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Simple Summary: Large quantities of whole genome sequences for paired tumor and normal tissue
samples exist, but downstream processed data from these data are often not made available easily
for further research. Our aim is to take 1342 of the whole genome sequence data generated by The
Cancer Genome Atlas project and make them available as variant calls for downstream research,
covering an average of 117,223 cancer-associated variants per sample pair. This set covers 18 different
cancer types. We also show several different use cases for these data using the BigQuery tool.

Abstract: Whole genome sequencing (WGS) has helped to revolutionize biology, but the computa-
tional challenge remains for extracting valuable inferences from this information. Here, we present
the cancer-associated variants from the Cancer Genome Atlas (TCGA) WGS dataset. This set of
data will allow cancer researchers to further expand their analysis beyond the exomic regions of the
genome to the entire genome. A total of 1342 WGS alignments available from the consortium were
processed with VarScan2 and deposited to the NCI Cancer Cloud. The sample set covers 18 different
cancers and reveals 157,313,519 pooled (non-unique) cancer-associated single-nucleotide variations
(SNVs) across all samples. There was an average of 117,223 SNVs per sample, with a range from 1111
to 775,470 and a standard deviation of 163,273. The dataset was incorporated into BigQuery, which
allows for fast access and cross-mapping, which will allow researchers to enrich their current studies
with a plethora of newly available genomic data.

Keywords: TCGA; WGS; cancer variations; WGS analysis

1. Introduction

High-throughput sequencing technology has enabled a revolution in the field of
genetics over the past few decades. In brief, this family of technologies allows the genome
to be broken into small components and sequenced in a massively parallel way; an entire
genome can be sequenced in a day instead of the decade it took to generate the first draft [1].
Scientists have been able to use these technologies to examine functional components of
a whole genome, such as, most commonly, the exome, but also promoter and enhancer
regions, and epigenetic markers [2]. Since the cost scales with the size of the genomic regions
examined, scientists often focused on the much smaller, but more information-dense, exome
region of the genome. Research has, however, shown that the non-coding region of the
genome holds variants with explanatory power due to regulatory effects [3–6]. Now that
costs have decreased dramatically [7] and laboratory consortiums have formed to pool
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resources, the use of whole genome sequencing has become more and more economically
viable and more common in research projects.

The true cost of high-throughput sequencing includes both the raw material costs and
the bioinformatics costs. Bioinformatics costs cover computational resources needed to
store, analyze, and perform specialized tasks such as quality control and annotation on
the data [8]. The costs associated with the analysis can now easily eclipse the raw material
cost of a sequencing run due to the specialized training and computational resources
required [9]. With these overhead requirements in mind, it is advantageous for researchers
to share their processed data with each other to facilitate more rapid research in the field.
Organizations have built infrastructures to facilitate the sharing and re-use of data. The
National Cancer Institute (NCI), for example, has invested resources in its Cancer Research
Data Commons (CRDC) to help drive research innovation [10–12].

In this spirit, we generated 1342 variant call datasets based on The Cancer Genome
Atlas (TCGA) whole genome sequence (WGS) and alignment data. The dataset was
constructed after analyzing the TCGA dataset for suitable whole genome sequencing
experiments. The entries varied in their composition, so we focused on the unambiguous
normal–tumor pairs, which left 2207 potential samples to analyze as shown in Table S1.

2. Materials and Methods

TCGA WGS data are available in alignment form for cancer-related studies but are
not always further processed into variant calls. We used the pipeline shown in Figure 1 to
generate variant data covering 1342 normal–tumor sample pairs as described in Table S2.
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Figure 1. The pipeline used, encompassing the full lifecycle of generating the database. (A). The
pipeline begins with a preprocessing step which includes downloading the alignment data (both
the normal and the tumor alignments) as well as the index data for each through the Google Cloud
storage bucket into the virtual machine to be processed. If needed, the alignment is sorted and
an index file is generated (if one was not provided). The sorted alignment files are then split by
chromosome in order to facilitate parallel processing. Since the data were often very large and the
transfer speeds even between nodes were prohibitive, split alignments were kept to the local instance
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and parallelized by multithreading. Multiple nodes, however, were used to then parallelize across
different tumor–normal paired samples. Each node had the human reference stored on disk and
was not required to stream it for use. (B). The computational pipeline is run in parallel locally using
the VarScan2 tool. Initially, SAMtools’ mpileup tool was used to convert the alignment files into an
appropriate format for VarScan2. From here, VarScan2 was run to generate SNV and indel variations.
These are each split into somatic, germline, and loss of heterozygosity, and further bifurcated by
high confidence and low confidence. (C). The final step in the pipeline included housekeeping
such as moving relevant generated files and logs to long-term storage and cleaning up the node in
preparation for the next set of computations to be run. This step happens once all chromosomes are
handled in the VarScan2 pipeline used.

