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Abstract: The transportation network design and frequency setting problem concerns the optimiza-
tion of transportation systems comprising fleets of vehicles serving a set amount of passengers
on a predetermined network (e.g., public transport systems). It has been a persistent focus of the
transportation planning community while, its NP-hard nature continues to present obstacles in
designing efficient, all-encompassing solutions. In this paper, we present a new approach based
on an alternating-objective genetic algorithm that aims to find Pareto optimality between user and
operator costs. Extensive computational experiments are performed on Mandl’s benchmark test and
prove that the results generated by our algorithm are 5–6% improved in comparison to previously
published results for Pareto optimality objectives both in regard to user and operator costs. At
the same time, the methods presented are computationally inexpensive and easily run on office
equipment, thus minimizing the need for expensive server infrastructure and costs. Additionally, we
identify a wide variance in the way that similar computational results are reported and, propose a
novel way of reporting benchmark results that facilitates comparisons between methods and enables
a taxonomy of heuristic approaches to be created. Thus, this paper aims to provide an efficient,
easily applicable method for finding Pareto optimality in transportation networks while highlight-
ing specific limitations of existing research both in regards to the methods used and the way they
are communicated.

Keywords: transportation network; frequency setting problem; optimization; genetic algorithm; bus
network; result framework

1. Introduction

The field of public transport optimization has attracted immense research interest
for more than 50 years. The increase in the Earth’s population, increasing urbanization
and widespread urban development have made the need for efficient urban transportation
systems ever more pressing [1,2]. To this day, and for the foreseeable future, cities in every
continent are having to build or restructure their services to meet the demands of increased
population sizes [3,4]. However, across the world, city center road networks are buckling
from congestion issues that lead to environmental and noise pollution, increased road
accident rates and ever decreasing quality of life indexes [5–7]. This has turned the sights
of researchers, competent authorities, and key stakeholders towards improved public
transport systems, as they provide a cost-effective avenue of regulating intercity mobility,
stimulating sustainable growth, and increasing citizen satisfaction [8,9]. The problem is
called Transportation Network Design and Frequency Setting Problem (TRNDFSP) and
this paper presents a novel twist on established approaches to create efficient networks.
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2. Literature Review
2.1. The TRNDFSP Problem

One of the first researchers to describe an iterative, analytic solution method for fixed-
demand networks was Rea, who demonstrated that similar methods can be sensitive to
policy changes [10]. In the following years, the various methods that were developed [11–14]
followed in the same steps, aiming to minimize user cost through iterative processes.
However, the use of computing algorithms remained at a minimum due to computers still
being at a nascent stage; something that all the above recognized.

Later years saw research interest focus on applying natural processes to the solution
of transportation networks, with the most disrupting effects arising due to the following
processes: (a) genetic algorithms [15], (b) simulated annealing [16] and tabu search [17]. In
fact, even initial attempts of applying genetic algorithms to transportation networks saw
encouraging results, even though their heavy computational load as well as their reliance
of fine-tuned parameters were quickly recognized [18,19].

Nevertheless, the perception that non-computational, analytic models are better suited
to individual cases and policy changes, was cemented at the start of the new century [20].
Today, the field is dominated by heuristic and meta-heuristic approaches [21], with the
most prominent being genetic algorithms, as they are exceptionally suited to generating
sets of routes, dealing with discrete variables and staying within constraints [22].

Hence, it is no surprise that a host of studies [23–27] utilize only slightly modified
genetic algorithms to deal with the transit network design and frequency setting problem.
Others use genetic algorithms as a cornerstone to more complex approaches such as finding
Pareto optimality, using genetic algorithms to choose optimal solutions within a pool [28,29]
and linking OD matrices to various parameters [30]. As for the Pareto optimality, a notable
research proposed an Alternating Objective Genetic Algorithm (AOGA) to efficiently solve
the TRNDFSP, in which the objective to be searched is cyclically alternated along the
generations. The results evidence that the AOGA that was developed is very efficient,
leading to improved solutions when compared to previously published results [31].

Lastly, recent years have seen the emergence of other nature-inspired approaches
focused on hive optimization; the most prominent being ant colony optimization [32] and
bee colony optimization [33]. As a first step, these are being used to select optimal routes
between existing sets [7] or designing route sets before setting their frequencies [5,34,35].

Thorough reviews were published in 2009 [21] and in 2014 [36] in which, the reviewers,
concentrated and presented in a table a plethora of methodologies on TRNDFSP from the
establishment of the problem in the 1960s to the date of the respective review. According to
the later, four major concerns arise from the reviewed methodologies. First, none of the
works integrates all the mentioned modelling features. Second, many of these modelling
features are not fully or properly covered. Third, other key modelling features have been
omitted. Finally, the solving techniques do not guarantee an accurate solution, or are
limited to the modelling features being considered [36].

