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Simple Summary: The microenvironment in which the tumours reside highly influences them and in
this study, a list of 964 genes linked to the tumour microenvironment was studied from the viewpoint
of their contribution to favourable or unfavourable patient disease course prediction (prognosis), in
neuroblastoma, a cancer of children, using various databases including cBioPortal and PCAT. Of
this list, 12 genes, AMBN, COLQ, ELFN1, HAS3, HSPE1, LMAN1, LRP5, MUC6, RAMP2, RUVBL2,
SSBP1 and UMOD showed links to patient prognosis and these genes correlated with important
neuroblastoma patient clinical attributes. Further, the association between these genes with other
genes and factors including long non-coding RNAs (lncRNAs) and miRNAs involved in cancer-
related processes was established using tools including Cytoscape, STRING, MSigDB/BioGRID,
GeneMANIA and Omicsnet. This study revealed the importance of these 12 genes as potential patient
prognosis predictors in neuroblastoma and other cancers.

Abstract: A complex interaction occurs between cancer cells and the extracellular matrix (ECM)
in the tumour microenvironment (TME). In this study, the expressions and mutational profiles of
964 ECM-related genes and their correlations with patient overall survival (OS) in neuroblastoma,
an aggressive paediatric malignancy, were investigated using cBioPortal and PCAT databases. Fur-
thermore, extended networks comprising protein-protein, protein-long non-coding RNA (lncRNA),
and protein-miRNA of 12 selected ECM-related genes were established. The higher expressions
of 12 ECM-related genes, AMBN, COLQ, ELFN1, HAS3, HSPE1, LMAN1, LRP5, MUC6, RAMP2,
RUVBL2, SSBP1 and UMOD in neuroblastoma patients displayed a significant correlation with
patient OS, while similar associations with neuroblastoma patient risk groups, histology and MYCN
amplification were obtained. Furthermore, extended gene networks formed by these 12 ECM-related
genes were established using Cytoscape, STRING, MSigDB/BioGRID, GeneMANIA and Omicsnet.
Finally, the implications of the 12 ECM-related genes in other cancers were revealed using GEPIA2
and the Human Pathology Atlas databases. This meta-analysis showed the significance of these
12 ECM-related genes as putative prognostic predictors in neuroblastoma and other cancers.

Keywords: neuroblastoma; solid tumours; tumour microenvironment; gene networks; extracellular
matrix; lncRNAs and miRNAs

1. Introduction

Neuroblastoma (NB), an aggressive paediatric malignancy of the peripheral sympa-
thetic nervous system, accounts for 7.5% of all cancer diagnoses in children, with 1200 new
cases per annum in the United States and Europe [1,2]. Of these cases, approximately
half can be categorised as international neuroblastoma risk group (INRG) high-risk [3].
At the time of diagnosis, risk groups correlate with patient prognoses and reflect various
clinical attributes including MYCN amplification status (increase in copy numbers of the
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MYCN gene in relation to chromosome 2), stage, grade, age, histological characteristics
and the presence of recurrent segmental chromosomal alterations such as 11q loss [3–5].
For instance, NB cases featuring MYCN amplification represent 50% of high-risk cases and
have a 5-year survival rate of 40–50%. NB is also categorised into five stages, including
1–4 and 4S, with stages 3–4 demonstrating metastatic characteristics [2–5]. NB tumours
display significant heterogeneity, and this property is widely viewed as a hallmark of this
cancer that may reflect morphological, genetic and clinical attributes [6,7]. Accordingly,
some NB tumours undergo spontaneous regression, while others are extremely aggres-
sive and demonstrate relentless progression [6]. Heterogeneity, hence, can influence the
clinical course of the disease and limit the efficacy of current treatment modalities in NB
patients [6–8]. For instance, the detection of heterogenous MYCN amplification reflecting
subclones with differential MYCN amplification status is a diagnostic and therapeutic
dilemma in the field of NB patient treatment. Accordingly, patients presenting with het-
erogenous MYCN subclones may receive the same stratification and treatment as their
counterparts displaying homogenous MYCN amplification. As a result, the patient may
experience overtreatment and undergo unnecessary exposure to high-risk treatments, and
hence suffer long-term adverse effects [8].