After generation of the processed data, we performed an ingestion pipeline as shown
in Figure 2, to convert the data from VCF into a BigQuery table, to facilitate fast and flexible
searching and splicing.

Onco 2022, 2, FOR PEER REVIEW  3 
 

 

was not required to stream it for use. (B). The computational pipeline is run in parallel locally using 
the VarScan2 tool. Initially, SAMtools’ mpileup tool was used to convert the alignment files into an 
appropriate format for VarScan2. From here, VarScan2 was run to generate SNV and indel varia-
tions. These are each split into somatic, germline, and loss of heterozygosity, and further bifurcated 
by high confidence and low confidence. (C). The final step in the pipeline included housekeeping 
such as moving relevant generated files and logs to long-term storage and cleaning up the node in 
preparation for the next set of computations to be run. This step happens once all chromosomes are 
handled in the VarScan2 pipeline used. 

After generation of the processed data, we performed an ingestion pipeline as shown 
in Figure 2, to convert the data from VCF into a BigQuery table, to facilitate fast and flex-
ible searching and splicing.  

 
Figure 2. The ISB-CGC VCF2BQ ETL pipeline produces Google BigQuery tables that serve as central 
repositories for VCF files. In this analysis, we used the ETL pipeline to transform TCGA VCFs gen-
erated from the pipeline described in Figure 1. Variant data in one central BigQuery table afford the 
ability to query and interrogate the data without the need to download. In addition, the ETL process 
maintains the column composition of the VCF file format. 

2.1. Data Generation 
The NCI CRDC cloud-enabled data ecosystem, through three different cloud re-

sources, provides access to large data in a colocalized way to facilitate faster analysis. ISB-
CGC was the chosen cloud resource for this analysis since it provides direct access to the 
data outside of a set framework. Due to the large amount of data being analyzed, it was 
necessary to use a custom framework to both exploit the highly parallelizable nature of 

Figure 2. The ISB-CGC VCF2BQ ETL pipeline produces Google BigQuery tables that serve as central
repositories for VCF files. In this analysis, we used the ETL pipeline to transform TCGA VCFs
generated from the pipeline described in Figure 1. Variant data in one central BigQuery table afford
the ability to query and interrogate the data without the need to download. In addition, the ETL
process maintains the column composition of the VCF file format.

2.1. Data Generation

The NCI CRDC cloud-enabled data ecosystem, through three different cloud resources,
provides access to large data in a colocalized way to facilitate faster analysis. ISB-CGC was
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the chosen cloud resource for this analysis since it provides direct access to the data outside
of a set framework. Due to the large amount of data being analyzed, it was necessary to
use a custom framework to both exploit the highly parallelizable nature of the work and to
manage computational resources appropriately. Data access was facilitated through virtual
machine instances on Google Cloud through the ISB-CGC cancer cloud.

2.1.1. Targeted Data

The goal of the original study [13] was to look at the non-coding region of the genome
in normal–tumor paired samples in a functionally agnostic way. The approach required
variant calling on the entire genome and is expanded here to include a larger sample of the
data within TCGA.

All possible samples were examined for inclusion in the expanded dataset. Samples
that were not typical normal–tumor pairs were removed from the data generation, leaving
behind a set of 2207 unambiguous normal–tumor pairs from the TCGA data (Table S1). For
various reasons, not all 2207 were successfully processed. Largely, this was due to extremely
large alignment files that would have required more computational resources than were
available. A total of 1342 samples were successfully called without computational error
and passed validation, and are shown in Table S2 with SNV counts.

2.1.2. Variant Calling Methodology

The alignment procedure from raw sequence data to BAM files was conducted by
the TCGA network. The methods for this process are outlined online. Variant calling on
normal–tumor pairs was performed with VarScan2 software, as outlined in the pipeline in
Figure 1.