At this stage, it is important to mention the sociological parameters in the problem.
It is apparent that transport should not be considered only a technical phenomenon and
mobility only a geographical phenomenon. Both terms have a connection with a lot of
social phenomena, they are influenced and they influence a range of social processes and
structures, as far as the social stratification, change of social relations, social exclusion, or
changes in urban spatial patterns is concerned [37]. Although this is not the main scope
of the research, we want to stretch out the factor of the psychosocial barriers of public
transport especial with the disabled and the elderly [38]. Furthermore, the COVID-19
pandemic has played a key role in the continuing change of commuting trends, as there is
a significant proportion of people that are moving towards micromobility options or even
considering not commuting at all as they have the option of working remotely [39].
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2.2. Evolutionary Algorithms

In computer science, evolutionary computation is a family of algorithms for global
optimization inspired by biological evolution, and the subfield of artificial intelligence and
soft computing studying these algorithms. Such algorithms include genetic algorithms,
genetic programming, evolutionary programming, which can be adjusted to address single-
objective or multi-objective problems. In most cases, as seen previously, the TRNDFSP is
handled as a multi-objective problem.

According to recent research in the field, notable optimization of multi-objective
problems can be accomplished with a learning-based algorithm that includes learning
automation, and later adjusting the evolutionary strategies of the algorithm to adapt to the
problem characteristics, according to the feedback information during the optimizing proce-
dure [40]. In another study, a new adaptive island evolutionary algorithm was proposed for
the berth scheduling problem, aiming to minimize the total weighted service cost of vessels.
The optimality gap of the algorithm is relatively low and the proposed solution algorithm
exhibits statistically significant improvements in terms of the objective function values
when compared to state-of-the-art metaheuristic algorithms [41]. Furthermore, a research
that developed the AnD algorithm (angle-based selection strategy and a shift-based density
estimation strategy), showed that it can achieve highly competitive performance when
compared to other state-of-the-art many-objective evolutionary algorithms on a variety
of benchmark test problems with up to 15 objectives. AnD has a simple structure, few
parameters, and no complicated operators [42]. Furthermore, in the field of bioinformatics
the use of machine learning-based methodologies show high performance in the distinction
of fatal bacterial meningitis from viral meningitis, achieving 100% of sensitivity in detecting
the former [43].

As for the transportation sector, a research was conducted to address the vehicle rout-
ing problem, by developing an optimization model and solution algorithms which utilizes
a mixed-integer linear programming model and employs four metaheuristic algorithms,
including the evolutionary algorithm, variable neighborhood search, tabu search, and
simulated annealing to solve the model for large-scale problem instances [44].

Lastly, it is important to mention the significance of data classification in the process of
optimizing a multi-objective problem. According to research, the use of swan algorithms,
and specifically the Salp swam algorithm in standard classification measures over consid-
ered benchmark datasets shows supremacy in results as compared with other evolutionary
algorithm based multilayer perceptron, such as genetic algorithm (GA), particle swarm
optimization (PSO), differential evolution (DE), grey wolf optimization (GWO), etc [45].

3. Problem Description

The bus network design is formulated as a non-convex, NP-hard optimization problem
dealing with the minimization of all resources and costs related to a public transport system
with fixed demand [29]. Common problem inputs are the distribution of trip generation
within an area, its topology along with a set of objectives and constraints [46]. The objectives
that appear more frequently in relevant literature can be summarized as follows [21,47]:

(1) User benefit maximization
(2) Operator cost minimization
(3) Maximization of total system welfare
(4) Maximization of network capacity
(5) Energy conservation
(6) Parameter-focused optimization

From all the above, recent literature has aimed at improving overall system welfare,
as it encompasses both user and operator costs [26,48].

Regarding the problem formulation, a plethora of authors [18,22,23,25,27,31,49] have
described the problem in, each time, slightly different language. The formulation that is
presented in the following paragraphs aims to unify the problem description under a common,
mathematical formulation. It draws from graph theory and problem descriptions of previ-
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ous papers to present a complete formulation of the transportation network design and
frequency setting problem.

The road network that is studied can be modelled as an undirected planar graph G
(flow network) consisting of a set of vertices, V, and a set of edges, E, along with their
respective flows ( f ). This way, we can mathematically describe the OD matrix, containing
the passenger flows from each vertex (i.e., bus stop, centroid) of the matrix to any other
vertex along with the way that these are linked; with null values between vertices that are
not directly linked [50,51]. Additionally, the necessary time matrix for the design of the
transportation network is included in the mathematical description:

G = (V, E)

f : V ×V −→ R

where E is a set of edges ei:

ei =
(

ui
s, ui

e, wi, li, pi, idi
)