Multiple processes and mechanisms may contribute to tumour heterogeneity; for
instance, the role of the extracellular matrix (ECM) in instigating and propagating signals
that may influence tumour cells and therapy response has been reported, while NB tumours
were heterogeneous with respect to the repertoire of ECM proteins they produced [9–11].
Accordingly, the ECM is one of the components of the tumour microenvironment (TME),
along with immune and stromal cells, cytokines and various signalling molecules [12].
The ECM constantly undergoes deposition and degradation, which influences all cancer
hallmarks including cellular bioenergetic alterations and invasion [13]. Recent studies
have shown that the interactions between NB tumour cells and the ECM were based on
both biochemical and biophysical interactions. For instance, ligands in the ECM may be
recognised by tumour cells in the TME, while the ECM stiffness, a biophysical property,
can reduce NB cell proliferation and enhance neuritogenesis [10]. Furthermore, in high-risk
NB, vitronectin, an ECM anchorage glycoprotein related to rigidity and stiffness, was
highly increased [9]. Consistent with the role of the physicochemical properties of the ECM,
tumour cells may be impacted by gene regulatory networks, and cellular and molecular
signalling cascades. Notably, a recent study using in vitro and in vivo models showed that
when MYCN and LMO1 were highly expressed in NB, this in turn led to increased levels in
ECM-related genes such as ITGA3, LOXL3 and ITGA5 [14]. This upregulation enhanced
invasion and metastasis by remodelling the ECM, restructuring the cytoskeleton and the
assembly of adhesion proteins [14].

The presence of large-scale genomic and transcriptomic data deposited to publicly
available databases has provided opportunities for the cancer scientific community to
analyse these data using integrated statistical methods, in order to predict the prognostic
roles of various ECM-related genes in cancers, paving the way for future studies aimed
at the biochemical validation of in silico predictions [15]. Given this background, this
study specifically aimed to use genomic and transcriptomic data deposited in databases to
investigate ECM-related genes in NB in order to identify genes that may predict altered
patient prognoses. In addition, despite the paucity of somatic genetic alterations in NB [16],
the presence of genetic alterations with potential oncogenic or unknown roles may also be
significant; hence, the mutational profiles of ECM-related genes and their putative links
with patient survival were investigated. Additionally, the wider gene networks formed
by the ECM-related genes with other proteins, long non-coding RNAs (lncRNAs) and
microRNAs (miRNAs) may be significant. Accordingly, lncRNAs were often upregulated
in various cancers, and their potential as therapeutic targets and biomarkers has been
established [17]. Further, accumulating evidence implicates numerous lncRNAs in tumour
progression and various cancer hallmarks [18], while miRNAs have long been implicated
in NB through the gene-lncRNA-miRNA regulatory networks they form [19]. Therefore,
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the extended networks formed between ECM-related genes, lncRNAs and miRNAs in NB
may facilitate an understanding of their influence on tumour behaviour, and were thus
investigated in this study.

This meta-analysis found that 12 ECM-related genes correlated with NB patient prog-
nosis based on TARGET expression data in cBioPortal, and patient-derived xenografts
(PDX) for childhood therapeutics (PCAT) databases. These 12 ECM-related genes displayed
a correlation with MYCN amplification, histology status and risk groups, while they were
co-expressed with multiple potentially oncogenic lncRNAs. Using Cytoscape, STRING,
MsigDB/BioGRID, GeneMANIA and Omicsnet, the regulatory networks formed by these
ECM proteins with other proteins and miRNAs were also revealed. This meta-analysis
displayed the significance of these ECM-related genes as indicators of patient prognoses in
NB and other cancers, which warrants further preclinical investigation.