2.2. Custom Submission Framework

Utilizing Google Cloud Engine, we constructed a management system that retrieved
appropriate data, ran the VarScan2 pipeline in parallel, and then captured the relevant data.
SLURM [14] was chosen as the scheduling software for this task and both an analytics server
and database interface were written in Python (see Code Availability below). Multiple nodes
were set up on Google Compute Engine to support this orchestration. These consisted
of: 1 compute engine datastore, 1 SLURM master node, 1 analytics node, and 50 compute
nodes. Protected TCGA data were provided through ISB-CGC after authentication and
authorization, and were transferred onto compute nodes as needed.

A custom Python interface was written for the SLURM master node in order to easily
facilitate submission of jobs based on TCGA ID codes (see Code Availability below). An
arbitrary number of jobs could be submitted and queued through SLURM with this setup.
The interface with the SLURM master accepted a comma-separated value (CSV) file with
information related to the TCGA samples to be queued. The generated job set included
(1) a single job per chromosome, (2) one for initial downloading and splitting of the sample,
and (3) one for cleanup and storage of the results. Each of the computational nodes was
set up with necessary tooling including SAMtools [15] and VarScan2 [16–18].These were
installed as per their installation instructions.

2.2.1. Download and Split

The first job run was the download and split job performed by a custom bash shell
script. This would download all appropriate files for the job through the Google-provided
gsutils tool, copy custom scripts to the compute node, and then split the alignment data
by chromosome. Progress was reported to the analytics server through a custom script.
Split alignment files were then staged on the compute node for both the normal and
tumor samples.
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2.2.2. Variant Calling

The variant calling computations were performed next through the VarScan2 pipeline
with individual chromosome references. After the first job was completed, which fetched
the data, these chromosome-specific jobs were run in parallel. Progress was reported during
each step to the analytics server. In short, the supporting scripts performed the following:

1. SAMtools mpileup

samtools mpileup -f ${REFERENCE} -q 1 -B ${SORTED_NORMAL} ${SORTED_TUMOR}
1> ${MPILEUP_OUTPUT}

where ${REFERENCE} is the appropriate chromosome reference file, ${SORTED_NORMAL} is
the sorted normal tissue alignment (BAM) file, ${SORTED_TUMOR} is the sorted tumor tissue
alignment (BAM) file, and ${MPILEUP_OUTPUT} is the output file for this intermediate
pileup file.

2. Base Somatic Mutation Calling through VarScan2

java -jar VarScan.jar somatic ${MPILEUP_OUTPUT} ${BASE_OUTPUT} –mpileup 1
–min-coverage 8 –min-coverage-normal 8 –min-coverage-tumor 6 –min-var-freq 0.10
–min-freq-for-hom 0.75 –normal-purity 1.0 –tumor-purity 1.00 –p-value 0.99
–somatic-p-value -.05 –strand-filter 0 –output-vcf

where ${MPILEUP_OUTPUT} is the output file from the SAMtools mpileup step, and ${BASE_
OUTPUT} is an arbitrary output file name.

3. Somatic SNV calling

java –jar VarScan.jar processSomatic ${OUTPUT}.snv.vcf –min-tumor-freq 0.10
–max-normal-freq 0.05 –p-value 0.07

where ${OUTPUT} is the output file name from the base somatic mutation calling.

4. Somatic indels calling

java –jar VarScan.jar processSomatic ${OUTPUT}.indel.vcf –min-tumor-freq
0.10 –max-normal-freq 0.05 –p-value 0.07

where ${OUTPUT} is the output file name from the base somatic mutation calling.

2.2.3. Cleanup and Storage

Once all variant calling jobs were complete, a cleanup and storage script was run. This
program performed various housekeeping functions such as compressing the output files,
moving them to the storage bucket, copying error output and other logging to storage, and
posting progress to the analytics server. This job then removed the staging directory on the
compute node, freeing it up to begin the next sample in its queue.

2.3. Data Ingestion into BigQuery

The ISB-CGC VCF to BigQuery (VCF2BQ) pipeline provides a method to extract,
transform, and load (ETL) VCF files stored in Google Cloud Storage buckets to Google
BigQuery tables. This script was provided by ISB-CGC in order to automate some of the
effort required to upload data to BigQuery within ISB-CGC. The primary purpose of the
script is to preserve the integrity of the VCF file format most researchers are familiar with
while splitting some of the columns to simplify queries and leverage the power of BigQuery
data analytics. The script, implemented in Python, uses various Python data structures and
libraries to transform and load VCF files into BigQuery tables. The script is optimized to
handle VCF files derived from tumor–normal variant calling algorithms, but can also be
used for more general VCFs as well.