, us, ue ε V, e ⊆ E

so that:
∀u ε V (∃e1, e2 ε E

((
u = u1

s

)
∧
(

u = u2
e

))
, i = 1, 2

where ei, ith edge of the edge set; ui
s, start vertex of the i-th edge; ui

s, end vertex of the i-th
edge; wi, weight of the edge, that represented the travel distance; li, the length of the edge;
pi, edge passengers travelling from ui

s to ui
e; idi, identifies the edge among other edges; u,

vertex notation.
Additionally, we consider the family of sets of routes between the vertices that fulfill a

set of constraints described in a following section. These are denoted as follows:

Rn = (vn, qn, fn, hn), { n ∈ N, vn| vn ⊆ G}

Rn = {R1, R2, · · · , Rn}

S =
n
∪

i=1
Rn

where Rn, is the n-th set of routes; Vn, vector of vertices that belong in the bus route; Qn,
vector of route passenger load for every vertex of the route; fn, route fleet; hn, headway
between two vehicles of the route fleet; Rn, the n-th family of sets of routes; S , the set of
all possible routes between the graph vertices.

Given the above we consider two objective functions that represent the interests of
the passengers as well as the interests of the operator. The passenger cost is represented
through the generalized user cost equation, while the operator cost is represented through
the fleet that is necessary for the network to operate. The objective equations and the
overall goal are as follows:

min

 T = ϑwTw + TIVT + P1t + P2t + Pud

O =
n
∑

i=1
f Ri
n

where T, is the total passenger cost; ϑw, is the weight associated with the time users spend
waiting at a bus stop; Tw, the total time users spend waiting at a bus stop; TIVT , is the total
time users spend in a vehicle; P1t, P1t are the total time penalties associated with users
needing to transfer routes once or twice respectively; Pud, is the time penalty for unsatisfied
demand by users; O, is the total operator cost, measured in vehicles; f Ri

n , is the total vehicle
fleet required for the selected route set Ri.

Therefore, our aim is to find a set of Pareto-optimal network solutions (i.e., route sets)
between these two conflicting objectives.
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Constraints

tmin, tmax, minimum and maximum time-length of a route; wRn
i , the time-length of

the i-th route in the n-th route set; QRn
i , passenger load observed in the i-th route of the

n-th route set; f Rn
i , fleet size the i-th route of the n-th route set; CAPRn

i , vehicle passenger
capacity for the i-th route of the n-th route set; LF, maximum load factor set by the operator;
hmin, hmax, minimum and maximum headway of a route; hRi

n , the headway of the i-th route
in the n-th route set; rmin, rmax, maximum number of routes allowed in a route set:

tmin ≤
n

∑
i=1

wRn
i ≤ tmax,

max

 max
(

QRn
i

)
f Rn
i CAPRn

i LF

 ≤ 1,

hmin ≤ hRn
i ≤ hmax,

rmin ≤ dim(Rn) ≤ rmax,

4. Solution Approach–Methodology

The Transportation Network Design and Frequency Setting problem is well known
to be non-convex and computationally NP-hard. In the scope of this study, a heuristic
and meta-heuristic approach leading to a novel, alternating-objective, genetic algorithm
has been chosen. Its goal is to produce a wide array of feasible network solutions that
satisfy the demands of both the transportation network user as well as its operator while
attempting to find near-optimal solutions. These solutions are known as Pareto Optimal
solutions, as they describe the edge situation where each party’s interests cannot be further
improved without compromising the interests of the other party.

The proposed solution can be broken down into two distinct parts:

(1) Route database & population generation
(2) Alternating-objective genetic algorithm with elitism

The first part utilizes heuristics-mainly Yen’s k-shortest path [52] and Dijkstra’s al-
gorithm [53]—to create a vast database of routes connecting any two nodes of the OD
matrix. Consequently, the population algorithm attempts to create feasible (i.e., fulfilling
the constraints) network solutions by selecting routes generated in the preceding step. Each
new feasible solution is called a “chromosome” while the set of solutions generated is called
a “generation”. In the second part, a modified genetic algorithm cycles between finding the
best (i.e., lowest cost) solutions in the generation for the users and the best for the operator.
The best solutions are kept, while new ones are created for the next generation. By the
end of the algorithm, a Pareto frontier has been created, outlining a set of near-optimal
solutions for both the users and the operator. A flowchart of the algorithm is presented
in Figure 1.



Future Transp. 2021, 1 253
Future Transp. 2021, 1, FOR PEER REVIEW  6 
 

 

 
Figure 1. Alternating-Objective Genetic Algorithm flowchart. Figure 1. Alternating-Objective Genetic Algorithm flowchart.