2. Materials and Methods Used to Address the Significance of ECM Genes in NB
2.1. Gene Ontology, Expression and Mutational Profile of ECM-Related Genes, Their Correlation
with Overall Survival, Risk Groups and Histology Status

Using the keyword “extracellular matrix”, relevant genes were obtained from the Gene
Ontology database (http://geneontology.org) (accessed on 15 January 2022) [20] and were
compared to lists from previously published studies [15], resulting in a list of 964 ECM-
related genes. The Gene Ontology database aimed to develop computational models of
biological systems by curating biological functions and molecular processes. In addition,
this consortium endeavoured to cluster genes based on their functional similarities. The
entries in this database varied from results obtained from experimental evidence, or those
inferred from high-throughput genetic interaction screens [20].

Despite the rarity of somatic mutations in NB [16], this list was subjected to the
cBioPortal genetic alteration discovery tool [21] using 1472 NB patient data, including AMC
Amsterdam, 2012 (87 samples); Broad 2013 (240 samples); Broad 2015 (56 samples), and
TARGET 2018 (1089 samples) (Supplementary File S1). The rationale was to conduct a
thorough characterisation of all relevant genetic alterations in the ECM-related genes that
may have oncogenic roles, and are hence relevant to patient prognoses. Briefly, all 4 data
sets were selected in cBioPortal (1472 NB patient data in total), and the molecular profiles
including mutations, structural variants and copy number alterations were selected.

Furthermore, the TARGET group comprising 1089 samples, including 143 samples
with RNA-sequencing expression data under the Z = 2 setting, was used to establish
the percentage of NB patients that displayed high levels of expression of these genes
(Supplementary File S1). Briefly, of the TARGET data set (TARGET 2018, 1089 samples), the
143 NB RNA-seq sample subsection was selected for both genomic profiles and patient sets
in order to query the genes of interest.

Notably, the definition of “higher expression” must be understood in the context
of the Z = 2 setting used to query the indicated genes in cBioPortal. The Z score stands
for distance from the average reported in multiples of standard deviation (SD), which
signifies that the cohort of NB cases expressing higher levels of a particular gene was
located 2 SD intervals away from the mean of the population of patients. This patient-
patient sample comparison may indeed be viewed as a limitation of the cBioPortal database
syntax. Further, the expression-based heatmap generation option in PCAT was utilised
to test the hierarchical clustering of most of the 964 ECM-related genes and the selected
12 ECM-related genes based on NB patient disease stages. Briefly, under the heatmap
visualisation module, TARGET, TARGET-NBL and gene clustering were selected, and the
genes of interest were queried.

The list of 964 ECM-related genes was also subjected to the “KEGG_2019_Human” gene
ontology module in PCAT http://pedtranscriptome.org/?multiple_genes_enrich_r (ac-
cessed on 10 February 2022) [22] (Supplementary File S2). Briefly, the functional enrichment
tool using the “KEGG_2019_Human” option was utilised to query the gene list.

http://geneontology.org
http://pedtranscriptome.org/?multiple_genes_enrich_r
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The correlation of ECM-related genes with the overall survival (OS) of NB patients
was established using a 2- or 3-method selection process. In the former, OS was deter-
mined using 143 NB patient samples with RNA-sequencing expression data in cBioPortal
(TARGET) by firstly selecting the Z = 2 setting, followed by generating and inspecting
the comparison/survival tab on the query result page. This tab also offered subsections,
including survival, that could produce survival plots for individual queried genes. The
second part of the 2-method selection was OS estimation for NB patient samples deposited
to TARGET-NBL in PCAT (http://pedtranscriptome.org/?survival_analysis, accessed on
12 February 2022) using TARGET, TARGET-NBL and OS options and auto-calculate cut-offs,
as shown in the workflow depicted in Supplementary Figure S1A. The “auto-calculate”
option tested all cut-offs between the top and bottom 20% of expression levels of the patient
data and selected the value that best separated high and low expressing patient groups.
As a result of the 2-method selection process, the higher expression of 12 ECM-related
genes (i.e., AMBN, COLQ, ELFN1, HAS3, HSPE1, LMAN1, LRP5, MUC6, RAMP2, RUVBL2,
SSBP1 and UMOD) significantly correlated with altered patient OS. The 3-method selection
process featured the 2-method selection steps, in addition to using PCAT OS estimation
with TARGET, TARGET-NBL and OS options, and “mean” cut-offs; this revealed that the
higher expressions of only 6 of the 12 ECM-related genes (i.e., AMBN, HSPE1, MUC6,
RAMP2, RUVBL2 and SSBP1) were significantly correlated with OS. In order to encapsulate
a greater view of these genes, the 12 ECM-related genes were taken forward for further
analyses (Supplementary File S3). It is noteworthy that through communication with the
PCAT database group, the overlap between NB TARGET at cBioPortal and TARGET-NBL
in the PCAT database was revealed to be substantial, although some differences in cohort
size and the statistical methods used could be envisaged. For all OS predictions in this
section, the built-in Kaplan–Meier calculation tools estimated the survival curves and
log-rank tests based on comparing the two groups involved. In these analyses, greater or
lower OS accounted for the period, long or short, respectively, for which the patient was
alive. Additionally, 249 NB patient data sets with microarray data deposited to cBioPortal
(TARGET) were also studied using Z = 2 and compared to the previous OS data obtained.
Briefly, after choosing the TARGET data set (TARGET, 2018 1089 samples), the last option,
“mRNA expression Z scores relative to all samples (log microarray)”, was chosen for ge-
nomic profiles, and the “somatic mutations” and “putative copy-number alterations” were
deselected; meanwhile, the 249 NB patient samples were selected for patient sets, allowing
for the individual gene of interest to be queried.