Implementation

Each VCF file is converted into a pandas data frame that contains columns that
preserve the variant record information as well as columns of metadata about the files, in-
cluding TCGA Genomic Data Commons (GDC) identifiers (case_barcode, sample_barcode,
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case_gdc_id, file_gdc_id) along with information about variant caller (e.g., SomaticSniper,
Muse, etc.). These columns serve as unique identifiers that can be used by researchers to
locate more information about the files in the GDC data repository to join with other data
types in BigQuery (see example notebook). The script can execute on single files or on bulk
VCFs at once. All generated pandas data frames are concatenated into a large dataframe,
which is loaded into BigQuery. The final VCF BigQuery table can be used for downstream
analysis using either Google BigQuery’s standard Structured Query Language (SQL) or can
be further interrogated in R or Jupyter Notebooks. The script is maintained in the ISB-CGC
ETL GitHub repository.

The VCF2BQ Script was used to extract, transform, and load controlled-access TCGA
WGS VCF generated using the Varscan2 pipeline. dbGAP authorization for TCGA data is
required to access the VCF files.

The script is optimized to run on the Google Cloud Platform, leveraging Google’s
Compute Engine, Google BigQuery, and Google Cloud Storage Buckets. Optimally, the
script is executed on Google Compute Engine VM instance because of the fast transfer
speeds between virtual machines and cloud storage.

3. Results

In the original analysis [13], five different TCGA cancer types were covered over
154 samples. This paper aimed to extend this to 1386 samples covering 18 different cancer
types in the TCGA dataset (see Table 1 for cancer code definitions used by TCGA and within
this paper). Of this number, 1342 passed validation (see Validation section, Supplementary
Table S2 for successful samples, and Supplementary Table S3 for failed samples), leaving
44 entries that failed quality control.

Table 1. TCGA uses codes for various cancer types as part of its ontology. The TCGA codes used in
this paper as well as the standardized cancer names are included in this table for reference.

TCGA Code Cancer Name

BLCA Bladder urothelial carcinoma
BRCA Breast invasive carcinoma
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
COAD Colon adenocarcinoma
ESCA Esophageal carcinoma
HNSC Head and neck squamous cell carcinoma
KIRP Kidney renal papillary call carcinoma

LAML Acute myeloid leukemia
LGG Brain lower-grade glioma

LUAD Lung adenocarcinoma
PRAD Prostate adenocarcinoma
READ Rectum adenocarcinoma
SARC Sarcoma
SKCM Skin cutaneous melanoma
STAD Stomach adenocarcinoma
THCA Thyroid carcinoma
UCEC Uterine corpus endometrial carcinoma
UVM

Final data generation revealed 157,313,519 pooled (non-unique) cancer-associated
single-nucleotide variations (SNVs) across all samples. This was an average of 117,223 SNVs
per sample with a range from 1111 to 775,470 and a standard deviation of 163,273, illustrat-
ing the variation in sample preparation and experimental design decisions made by the
participating laboratories. Figure 3 shows the distribution of variant counts within each
cancer type. One thing that is important to note here is that the results from this cohort
are unique to this study and should not be viewed as summaries for that cancer type in
general. Due to the differences in read depth between different cancer types as well as
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different research goals set before sequencing, the numbers represent only a snapshot of
this particular set and not the cancers as a whole.
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Figure 3. Distribution of variants within each cancer type. Various cancer types, in this dataset, exhibit
different ranges of normal–tumor pair variations as shown here. For each cancer type represented
by the TCGA cancer code (see Table 1 for definitions), the number of cancer-associated variants is
plotted with the count being defined on the Y axis. Within each column representing a single cancer,
the counts are plotted with an offset for readability purposes. Further, box and whisker plots are
drawn showing the quartiles and the means across all of the samples for a particular cancer type.

The makeup of the dataset ranges from Acute Myeloid Leukemia (LAML) at 0.89%
of the samples to Uterine Corpus Endometrial Carcinoma (UCEC) at 9.17%. While this
range is large, the average of each of these 18 cancer types was 5.56%, the median value
was 6.04%, and the standard deviation for the ratios was 2.54. The sample distribution
by cancer type is relatively balanced, as seen in Figure 4, which will lend itself to many
different types of analysis.