Future Transp. 2021, 1 254

4.1. Input Data

The GA requires a set of data matching the concepts developed under the problem
formulation section. Therefore, the following data are required for the algorithm to run:

(1) A symmetrical Origin-Destination matrix
(2) A symmetrical time-distance matrix between network vertices
(3) Constraint parameters

(a) Maximum route detour factor (i.e., percentage that a route time can vary from
the minimum shortest route)

(b) Minimum/Maximum route time
(c) Minimum/Maximum route vehicle headway
(d) Minimum/Maximum number of routes in each route set (i.e., chromosome)
(e) Minimum percentage of direct route coverage between OD vertices

(4) Genetic algorithm parameters

(a) Total number of chromosomes per generation
(b) Total number of generations
(c) Crossover probability
(d) Mutation probability
(e) Similarity factor of results required for reinitialization
(f) Percentage of continuous observed similarity
(g) Cost calculation loops

It should be noted that, while, the list of parameters and variables is extensive, the
ones that define the robustness of the results are the OD and time matrices. The rest are
merely tools that allow for the fine-tuning of the results and assist in drastically reducing
the time required for such a resource-intensive algorithm to run. It is possible for all the
parameters (i.e., 3a to 4g) to be defined as variables and produce a wider variety of results
in exponentially more time.

4.2. Route Database & Population Generation

This first stage of the algorithm aims to create a wide range of routes connecting OD
nodes, from which feasible solutions can be created. Naturally, the greater the size and
variety within the pool, the greater the algorithm’s ability to approach optimality. At the
same time, a large pool size can significantly lower computational performance.

The initial routes are generated through Yen’s k-shortest path algorithm and are
subject to the constraints that have been described. The benefit of the k-shortest approach
is that it allows for “k-1” shortest routes between two nodes to be created. An increase in
the value of “k” is reflected by an increase in the influence of lines generated as, by varying
from the shortest path, they cover more nodes.

Consequently, the “population” algorithm looks to bundle together routes in such a
way that the transportation network constraints are met. This process involves randomly
selecting routes from the route database so that a pre-set percentage of nodes are covered.
Next, given the network created, the passenger loads outlined in the OD matrix are assigned
to the routes (including 1- and 2-transfer routes should the OD pair not be covered directly)
that service their destinations. These routes start off with pre-set headways and frequencies.
Should more than one route service the same OD set, the following equation is used to
calculate the possibility of passengers selecting each one:

PRn,i =
e−TRn,i

∑ e−TRn

where Proute, is the possibility of passengers selecting the ith solution of the route set.
Following passenger assignment, new headways are calculated that, more accurately,

service passenger demand. Given these new headways, user costs are recalculated (mainly
waiting cost) and so are the route choice probabilities. This loop can continue perpetually,
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as each route choice is further optimized to match demand. In Figure 2, the average
difference that each subsequent loop makes for each chromosome are shown, as tested on
1000 different chromosomes.
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Lastly, in case any of the constrains and checks are violated, the route set is discarded
and a new one is created. This process continues until the amount of feasible route sets
created reaches the specified “chromosome number per generation” that the user has
provided as input.

4.3. Alternating Objective Genetic Algorithm with Elitism

The alternating-objective genetic algorithm with elitism (AOGAE) is built to find
optimal Pareto-efficient solutions within the pool generated during the previous step.
This is achieved through iterative comparisons spanning different sets (“generations”) of
solutions and scripts that allow the best solutions to move onto later generations (elitism),
thus gradually augmenting the median performance of each solution set. The process of
the best solutions “surviving” while the rest are discarded has been inspired by Darwin’s
evolutionary theory and modern genetic processes; it is the reason that this algorithmic
approach is called a “genetic algorithm”.

In the scope of this paper, the algorithm was modified so that it alternates between
minimizing user cost and minimizing operator cost. This allowed the methodology to
retain only the solutions that minimized both costs at once and, finally, produce efficient
networks. In the following paragraphs, the way the algorithm works will be outlined and
points that allowed us to produce efficient results will be outlined.

The first step of the AOGAE algorithm is chromosome crossover. It aims to improve
chromosome solutions by changing a route from one chromosome with a route from
another from the same generation. Initially, each generation’s chromosomes are sorted
based on the current optimization objective. Each chromosome is assigned a probability
of being the participating in a crossover instance. This serves to incentivize more radical
changes in chromosomes with subpar performance.

Should a pair of chromosomes be selected, the segments connecting a random OD
pair that is present in both chromosomes are interchanged in what is called a two-point
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crossover. To guarantee that the new chromosome remains within the boundaries set by
the initial constraints, an edge recombination operator is used.

Another method used by the AOGAE to avoid local minima, is called “mutation”.
This process imitates the way that parts of genetic code randomly mutate to form the basis
of evolutionary theory. This process is controlled by a global mutation probability for
all chromosomes in each generation and a mutation probability related to the fitness of
each chromosome. The worse the chromosome the more likely it is to undergo large scale
mutations. Chromosomes selected for the mutation process exchange one of their routes
with another from the route pool. Consequently, all the initial constraints are checked and,
in the case that one is violated, the exchange is discarded and the process restarts.