The Molbiotools software (https://molbiotools.com/randomgenesetgenerator.php,
accessed on 9 April 2022) was used to generate several gene lists equal in size to the original
ECM-related gene list (as negative controls). In evidence, the organism was selected as
“homo sapiens”, the gene list was set at “964 genes” and 3 random gene sets were generated.
OS was determined using 143 NB patient samples with RNA-sequencing expression data
in cBioPortal (TARGET) by first selecting the Z = 2 setting, followed by generating and
inspecting the comparison/survival tab on the query result page. This result was compared
to the output of establishing OS using the original 964 ECM-related genes.

Further to OS estimation, the PCAT database enabled covariate analyses using Cox
proportional hazard model and for instance, the HR for clinical attributes, such as histology
in NB patient groups, was determined. Briefly, by using TARGET, TARGET-NBL, and
OS options and auto-calculate cut-offs, and selecting the covariate as “histology”, this
analysis was possible. By definition, HR compared the relative risk of death between
groups. Furthermore, the correlation of the selected ECM-related genes with MYCN
amplification was also established using 143 NB patient samples bearing RNA-sequencing
expression information in cBioPortal (TARGET) by applying Chi-square (Z = 2). Briefly, of
the TARGET data set (TARGET 2018, 1089 samples), the 143 NB RNA-seq sample subsection
was selected for both select genomic profiles and patient sets to query the genes of interest
(Z = 2). Under the comparison/survival tab of the results section, the “clinical” subsection

http://pedtranscriptome.org/?survival_analysis
https://molbiotools.com/randomgenesetgenerator.php
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was selected; this option provided numerous statistical tests relating to clinical attributes.
MYCN amplification, for instance, could be queried in the search bar.

For risk stratification of the TARGET data set (TARGET 2018, 1089 samples), the
143 NB RNA-seq sample subsection was selected for both genomic profiles and patient sets
in order to query the genes of interest. Further, the plots tab of the cBioPortal results page
was selected, and on the horizontal axis, mRNA profile was selected, while on the vertical
axis clinical attributes including risk groups were chosen. The raw data for the risk groups
were downloaded and analysed with GraphPad using Welch’s t-test since the raw data did
not necessarily follow a normal distribution.

Risk stratification in NB was based on a 5-year event-free survival (EFS) reported by
the INRG, whereby very low, low, intermediate and high-risk NB patients displayed a
5-year EFS of >85%, 75–85%, 50–75% and <50%, respectively [3]. EFS was defined as the
timeframe after obtaining the primary treatment in which the patient did not experience
events associated with cancer that the treatment aimed to prevent or delay. Consistently,
low-risk NB were patients displaying MYCN non-amplification, presenting localised or
metastatic disease, and who were younger than the age of 18 months. Approximately
50% of high-risk cases displayed MYCN amplification, while the other 50% demonstrated
other high-risk stratification criteria [3–5]. In order to gain more information about the
biological roles of the 12 ECM-related genes, the compartment subcellular database was
utilised. The compartment subcellular database integrated data from large screens, text
mining and in silico predictions about the subcellular locations of proteins (https://www.
genecards.org/Guide/GeneCard#compartments, accessed on 13 February 2022) (https:
//compartments.jensenlab.org/Search, accessed on 13 February 2022).