When looking at the distribution of number of variants across cancers, a slightly
different picture emerges, as there are a few outliers. Table 2 shows for each cancer type
the mean and median number of variants per sample, the standard deviation within the
cancer type, the minimum and maximum variant counts, and the sample counts. Both
Acute Myeloid Leukemia (LAML) and Sarcoma (SARC) are interesting in that they have
high minimum values (the sample of that cancer type with the fewest variations) and
have low standard deviations. While the standard deviation scores could be in large
part due to the limited sample size, the minimum cancer-associated variations for these
samples are intriguing and could suggest something biologically distinct for them. Figure 5
illustrates this by showing the minimum sample variant count for each cancer type versus
the maximum variant count, with the average variant count being the size of the bubble.
LAML and SARC look to be outliers to the rest of the cancers. The general trend shows the
minimum counts to be independent of the maximum count and the average SNV count
generally not related to the maximum (or the minimum) count.

Looking next at the non-coding region of the genome, we see in Figure 6 that most
cancer types analyzed in this study have widely different amounts of variation found in the
non-coding region versus the coding. The percentages of coding SNVs were calculated by
taking the raw counts of variants found in CDS regions [19–21] and dividing by the number
of variants found in total (excluding mitochondrial variants since consensus mitochondrial
coding regions are not included in the dataset used). The wide variety of ratios found
through the samples in most cancers is in stark contrast to SARC, LAML, and KIRP. These
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three cancers exhibit, within this study, the property that all of their samples have nearly the
same ratio of coding to non-coding and also have nearly the same number of non-coding
and coding variations.
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Table 2. Summary statistics of the dataset. This table shows a number of summary statistics across
each of the cancer types based on the number of variations reported in the high-confidence somatic
SNV pipeline.

Cancer Mean Median Standard
Deviation Min Max Sample

Count

BLCA 1,115,860 878,361 828,726 30,469 4,282,066 105
BRCA 3,914,925 4,853,067 1,962,690 47,614 5,725,487 78
CESC 1,409,171 771,086 1,705,045 44,244 5,022,570 60
COAD 1,402,421 591,772 1,504,539 115,715 5,635,942 84
ESCA 789,184 318,753 1,302,847 25,368 4,689,557 53
HNSC 1,009,823 870,112 695,101 21,215 3,366,516 96
KIRP 2,643,152 2,651,145 1,952,154 339,066 5,255,891 22

LAML 5,088,546 5,134,114 246,890 4,532,075 5,362,914 12
LGG 517,464 421,754 645,682 32,004 4,316,099 53

LUAD 1,037,623 640,943 1,086,595 15,672 5,259,861 112
PRAD 836,010 825,482 361,895 35,700 1,685,032 116
READ 634,840 496,493 378,566 159,711 1,602,407 39
SARC 4,916,603 4,910,429 151,412 4,619,782 5,534,903 36
SKCM 595,721 471,930 526,485 30,378 2,380,354 116
STAD 636,949 520,248 507,724 30,274 3,098,160 100
THCA 672,999 544,240 578,580 41,538 2,485,252 90
UCEC 1,579,253 821,528 1,778,498 37,717 5,696,505 123
UVM 267,324 214,871 279,506 20,541 1,106,908 47
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The SNV calls provide valuable information on cancer-associated changes in the
genome outside of the original research driven by them [13]. In order to facilitate contribut-
ing this information back to the scientific community, we have deposited the processed
output with the NCI Cancer Data Service (CDS). The submission is registered with the
Database of Genotypes and Phenotypes (dbGaP) and is accessible in CDS to authorized
researchers through their cloud service (https://datacommons.cancer.gov/repository/
cancer-data-service, accessed on 1 June 2022). Searchable tables for metadata related to the
samples are available via the Institute for Systems Biology (ISB)’s Cancer Gateway in the
Cloud (ISB-CGC) (https://isb-cgc.org, accessed on 1 June 2022), one of NCI’s Cloud Re-
sources (https://datacommons.cancer.gov/analytical-resource/isb-cancer-gateway-cloud,
accessed on 1 June 2022) [22].

3.1. Data Records

The pipeline as described in the methods section was run on normal–tumor paired
samples from TCGA. There were several records generated through this pipeline with
high-confidence somatic single-nucleotide variations (SNV) calls being deposited to the
CDS cloud repository.

These high-confidence somatic SNVs were generated for each of the processed samples
as a standard VCF file and ingested into BigQuery as a single table across all samples. Raw
VCF files can be regenerated from a BigQuery table if needed after ingestion (see Usage
Case 3 in this paper).