Lastly, the AOGAE method implements a final way forcing the algorithm out of
local minima by constantly monitoring the similarity of the results between consecutive
generations. Should the similarity limit be exceeded, the algorithm discards the entirety
of the generation and looks to create new chromosomes from the route pool. It should be
noted that the maximum amount of consequent generations exhibiting increased similarity,
heavily impacts algorithm results. This occurs, as discarding generations too early prevents
them from reaching optimality, while discarding them too late may lead to results focused
on local minima.

We suggest, relating max similarity occurrences with the number of generations that
each instance of the algorithm will go through. All the processes described in this section
alternate between minimizing user cost and minimizing operator cost. At the end of the
algorithm, a wide array of solutions is presented that service different user/operator needs
at performance levels that appear more robust than current literature.

5. Results

The AOGAE algorithm was tested on Mandl’s benchmark network (Figure 3), con-
sisting of 15 vertices and 21 bidirectional links with no capacity constraint. The network
was based on the locations and roads between 15 swiss towns. Mandl’s network was
selected as it is the most used network for testing and benchmarking new approaches
to the existing state of the art. By running the AOGAE algorithm on this network the
authors benchmarked their results as presented in Table 1 The algorithm was tested on an
Intel i5 7300HQ processor, 10 times with each run taking 10 min to complete. This reflects
the potential of the algorithm to be integrated into widely adopted personal computer
processors and therefore speaks to its potential ease of adoption from colleagues around
the world. The results from the best run are presented in the following tables and figures.
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Table 1. Comparison of AOGAE results with similar methodologies.

Route
No.

Author (Year) Fleet
Size

% of Demand Time Components (min)

d0 d1 d2 dun User
Cost AIVT ATT ARH MRH

4

Mandl (1979) 103 69.94 29.93 0.13 0 349,230 11.4 13 3.48 6.67
Kidwai (1998) - 72.95 26.92 0.13 0 13

Charkoborty and
Dwiwedi (2003) 105 89.98 10.02 0 0 284,010 13.1 12 4.06 9

Fan & Machemehl (2008) - 93.26 6.74 0 0
Mumford (2013) 86

Chew e Lee (2013) 87 92.74 7.26 0 0 247,498 11.5 3.64 5.11
Nikolic e Teodorovic

(2013) 94 92.1 7.19 0.71 0 252,597 11.7 11 4.6 8.6

Nayeem et al. (GAWIP)
(2014) - 95.83 3.6 0.57 0

Nayeem et al. (GAWE)
(2014) - 96.14 3.47 0.39 0

Nikolic & Teodorovic
(User) (2014) 94 95.05 4.95 0 0

Nikolic & Teodorovic
(Oper.) (2014) 67 90.69 9.31 0 0

Arbex & Da Cunha (2015) 79 98.27 1.73 0 0 223,507 11.1 4.6 8.6
AOGAE (user-favored) 78 95.5 4.5 0 0 219,228 11 3.83 5.6

AOGAE
(operator-favored) 74 94.1 5.9 0 0 226,536 10.9 3.81 4.82
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Table 1. Cont.

Route
No.

Author (Year) Fleet
Size

% of Demand Time Components (min)

d0 d1 d2 dun User
Cost AIVT ATT ARH MRH

5
Arbex & Da Cunha (2015) 75 98.2 1.8 0 0 219,258 11.1 5.39 9.56

AOGAE (user-favored) 81 95.8 4.2 0 0 214,998 10.6 7.08 18
AOGAE

(operator-favored) 73 91.6 8.4 0 0 232,217 10.6 8.51 24

6

Kidwai (1998) 77.92 19.68 2.4 0 12
Charkoborty and
Dwiwedi (2002) 86.04 13.96 0 0 10

Fan & Machemehl (2008) 91.52 8.48 0 0 10
Nikolic & Teodorovic

(2013) 95.63 4.37 0 0 10

Nayeem et al. (GAWIP)
(2014) 98.39 1.64 0 0

Nayeem et al. (GAWE)
(2014) 98.91 1.09 0 0 10

Nikolic & Teodorovic
(users) (2014) 99 94.34 5.65 0 0

Nikolic & Teodorovic
(operator) (2014) 66 89.98 10.02 0 0

Arbex & Da Cunha (2015) 77 98.2 1.8 0 0 215,781 11.6 10 6.42 9.56
AOGAE (user-favored) 77 96.5 3.5 0 0 212,130 10.5 10.6 25

AOGAE
(operator-favored) 69 93.6 6.4 0 0 228,200 10.5 10.5 23

7

Kidwai (1998) 93.91 6.09 0 0 11
Charkoborty and
Dwiwedi (2002) 89.15 10.85 0 0 10