The list of 12 ECM-related genes was also investigated using the gene set enrichment
analysis (GSEA) database under the molecular signatures database tab; the “investigate
gene sets” and hallmarks module were selected, reporting p- and q-values assessing statisti-
cal significance (<0.05) and false discovery rate (FDR) (<0.05), respectively [23,24].

2.2. cBioPortal, PCAT, MSigDB/BioGRID, STRING, GeneMANIA, Omicsnet and Cytoscape for
Network Analysis for the Selected ECM-Related Genes

To ascertain the network connectivity of the ECM-related genes, multiple integrated
bioinformatics tools were used. Briefly, of the TARGET data set (TARGET 2018, 1089 samples),
the 143 NB RNA-seq sample subsection was selected for both genomic profiles and patient
sets in order to query the genes of interest. Further, the co-expression tab of the results
section was selected, and the “show only positively correlated genes” option was selected,
while the plot could be modified by adding log scales and regression lines. The assumption
of “find genes in mRNA expression (RNA-seq-143 samples), that are correlated with the
gene of interest in (RNA-seq-143 samples)” was also selected. This tool featured built-in
Pearson and Spearman tests. Notably, Pearson correlations evaluated linear relationships
among two variables, while Spearman’s correlations evaluated monotonic relationships.
Accordingly, a Spearman correlation of >0.7 was considered a strong positive correlation,
while each relevant ECM-related gene correlated positively or negatively with numerous
other lncRNAs; only the top positively correlated lncRNA was chosen. In general, 2745
lncRNAs have been recognised by cBioPortal [25].

Further, in the PCAT portal, the pairwise correlation module was utilised to assess
the Pearson correlation between the 12 ECM-related genes (http://pedtranscriptome.
org/?multiple_genes_pairwise_cor, accessed on 14 February 2022) by selecting TARGET,
TARGET-NBL and Pearson. The underlying R and p-values produced by this tool are
reported in Supplementary File S4.

Furthermore, the protein-protein interaction module of STRING software was used
to predict the protein-protein interactions between the 12 ECM-related genes [26]. This
database allowed for the analysis of protein-protein network biology. Briefly, the “multiple
proteins” option was selected and the gene list was provided.

https://www.genecards.org/Guide/GeneCard#compartments
https://www.genecards.org/Guide/GeneCard#compartments
https://compartments.jensenlab.org/Search
https://compartments.jensenlab.org/Search
http://pedtranscriptome.org/?multiple_genes_pairwise_cor
http://pedtranscriptome.org/?multiple_genes_pairwise_cor
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Furthermore, MSigDB/BioGRID database prediction of the interaction of the 12 ECM-
related genes was conducted using the integrated BioGRID module in GSEA/MSigDB
database [23,24,27]. This module is comprised of annotated gene sets embedded in GSEA.
Accordingly, using the GSEA database under the molecular signatures database tab, the
“investigate gene sets” was selected and the “NDEx Biological Network Repository” was
launched. On the result page, the protein-protein interaction tab was selected, resulting in
the BioGrid predicted network [27,28].

In addition, GeneMANIA was utilised to expand the external networks of the 12 ECM-
related genes (https://genemania.org, accessed on 20 February 2022) [29]. GeneMANIA
used a gene ontology weighting-based system to generate scores for all biological processes
attributed to interacting genes. Briefly, the 12 ECM-related genes were entered into the
search bar located in the upper right section of the main tool page.

Cytoscape version 3.9.0 and NDEx v2.4.5 were also used to investigate and visualise
the network connectivity of the 12 selected ECM-related genes with other genes and
miRNAs [28]. Notably, Cytoscape is an open-access tool that facilitates the analysis and
visualisation of relevant networks. Briefly, in the downloaded Cytoscape tool, a new session
was launched and the ECM-related genes were investigated for NDEx, with the resulting
network being exported to NDEx for better visual representation. Subsequently, the 1-step
neighbourhood interactions were selected to zoom into individual interactions.