The SNV dataset shows individual positions in the genome where a nucleotide in
the cancer tissue differs from the reference genome (hg19) but not the paired tumor tissue.
Both the normal and tumor samples were also required to have adequate coverage. In
the current pipeline, this translates to a read depth of 8 for normal tissue reads and 6 for
tumor tissue reads at the location of the SNV call. VarScan2 calls SNVs by using a heuristic
method and performing a statistical test which considers the number of aligned reads for
each allele [20–22].

3.2. Technical Validation

We pursued several strategies to assess the quality of the data and to correct for er-
rors that are common in highly parallelized pipelines. After the variant calling pipeline
was finished, the output data were a compressed archive of different sets of information
including SNVs, indels, germline mutations, error logs, etc. If a computation failed, the
size of the output archive would be approximately 10 kb. This allowed for quick screen-
ing for failed computations that needed to be rerun or investigated further. This was a
semi-frequent occurrence for several reasons. The data were controlled and sometimes
required significantly more time to transfer than our access window, occasionally causing
transfer issues.

Additionally, as each step of the computation was run, we were reporting progress and
command output values to a database being run in the cloud cluster. This database accepted
reporting for a wide variety of values including error codes of interest and computational
metrics for future regression analysis. Examining the database was useful for diagnosing
computational problems as they occurred and allowed for on-the-spot corrections. These
corrections were often re-running the sample due to I/O issues or file corruption.

Variations were mapped to 10,000 base windows to bucket the variations for visu-
alization purposes. These windows were plotted in a Manhattan plot-type graph with
region number and chromosome on the x-axis, while the y-axis was the number of vari-
ations found in the region. Computations that failed to produce expected results across
the genome would have entire chromosomes missing, which indicated a computational
problem. Samples which failed this test were re-run and all were successfully recovered.

To shield against outliers, a strategy was taken to limit the right-tailed variations
to being within a standard deviation of the average variant counts across the samples.
Since an alignment cannot produce fewer than zero variations, the data are right-skewed

https://datacommons.cancer.gov/repository/cancer-data-service
https://datacommons.cancer.gov/repository/cancer-data-service
https://isb-cgc.org
https://datacommons.cancer.gov/analytical-resource/isb-cancer-gateway-cloud
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but the validation would allow the left side to be arbitrarily low and only check against
the right side. This is because we would not necessarily expect an arbitrary low count
of variations to be an outlier since it is possible that only a handful of variations could
lead to cancer. On the other hand, it is difficult to imagine that millions of variations
would be required for oncogenesis and more likely this related to mis-matched samples
(or some other error). In any case, with the average total variation count (not restricted to
high-confidence somatic to capture a broader section of outliers) being 1,651,974 and the
standard deviation being 4,090,131, no left-side values would fail the test even if they were
not excluded. All variant counts that then fell above 5,742,105 variations were discarded as
outliers using this methodology and are reported in Table S3. This was a total of 44 out of
the 1386 finished computations.

An additional strategy used for quality control was that all downloads were checked
against their md5sum hashes (mathematical representations of data that differ even if a
single bit is changed in the data) to verify there was not a download-related corruption
issue. There were several samples that were only partially transferred during the download,
and a simple retransfer was able to correct this.

A final validation was performed after the BigQuery tables were ingested. The tables
were validated to have the expected number of samples and verify that variant counts
matched what was seen in the raw VCF files.

4. Discussion

Here, we present a dataset which covers 1342 WGS cancer-associated SNV calls across
18 different cancer types as defined by TCGA. These data cover an assortment of variants
within the whole genome and offer an opportunity for researchers to deeply dive into
differences between normal and cancerous tissue within the same patient.

The pipeline itself, as illustrated in Figure 1, can be used by researchers as a blueprint
to run their own analysis on normal–tumor paired data either from the TCGA or other
studies. The software provided in the associated GitHub repositories can be modified to
support non-TCGA content and accelerate the computational component to many research
questions by lowering the barrier to performing these computations.

Currently available datasets through TCGA provide only whole exome sequencing
(WXS)-level data. While there is a high number of exome sequences for normal–tumor
paired samples as a result of the TCGA project, whole genome sequences have remained in
raw format. This publication presents the cancer-associated SNVs for many of the WGS
samples published by TCGA. With this dataset in hand, researchers can supplement their
current research with these enriched data without bearing the high computational and
financial cost of determining the variants themselves.

