicted by N1 and N2 of the network
redesign scenario and N0 of the baseline scenario for the BAU case. Here the blue line
shows the links where the number of passengers is expected to be higher in N1 or N2 than
in N0, and the red line shows the links where the number of passengers is higher in N0.
Figure 8c,d show a similar plot for the Draconic scenario. The newly added links under
the redesigned network have a significant transport demand, but some peripheral links
have a decline of passengers due to the network redesign. No significant difference is seen
between the results for N1 and N2. We observe a significant increase in the number of users
of some suburban transit links in the Draconic scenario compared to the BAU scenario.
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Figure 9 illustrates differences between the numbers of public transit trips predicted
with and without network redesign. Figure 8a shows, for the BAU case, the difference
between the numbers of trips predicted in the N1 network-redesign scenario and in the N0
baseline scenario; here blue pixels indicate locations from which more trips are expected to
originate under N1 than under N0. Figure 8b similarly plots the difference between N2 and
N0 predictions under BAU. Figure 8c,d show similar plots for the Draconic scenario. We
see no prominent distinctions between results for N1 and N2, alhtough N2 seems slightly
more effective at increasing the number of public transit trips originating from the city
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center. In the Draconic plots we see a significant uptick in transit journeys originating from
the southwest population cluster under network-redesign scenarios.
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Table 4 shows how the average number of public transit users, the average distance
walked by public transit users, and the volume of vehicular CO2 emissions vary under
various network and population scenarios. For CO2 emissions we consider two scenarios:
(a) vehicle emission factors in 2050 remain unchanged from 2010 values, and (b) vehicle
emission factors in 2050 are halved compared to 2010 values [40].

Table 4. Dependence of various transportation statistics on population and network scenarios.

2010 2050 BAU 2050_Draconic

N0 N1 N2 N0 N1 N2 N0 N1 N2

Average transit ridership 13.2 14.8 14.6 7.0 8.1 8.0 6.5 7.8 7.9

Walking distance (km/person/day) 1.09 1.07 1.07 1.06 1.04 1.04 1.13 1.14 1.15

CO2 emission (2010, N0 = 100%)
100% 99.3% 99.7%

73.2% 72.9% 73.0% 60.9% 60.4% 60.4%

Vehicle tech. improvement 37.1% 37.0% 37.0% 30.9% 30.7% 30.6%

We first note that the average occupancy rate for public transport, which in 2010 takes
values of 13 or more, decreases by 2050 to just 7 (BAU) or 6.5 (Draconic) (in the N0 scenario).
Table 3 shows that the ratio of public transit journeys to automobile journeys is higher in
Draconic than in BAU. Average transit ridership is lower in the Draconic scenario because
of its smaller overall population and its greater frequency of walking journeys, which arises
from concentration of population in residential clusters.

The walking distance of public transport users is slightly higher in the Draconic
scenario. Compared to the BAU scenario, this walking distance reflects lower average
vehicle speeds due to the geographical concentration of residential locations, which results
in relatively more public transport trips with long walking distances.

In addition, taking 2010 CO2 emissions in the N0 scenario as a baseline (100%), CO2
emissions fall by 2050 to 73% in the BAU scenario and 60% in the Draconic scenario. (This
is for emissions scenario (a), i.e., no improvement in vehicle technology.) In addition
to the effects of population decline, the Draconic scenario predicts decreased emissions
due to lower demand for automobile travel, as travel distances become shorter due to
residential concentration and more frequent walking journeys. In emissions scenario (b), in
which vehicle emissions are cut in half thanks to innovative vehicle technologies such as
electrification, CO2 emissions decrease further to 37% in the BAU scenario and 31% in the



Future Transp. 2021, 1 501

Draconic scenario. In contrast, differences in public transit use rates for different network
scenarios are negligible.

6. Discussion and Conclusions

In this study, we focused on the midsized Japanese city of Takamatsu and its goal of
redesigning its transit system to better accommodate the needs of its declining and aging
population. To investigate how Takamatsu’s transit system reforms may impact the city’s
future, we used MATSim and a traffic-demand model to predict transportation trends for
the year 2050, considering multiple possible scenarios for land-use regulations and transit
system redesign.