Finally, Omicsnet, a tool designed to visualise biological networks, was used for the estab-
lishment of network interactions (https://www.omicsnet.ca, accessed on 15 February 2022).
Briefly, the 12 ECM-related genes were submitted to Omicsnet under the gene module by
selecting official gene symbols; this allowed for proceeding to the selection of the protein-
protein/IntAc interaction options. Due to the complexity of the network, the initial search
was refined to the most highly connected nodes, including LMAN1, HSPE1, RUVBL2 and
SSBP1, and the analysis was repeated with these genes. Further, the “function explorer”
and “module explorer” were submitted, and 3D visualisation and some stylistic changes
were implemented. The resulting subnetwork was then exported. Omicsnet featured
experimentally validated protein-protein interaction data using the official gene symbol
option [30].

2.3. Validation of the Significance of the 12 ECM-Related Genes in Other Cancers

As a means of validating the significance of the 12 ECM-related genes in the wider
context of cancer, the Human Pathology Atlas and TIMER2 databases were utilised. Briefly,
the prognostic prediction of the 12 ECM-related genes was investigated across cancer
types using the Human Pathology Atlas (https://www.proteinatlas.org/humanproteome/
pathology, accessed on 18 February 2022). Further, by choosing the pathology tab in the
results section, the Kaplan–Meier survival curve in addition to other information was
obtained. The tool featured built-in Kaplan–Meier survival analyses to establish favourable
or unfavourable categorisations.

Using the GEPIA2 DIY module (http://gepia2.cancer-pku.cn/#index, accessed on
19 February 2022) and the boxplot and “match TCGA normal tissue” options, the expres-
sions of the relevant ECM-related genes were investigated in other cancers [31]. This
programme reported log2 fold change (log2FC) of the tumour, and matched normal tissue
by applying a cut-off of 1 and a p-value of less than 0.01, while the statistical significance
of the tests was determined using the built-in one-way ANOVA tool. All figures were
generated in Adobe Photoshop software 2021.

2.4. Correction for Multiple Testing

In this section, FDRs representing correction for multiple testing were undertaken
for all the results obtained in this study using the https://tools.carbocation.com/FDR
(accessed on 9 April 2022) tool, and have been reported by figure number in Supplementary
File S5. In evidence, when conducting parallel hypothesis tests, FDR (q-values) may be used
to correct for false positives, while retaining potential biologically meaningful findings.

https://genemania.org
https://www.omicsnet.ca
https://www.proteinatlas.org/humanproteome/pathology
https://www.proteinatlas.org/humanproteome/pathology
http://gepia2.cancer-pku.cn/#index
https://tools.carbocation.com/FDR
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3. Results Supporting the Role of the 12 ECM Genes in NB
3.1. ECM-Related Genes Were Overexpressed in NB Patients, Showed Mutational Profiles, and
Correlated with Risk Groups, MYCN Amplification, Histology and Overall Survival

cBioPortal mutational profile analysis of 964 ECM-related genes was conducted on
1472 NB patient samples (Amsterdam, Broad 2013 and 2015, and TARGET), as mentioned
in the Materials and Methods section (Supplementary File S1). Although multiple somatic
genetic alterations have been identified and extensively investigated in NB, including
ALK actionable mutations [32], this does not preclude characterising unappreciated al-
terations in other genes [33], including those linked to the ECM which provide a frame-
work for pivotal interactions between the TME and tumour cells. These alterations in-
cluded amplifications, fusions, missense and truncating mutations, deletions, splicing
mutations and structural variants. Moreover, the corresponding patient sample identifier
was recorded in Supplementary File S1, which facilitated obtaining clinical attributes from
these anonymised samples. Accordingly, the vast majority of the genetic alterations were
of unknown significance, and typically present in less than 1% of NB patient populations.
For instance, RAMP2 amplification was detected in 0.1% of NB patient samples deposited
to cBioPortal including patient TARGET-30-PALJVX. A closer inspection of this sample
revealed that the corresponding patient was a 5-year-old male whose OS was 95 months.
Although NB molecular subtypes inclusive of mesenchymal and adrenergic have been
reported [34], these subtypes have not been widely characterised across patient samples
currently, nor have they been applied to patient sample databases; hence, these were not
implemented in this analysis.