Fan & Machemehl (2008) 93.32 6.36 0.32 0 10
Nikolic & Teodorovic

(2013) 98.52 1.48 0 0 10

Nayeem et al. (GAWIP)
(2014) 99.17 0.83 0 0 10

Nayeem et al. (GAWE)
(2014) 99.55 0.45 0 0 10

Nikolic & Teodorovic
(users) (2014) 99 94.34 5.65 0 0

Nikolic & Teodorovic
(operator) (2014) 66 89.98 10.02 0 0

Arbex & Da Cunha (2015) 77 98.52 1.48 0 0 214,989 11.9 7.58 12.8
AOGAE (user-favored) 88 98.4 1.6 0 0 205,888 10.5 11 20.67

AOGAE
(operator-favored) 71 94.6 5.4 0 0 223,874 10.7 8.09 18.67

8

Kidwai (1998) 84.73 15.27 0 0 11
Charkoborty and
Dwiwedi (2002) 90.38 9.62 0 0 10

Fan & Machemehl (2008) 94.54 5.46 0 0 10
Nayeem et al. (GAWIP)

(2014) 99.86 0.14 0 0 10

Nayeem et al. (GAWE)
(2014) 99.87 0.13 0 0

Nikolic & Teodorovic
(users) (2014) 99 96.4 3.6 0 0 10

Nikolic & Teodorovic
(operator) (2014) 63 88.57 11.43 0 0 10

Arbex & Da Cunha (Set 1)
(2015) 69 96.27 3.73 0 0 227,521 11.2 7.02 10.33

Arbex & Da Cunha (Set 2)
(2015) 74 98.65 1.35 0 0 213,682 11.2 7.48 16
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Table 1. Cont.

Route
No.

Author (Year)
[Reference]

Fleet
Size

% of Demand Time Components (min)

d0 d1 d2 dun User
Cost AIVT ATT ARH MRH

AOGAE (user-favored) 77 99.1 0.9 0 0 201,781 10.3 12.4 26
AOGAE

(operator-favored) 69 97.6 2.4 0 0 212,537 10.3 14.8 30

The variables in Table 2 were used as inputs for the algorithm.

Table 2. Algorithm Inputs.

Network & System Attributes

1 K-paths 4
2 Route detour factor 1.5
3 Minimum route time 0 minutes
4 Maximum route time 60 minutes
5 Initial bus headway 10
6 Maximum bus headway 20 minutes
7 Bus load factor 1.25
8 Bus capacity 40 passengers
9 1-transfer penalty 30 minutes
10 2-transfer penalty 40 minutes
11 Over-2-transfer penalty 100 minutes
12 Minimum number of routes 4 routes
13 Maximum number of routes 12 routes
14 Minimum percentage of Direct coverage 70 %
15 Minimum percentage of chromosome node coverage: 100% 100 %

Genetic Algorithm Inputs

1 Chromosomes per Generation 50 chromosomes
2 Total Generations 30 chromosomes
3 Crossover Probability 50 %
4 Mutation Probability 5 %
5 Maximum allowed similarity rate between consecutive, best results 5 %

6 Maximum amount of generations with continuous observed similarity
before resetting the population 5 % of total generations

The results of the AOGAE algorithm are compared with similar
methodologies [12,22,27,31,34,35,49,54–56] in Table 1. It should be noted that, while a
host of research teams have benchmarked algorithms in the Mandl network, results are,
more often than not, presented in different formats. An option to circumvent this divide
would be to try and reproduce research results based on the route sets provided by the
research teams. However, even in that case, considerable assumptions would have to
be made about other characteristics of their networks (e.g., headways, maximum route
detour factors etc.). Therefore, we chose to only present the results that were reported by
our colleagues.

The comparison is performed using the following measures:

(1) Fleet size—commonly the most significant measure of operator cost
(2) D0, D1, D2, Dun—Percentage of demand that is serviced directly (D0), with one

transfer (D1), with two transfers (D2) and demand that is left unsatisfied (Dun)
(3) User Cost—the total cost of user time spent using the network, including the weight

of different activities (e.g., waiting time weight)
(4) AIVT—Average in-vehicle time (lower is usually better)
(5) ATT—Average time travelling (a sum of waiting time, in-vehicle time and walking

time without weights)
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(6) ARH—Average route headway (lower means more frequent routes)
(7) MRH—Maximum route headway (a measure of route timing variance)

The results presented in Table 3, show improved solutions in regards to user cost,
direct percentage and fleet size. The differences in average and maximum headway in
comparison with preceding literature show that more optimal solutions can be found when
the majority of network capacity is utilized.

Table 3. Pareto Optimal Solutions.