Among the conclusions to emerge from the results of our analysis were the following
insights. (1) Population decline will reduce road congestion, increasing the level of service
(LOS) of car use and thus decreasing use of public transportation. (2) Redesigning public
transit networks has the effect of increasing the LOS of public transit in areas where it is already
in high demand. This, in turn, has the effect of increasing public transit use. (3) Spatially
compact population distributions can worsen road congestion and increase use of public
transportation. (4) Urban compactification and the redesign of public transit networks
can have synergistic effects that increase use of public transportation. (5) The average
occupancy of public transport vehicles in 2050 will be significantly lower than in 2010.
(6) Scenarios involving spatially compact population distributions may result in increased
walking distances for public transit users. (7) Redesigning public transit networks has
negligible consequences for CO2 emissions. However, urban compactification has a major
impact on reducing CO2 emissions.

These results suggest that, without effective transportation policy and careful urban
planning, the convenience of automobiles will increase—and use of public transportation
may decrease—even as far into the future as 2050, amid an aging population. In Japan,
the number of traffic accidents involving the elderly is on the rise, and many local govern-
ments are taking measures to encourage older citizens to surrender their drivers’ licenses.
However, in the absence of measures to guarantee mobility for elderly citizens via public
transportation and other means, only a tiny percentage of older citizens will agree to stop
driving. Thus, measures to encourage the surrender of driver’s licenses are not an effective
strategy for addressing the problem of traffic safety for the elderly. Automobile safety tech-
nology has made significant improvements, and technologies such as driver assistance and
automated driving are advancing day by day. However, ensuring higher safety levels will
require coordination with the infrastructure side—a challenge for which technology may
not even be widely available in 2050. Thus, urban planning measures—such as programs
to guarantee mobility for older citizens via public transportation, as well as policies to
produce compact, concentrated residential areas—will be of central importance.

We also note that the prevalence of lifestyle-related diseases tends to be higher in areas
with high automobile dependence. The mortality rate of diabetes in Kagawa Prefecture,
where Takamatsu is located, was 16.3 per 100,000 people in 2017, about 45% higher than
the national average of 11.2. As public transportation journeys decrease and automobile
journeys increase, walking distances will also decrease, possibly increasing health risks
for society. Interestingly, transit system reform decreases the distance walked by public
transportation users in the BAU scenario, but increases walking distances in the Draconic
scenario. This discrepancy is due to the combined effects of various factors, including
the decreased automobile traffic and increased frequency of transit journeys observed in
the Draconic scenario. This result demonstrates the importance of coordination between
transportation policy and land-use policy.

For CO2 reduction, innovations in vehicle technology are clearly essential, but our
analysis indicates that population decline and land-use inducement are also effective.
However, the Japanese government’s target of an 80% reduction by 2050 is not achievable
under the scenarios assumed in this study; additional measures will be required. Thus,
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urban structure guidance and transit system reform must be thought of as CO2 reduction
measures, although not ones offering significant impacts on their own.

In view of the above discussion, we can say that public transportation and land-
use policies combine to exert influence on various social issues, including traffic safety,
health, and the environment. This study demonstrated that traffic microsimulation via
agent-based models is an effective tool for studying countermeasures to address various
societal problems related to cities and transportation. A variety of demographic scenarios
predict declining and aging populations for many cities around the world, posing chal-
lenges that span a wide range of social, economic, and environmental domains. Land-use
policies and transportation policies affect regional issues in various ways, and the traffic-
microsimulation approach of this study can be used to evaluate and analyze these policies
from various perspectives.

This study did not attempt to coordinate land-use scenarios with the redesign of
public transportation networks. Scenarios such as Transit Oriented Development, which
encourages development around public transport nodes, may induce users to adopt public
transport more enthusiastically. On the other hand, the effectiveness of such location-
guidance policies has been problematic in many countries, including Japan. In this study,
location scenarios were provided exogenously; a land-use transportation model that con-
siders interactions between transportation demand and choice of location would be a good
candidate for a strategy to analyze location-guidance policies.

Since changes in land use are more long-term than changes in transportation de-
mand [41], it is essential to consider location-guidance measures with an eye toward the
timing of people’s residential choices to guide urban structures. For this purpose, land-use
microsimulations that account for the life stages of agents can be effective. In particular,
shrinking societies will see an increase in the number of vacant houses—thus bringing
negative externalities to surrounding houses, reducing the density of traffic demand, and
decreasing the viability of public transportation. Controlling the proliferation of such
vacant houses, and mitigating the decreasing density of demand for public transportation,
requires urban spatial strategies with a long-term perspective. Microsimulation can be an
effective tool in dealing with such problems—a topic we reserve for future work.
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