Notable genetic alterations obtained for the list of 964 ECM-related genes with puta-
tive driver predictions included EPHA3 A629 (NBL44), ITGA11 X931_splice (TARGET-30-
PASXIE), NF1 X2397_splice (TARGET-30-PATHYK) and NF1 Q347* (TARGET-30-PATVTL),
among others, which may be of significance. Also reported in this datasheet was the
percentage of patients that displayed higher expression levels of the ECM-related gene of
interest, based on RNA-sequencing information of 143 NB patients in cBioPortal (TARGET).
For instance, 6% of NB patients displayed higher expression levels of A2M compared to
their non- or low-expressing NB patient counterparts, as defined earlier. In addition, using
the TARGET-NBL expression data set in PCAT, the hierarchical clustering of most of the
964 ECM-related genes based on NB patient disease stage (II, III, IV, IVs) was determined,
although not revealing an evident stage-based pattern (Supplementary File S1). Collec-
tively, the mutational and expression profiles convey the significance of ECM-related genes
in NB, and may support the establishment of a blueprint for future mutational studies
aiming at linking these genetic alterations with phenotypes and patient prognosis. Further-
more, the list of 964 ECM-related genes was subjected to KEGG gene ontology analysis
(Supplementary File S2). This analysis revealed the enrichment of terms including ‘extra-
cellular matrix organisation’, ‘degradation of extracellular matrix’, ‘collagen formation’
and ‘integrin cell surface interactions’ (Supplementary File S2). This step was essential to
validate the relevance of the gene list.

Furthermore, all 964 ECM-related genes were studied for patient OS based on RNA-
sequencing information of 143 NB patients in cBioPortal (TARGET) under Z = 2 setting and
the TARGET-NBL data set in PCAT OS estimation using “auto-calculate” cut-offs (2-method
selection) (Supplementary Figure S1A) [22]. The vast majority of the ECM-related genes
did not correlate with patient prognoses (p-value > 0.05), hence were not taken forward
(Supplementary File S3); approximately 5% were linked to altered patient prognoses.

Only 12 genes (i.e., AMBN, COLQ, ELFN1, HAS3, HSPE1, LMAN1, LRP5, MUC6,
RAMP2, RUVBL2, SSBP1 and UMOD) displayed significantly altered OS using both
databases, and these were selected for further investigation (2-step selection process)
(Supplementary File S3; Supplementary Figure S1A). This list of 12 ECM-related genes also
displayed upregulation in 0.7–7% of NB patients compared to other NB patients who did
not display elevated levels of these genes (Figure 1A). In this view, the unaltered samples
have not been shown. Consistently, the hierarchical clustering of these 12 ECM-related
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genes based on the TARGET-NBL data set in PCAT and patient disease stages, revealed the
close clustering of RAMP2, RUVBL2, SSBP1, HSPE1, UMOD and AMBN (Figure 1B).
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Figure 1. The expression profiles of selected ECM-related genes in NB patients. (A) The relevant
percentages of NB patients displayed increased levels of each ECM-related gene. For instance, 2.2%
of NB patients show upregulation of AMBN compared to their non- or low-expression NB patient
counterparts. The pink and blue colour coding represents a high and low expression of the relevant
genes in NB patients. The resulting heatmap is based on expression values in part A, and the red
and blue colour coding of the heatmap represents higher and lower gene expressions, respectively.
The data were obtained from studying 143 NB tissue samples with RNA-sequencing information
in cBioPortal (TARGET) (Z = 2). The unaltered samples were excluded from this view in order to
improve figure resolution. (B) TARGET-NBL expression data set in PCAT hierarchical clustering
of the 12 ECM-related genes based on NB patient disease stage (II, III, IV and IVs), revealing the
closer clustering of RAMP2, RUVBL2, SSBP1, HSPE1, UMOD and AMBN, although strict stage-based
patterns were not evident.