Pareto Objectives Solution Index Trip Service Time Metrics (avg.) Passenger Metrics

Fleet Cost Generation Chrom. Direct Transfer1 Transfer2 IVT Waiting Avg.
Load

Load per
Bus

66 229,220 46 90 92.49% 7.51% 0.00% 10.13 4.59 1021.86 15.48
67 223,505 44 0 94.22% 5.78% 0.00% 10.17 4.19 1003.46 14.98
68 217,210 41 2 95.70% 4.30% 0.00% 10.15 3.80 995.08 14.63
69 216,834 50 46 95.57% 4.43% 0.00% 10.20 3.73 215.63 3.13
70 215,016 49 80 95.89% 4.11% 0.00% 10.15 3.66 982.93 14.04
71 216,194 37 0 95.50% 4.50% 0.00% 10.11 3.78 207.30 2.92
72 218,050 41 5 95.89% 4.11% 0.00% 10.22 3.78 928.23 12.89
73 215,976 39 0 94.93% 5.07% 0.00% 10.14 3.73 234.57 3.21
74 215,395 31 15 95.18% 4.82% 0.00% 10.12 3.71 948.50 12.82
75 216,285 37 2 96.85% 3.15% 0.00% 10.24 3.65 690.50 9.21
76 216,197 33 74 95.76% 4.24% 0.00% 10.15 3.74 228.90 3.01
77 216,981 33 90 95.76% 4.24% 0.00% 10.14 3.80 535.49 6.95
78 214,511 27 39 95.95% 4.05% 0.00% 10.29 3.49 231.07 2.96
79 219,242 2 2 94.93% 5.07% 0.00% 10.21 3.87 402.53 5.10
80 213,171 43 17 96.08% 3.92% 0.00% 10.28 3.41 212.20 2.65
81 220,222 23 76 95.76% 4.24% 0.00% 10.41 3.73 241.63 2.98
82 224,708 33 48 93.77% 6.23% 0.00% 10.40 4.03 209.33 2.55
83 221,026 29 7 94.28% 5.72% 0.00% 10.32 3.88 231.37 2.79
84 214,622 31 33 95.70% 4.30% 0.00% 10.44 3.35 208.97 2.49
85 218,722 23 31 94.09% 5.91% 0.00% 10.36 3.69 211.70 2.49
86 231,414 13 26 92.36% 7.64% 0.00% 10.58 4.29 291.00 3.38
87 224,184 27 28 94.67% 5.33% 0.00% 10.35 4.04 264.27 3.04
89 222,661 43 2 94.28% 5.72% 0.00% 10.32 3.98 648.16 7.28
91 223,553 33 29 94.09% 5.91% 0.00% 10.29 4.07 748.56 8.23
92 228,127 29 49 92.23% 7.77% 0.00% 10.28 4.37 494.27 5.37
93 257,884 0 32 84.46% 15.54% 0.00% 10.20 6.37 1222.71 13.15
94 242,920 7 90 90.49% 9.51% 0.00% 10.71 4.89 872.11 9.28
95 246,296 0 12 89.02% 10.98% 0.00% 10.58 5.24 0.50 0.01
96 245,404 7 29 90.69% 9.31% 0.00% 10.97 4.79 56.50 0.59

Additionally, the data visualization software package Tableau Public (Tableau Soft-
ware, Seattle, WA, USA, 2017) was utilized as a method of enabling a more concise, ap-
pealing and interactive presentation of results. All such Figures can be found at the link
provided at the Supplementary Materials Section.

Figure 4 presents the observed improvement in direct network service that can be
achieved through the AOGAE method while reducing fleet size. Naturally, very few
chromosomes have second transfer percentages, and no chromosomes leave demand
unsatisfied as the network is small in size; for larger networks it is considerably more
likely to observe unsatisfied demand and increased percentages of 2-transfer trips. Other
factors contributing to the distribution of trip service are the initial constraints regarding
the minimum node coverage of each chromosome, the limits set on the number and time
of routes and the penalties relating to transfers that each trip requires.
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Figure 5 presents the decrease in both in-vehicle time and waiting time that is achieved;
a decrease in waiting time is particularly important as it is weighed unfavorably in com-
parison to in-vehicle time in order to reflect differences in passenger time perception.
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Figure 6 presents the set of Pareto-optimal solutions that were generated via the
AOGAE method. As the non-convex nature of the problem prohibits single global optimal
solutions, here Pareto-efficient solutions for different fleet sizes are demonstrated. Larger
(>84 vehicles) and smaller (<67 vehicles) fleet sizes have few or no solutions as they do
not fit the greater Pareto optimality objective of the algorithm. A trend emerging from the
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results which should be highlighted is the diminishing, user cost, returns that an increase
in fleet size provides. This can be attributed to the nearly complete (approx. 95%) direct
coverage of the network. It also explains why results converge in a small part of potential
fleet sizes, as shown in Figure 7.
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Figure 7 also highlights the fact that the algorithm converges to a few different
fleet sizes.