From this study, SARC and LAML data within the TCGA project are interesting
outliers. All the samples within these cancers have an unexpectedly high number of
variants compared with all other cancers in the set. The fact that they appear to be outliers
requires a closer look at the specifics of the data collection and sequencing for these cancers
before using them in further studies as they may be inappropriate datasets for some
contexts. Other cancer types have many samples with strikingly low numbers of variants.
These samples tend to be ones collected early in progression. This matches expectations as
younger cancers would have less time to accumulate mutations. An upper level or ceiling
on variations would not be expected since these samples were taken at various stages of
cancer growth and therefore could have had significant time to continue to mutate. This
finding provides confidence on using those specific cancer-associated variations.

These two cancer types, along with KIRP, also show some interesting differences
compared to the other cancer groups with reference to non-coding vs. coding variation
counts. Within this study, the samples in these cancer types have very close percentages
of coding variants out of the entire variant set. They also have nearly the same ratio of
non-coding to coding variations. This implies that the methodology used for these cancers
in the TCGA project may have had some bias in it. Alternatively, it could imply that
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there is something particular about these types of cancers which weighs variations in this
way. Whether or not non-coding variations have a special meaning for these cancers is an
interesting research topic.

The ability to easily use this dataset was one of the priorities of the authors during
this study. Several exemplary ways to use the variant datasets are examined below.

4.1. Use Case 1: Determination of New Entries to a Cancer Database

Cross-mapping between annotation and variant databases is a common use case to
increase the value of the variant database. In addition to annotation and variant cross-
mappings, a similar approach is used to enrich a variant database with additional entries.
The first use case was to take an existing cancer variant database and determine, quickly,
how many variants are within the new dataset that are not represented in the existing
dataset. We used the BioMuta database [23], which primarily focuses on exome region
variants. As a result of this, we expected that there would be many new variants found in
the high-confidence somatic dataset published in this paper.

We first ingested BioMuta into BigQuery as a custom dataset, following instructions
for BigQuery. From the BigQuery web interface, we constructed a SQL command to
map the high-confidence somatic variations to the BioMuta database to determine how
many variants found from this project are not yet represented in the BioMuta database.
While constructing the SQL command can seem daunting, it uses a relatively easy-to-learn
structured query language (SQL) with which many scientists are already familiar.

An example SQL command is provided here, although there would need to be slight
modifications depending on the details of the BioMuta ingestion.

SELECT v4_0.*
FROM biomuta.v4_0

WHERE NOT EXISTS(SELECT *
FROM ‘isb-cgc-04-0026.fs_scratch.tcga_variants‘

WHERE CHROM = CONCAT(“chr”, CAST(v4_0.chr_id as
string)) AND POS = v4_0.chr_pos);

This command retrieves from the high-confidence somatic variant BigQuery table
all of the variants that exist there but do not exist in the BioMuta version 4 dataset. The
output from this command will return a table with all entries in the somatic high-confidence
variant table that are not found in BioMuta. The count of rows in this table is the number of
variants that are not represented in the BioMuta dataset. We found that there were 7,630,735
(non-unique) variants which were not found in the BioMuta dataset. The duration of the
BigQuery search creating this mapping was 18.3 s.

4.2. Use Case 2: Generation of Summary Statistics of the Dataset

Summary statistics of a dataset can easily be generated by using either the BigQuery
API and generating via Python (or some other language) or generated through the BigQuery
language itself. A simple example is to generate the counts of high-confidence somatic
variations for each cancer type.

SELECT COUNT(CHROM), project_short_name
FROM ‘isb-cgc-04-0026.fs_scratch.tcga_variants‘
GROUP BY (project_short_name);

This SQL command will generate a table of each of the cancer types as well as the
variation counts found in the somatic high-confidence table. It performs this task by reading
the project name and counting the number of hits for each, and then presenting the results
as the output from the command. The project counts from this use case are included in
Table 3.



Onco 2022, 2 141

Table 3. The results from Use Case 2. This table shows the cancer type with the count of variations
found within the table across all samples pooled together.