Figure 8 presents the average passenger load per vehicle per generation, with color
marking the percentage of trips covered by direct routes. It is shown that the algorithm
favors higher-density, direct routes as a method of optimizing the network. This result
is based on the assumption that passenger satisfaction does not vary with changes in the
vehicle’s level of service.
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Figure 9 demonstrates the improvement of in-vehicle time in comparison with direct
percentage per generation with colour marking the user cost. It is shown that the common
pitfall of optimizing for direct service while increasing user cost is avoided.
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The most common fleet size being 71 shows that a fleet size of 71 is more likely to lead
to Pareto-optimal solutions. This is also demonstrated in the user costs relative to fleet size
that are represented by the color of each bar, with higher cost being marked by red. The
reason that solutions with high fleet sizes may also have high user costs is that they are
mostly generated in the first generations of the algorithm and then quickly discarded as
they do not reflect Pareto optimality on the operator side.

Figure 10 is illustrating how more Pareto-optimal solutions come hand-in-hand
with vehicles being more crowded; this is reflected by the Level of Service (LoS) index
in Figure 10, which reflects the amount of crowding in each bus with a maximum of
1.25 times capacity as described in Table 2. The fluctuation in the line graphs is attributed
to the algorithm cycling optimization objectives with each new generation.
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6. Policy Implications

Despite its very promising results, implementing the algorithm to real-world scenarios
remains a challenge as many of the assumptions that have been made would need to be
re-evaluated. The main ones being the following:

(1) Same operational speed in all network links
(2) All links are bidirectional
(3) Symmetrical OD-matrix
(4) Bus is the single mode of public transport
(5) No walking time to/from network nodes

Additionally, any real-world application would need to be implemented in collab-
oration with a plethora of authorities responsible for various parts of the transportation
network, including the city’s administration, its transportation authority, and national/state
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representatives. They would provide, inform, and curate the algorithm’s input data in
order to improve the quality and applicability of results generated.

Nevertheless, transportation networks that have seen few changes over the decades,
stand to gain greatly from applying state-of-the-art methods to their planning, both in terms
of quality-of-service and in terms of minimizing stakeholder costs. As our comparisons
show, networks designed through analytic approaches (e.g., Mandl’s) are significantly less
efficient in comparisons to more modern methods. Similar studies [7,29] that applied their
methods to real-world scenarios have shown improvements ranging up to 30% in network
performance metrics.

7. Discussion and Conclusions

In this paper, we propose an alternating-objective genetic algorithm that employs
heuristics to calculate Pareto optimal solutions for the transportation network design and
frequency setting problem. The first part of the algorithm deals with generating a wide
pool of feasible solutions while the second part deals with finding the Pareto frontier within
this pool. We showed that the algorithm provides high quality results within reasonable
computational times and, consequently, compared them to recent literature. Lastly, the
route to applying the algorithm to real-world applications and its benefits was analyzed
and the parts in need of re-evaluation were pinpointed.

Despite its promising results, the research presented in this paper has a number of
limitations that extend to its immediate applicability to real cities. The transportation
network that is considered is simplified in its structure (i.e., same operational speed on
all network links, all links are bidirectional, symmetrical OD-matrix) and properties (i.e.,
only bus as a mode of public transportation, no walking time to and from nodes) while
multiple intrinsic characteristics of both passengers and operators and not considered in
this study (e.g., walking time, operational costs other than fleet). Nevertheless, the results
presented in this paper provide an easily applicable and computationally inexpensive tool
to integrate in future research.

Future research should focus on including multiple modes of public transport and
their interactions, deeper modelling of passenger behaviour and integrating transport
econometrics into the operator cost functions. Additionally, while some existing approaches
can be run on office computers, thus reducing the necessity of costly servers, additional
research should focus on aligning existing computational transportation research with
the state-of the-art of Information Technology practices, such as edge computing and
containers.

The field of public transportation planning is lacking in both multimodal approaches
and real-life applications. As inputs increase, a host of unpredicted variables could sig-
nificantly skew results. Therefore, in the future, we aim to modify the methodology that
has been described to effectively plan for n-mode choice networks (e.g., bus-metro-tram-
funicular) and apply it to larger, more complex networks. Additionally, we intend to
include vehicle level-of-service in the generalized user cost objective function, to better
reflect changes in user perception as buses get increasingly crowded.

Lastly, a next step of this study would be to perform a case study for the city of
Thessaloniki, Greece to test the algorithm and its hypotheses. Thessaloniki is a prime
candidate for the AOGAE algorithm as it is in the midst of building new metro lines
throughout the city while the restoration of tram transport is an ever-persistent discussion
in city planning groups.

Supplementary Materials: Figures are freely accessible at https://public.tableau.com/profile/
theocharis1592#!/vizhome/DraftFigures/DraftFigures.
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