Project Short Name Variant Count

TCGA-UCEC 17,803,998
TCGA-HNSC 7,492,300
TCGA-READ 507,962
TCGA-STAD 5,280,745
TCGA-PRAD 8,266,914
TCGA-KIRP 9,305,100

TCGA-THCA 4,650,240
TCGA-BRCA 33,526,277
TCGA-LGG 2,410,086

TCGA-LUAD 8,860,456
TCGA-BLCA 8,187,198
TCGA-COAD 8,715,859
TCGA-CESC 8,075,254
TCGA-ESCA 4,026,382
TCGA-UVM 1,081,309
TCGA-SARC 18,088,980
TCGA-SKCM 5,550,475
TCGA-LAML 5,483,984

4.3. Use Case 3: Regenerate a VCF File from the BigQuery Tables

While the data as published in BigQuery tables are useful for cross-table investigation,
it is often required to have a VCF-formatted file for a specific pipeline where the software is
expecting that format. A standard formatted VCF file can be directly generated from the
BigQuery tables, as needed.

Unlike the other use cases, this case requires the output from the BigQuery table as
the input and then processes it into a standard VCF-format file. The table output can
be retrieved either through the BigQuery interface by running a general fetch command
focused on the sample of interest (shown below) and saving the output table in comma-
separated value (CSV) format through the BigQuery tools, or through the BigQuery API in
Python or another language (not shown).

SELECT * FROM ‘isb-cgc-04-0026.TCGA_WGS_HG19_VCF.somatic_hc_variants‘
WHERE project_short_name) = ‘TCGA-44-2656‘

Once the input data have been generated, a simple script can be used to convert
these data into a VCF file (see Code Availability below) by generating the VCF header text
and then looping through each of the entries and outputting into the appropriate VCF
formatting. This script accepts a TCGA ID as a required parameter and can also be given
a specific chromosome and a limit to the number of SNVs returned, if desired. Specific
instructions on running the script are provided in the repository.

4.4. Study Limitations

While this study presents a large, cancer-associated SNV dataset there are several
limitations which should be noted. First is sample size. Even 1342 whole genome cancer
variant sets are likely to be insufficient to untangle cancer comprehensively. Cancer is
an umbrella term capturing diseases of many different tissues; further, even within these
categories, each individual cancer can be caused by different mechanisms of cellular
dysregulation. Therefore, it is unlikely that even a dataset of this size will have enough
explanatory power to answer all biological questions related to even a single type of cancer.
The hope is that this dataset, along with many others that are produced, can help drive
understanding of this disease when supplementing ongoing research.

The dataset is not a comprehensive processing of all of the TCGA sequencing data.
There are around 2200 whole genome normal–cancer pairs within the consortium’s data,
meaning this dataset includes 60% of the TCGA cancer-associated variants. For several
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different reasons including computational, logistical, and a conservative approach to the
data that were in question, the entire set was outside of the scope of this experiment. This
represents both a limitation of this dataset as well as an opportunity for additional data
available to supplement more specific research questions.

Additionally, TCGA data represent a single coherent study and may not represent all
cancer data. The consortium study had various standards for data collection and analysis
which are incredibly useful for comparing data between the different laboratories, but also
run the risk of biasing the entire dataset in some way. Care will need to be taken when
combining this dataset with others to make sure they are compatible.

Any insights gleaned from the dataset would need to be validated against real-world
samples. A purely data-driven approach can only point us in the right direction for
research but cannot currently replace validation-level research that would be required in a
clinical setting.

The TCGA project utilized short-read-focused, next-generation sequencing which,
while revolutionary, does not offer a comprehensive genetic profile of the genome. Longer
read technologies help in examining copy number variation, different techniques are used
for 3D mapping of the genome, non-coding rearrangement, and other block rearrangement
of the genome, and many other techniques are under development to see beyond the
nucleotide-level sequence. All of these techniques, and more, would be useful in a full
examination of the cancer genome. This study reports on the short-read-focused results
and is therefore limited to the information captured by these techniques.

Finally, despite the high-confidence estimates used in the study, there are likely to
remain false positive variants in this set. It is possible that many of these have no or very
low impact, which may be difficult to deduce without a large quantity of cancer genomic
data, far beyond this study.

Even with these limitations, the dataset of 1342 whole genome, cancer-associated,
high-confidence SNV calls provides an exciting opportunity for researchers to supplement
their current and future studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/onco2020009/s1, Table S1: List of all normal–tumor paired
matches considered for variant calling from the TCGA dataset, Table S2: The final list of accepted
VCF files along with the number of somatic SNVs in each sample pair, Table S3: The final list of
rejected VCF files, along with the number of SNVs (if calculated) in each sample pair.
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