Moreover, the expressions of 9 of 12 ECM-related genes (i.e., AMBN, ELFN1, HSPE1,
LRP5, MUC6, RAMP2, RUVBL2, SSBP1 and UMOD) correlated with reduced OS, based on
RNA-sequencing information of 143 NB patients in cBioPortal (TARGET) (log-rank test p-
values: 6.262 × 10−4, 0.0468, 2.372 × 10−4, 0.0136, 2.096 × 10−5, 0.0177, 0.0214, 8.18 × 10−3

and 0.0309, respectively) (Supplementary File S3, Figure 2A,C,E and Figure 3A–F); this
also applied to OS obtained from PCAT using auto-calculate cut-offs (log-rank p-values:
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0.00874, 0.0234, 0.00005, 0.0065, 0.00001, 0.00464, <0.000001, 0.00002 and 0.00034, respec-
tively) (Supplementary File S3). Figures 2 and 3 were not combined in order to prevent
reduced resolution.
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Figure 2. Kaplan–Meier curves for OS in NB patients. (A–F) The increased expressions of AMBN,
COLQ, ELFN1, HAS3, HSPE1 and LMAN1 correlated with reduced OS in NB patients (log-rank test
p-values: 2.262 × 10−4, 0.0156, 0.0468, 0.0134, 2.372 × 10−4 and 0.0426, respectively). The data were
obtained from studying 143 NB tissue samples with RNA-sequencing information in cBioPortal
(TARGET) (Z = 2).
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Figure 3. Kaplan–Meier curves for OS in NB patients. (A–F) The increased expressions of LRP5,
MUC6, RAMP2, RUVBL2, SSBP1 and UMOD correlated with reduced OS in NB patients (log-rank
test p-values: 0.0136, 2.096 × 10−5, 0.0177, 0.0214, 8.180 × 10−3 and 0.0309, respectively). The data
were obtained from studying 143 NB tissue samples with RNA-sequencing information in cBioPortal
(TARGET) (Z = 2).
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Inversely, the higher expression of three genes (i.e., COLQ, HAS3, and LMAN1) showed
conflicting correlations, based on RNA-sequencing information of 143 NB patients in cBio-
Portal (TARGET) and PCAT OS estimation using the auto-calculate setting. Namely, using
the former method, COLQ, HAS3 and LMAN1 correlated with reduced patient OS (log-rank
p-values: 0.0156, 0.0134 and 0.0426, respectively) (Supplementary File S3, Figure 2B,D,F);
meanwhile, using the latter method, these three genes correlated with increased patient OS
(log-rank p-values of 0.0468, 0.0049 and 0.0448, respectively) (Supplementary Figure S1A;
Supplementary File S3). As mentioned in the Materials and Methods section, using a stricter
3-method selection workflow, 6 of the 12 ECM-related genes showed significantly reduced
OS using all three methods (i.e., AMBN, HSPE1, MUC6, RAMP2, RUVBL2 and SSBP1)
(log-rank p-values for TARGET-NBL in the PCAT “mean” setting: 0.01113, 0.00159, 0.00051,
0.02307, 0.00031 and 0.00043, respectively) (Supplementary Figure S1A; Supplementary
File S3); however, the list of 12 ECM-related genes was taken forward. Collectively, these
results suggested the significant role of these 12 ECM-related genes in NB, and that their
expression in NB patients may be of prognostic relevance.

Finally, using 249 NB patient data sets with microarray expression information in
cBioPortal (TARGET), the OS of the NB patients expressing any of the 12 ECM-related
genes was determined. For example, overexpressing LRP5 correlated with reduced OS
(log-rank p-values: 7.98 × 10−6) (Supplementary Figure S1B).

The outcome of running OS estimation using 143 NB patient samples with RNA-
sequencing expression data in cBioPortal (TARGET) under the Z = 2 for three randomly
generated gene lists of equal size to the original 964 ECM-related genes used in this
study was 5–7% statistically significant hits. These hits were comparable to the per-
centage of statistically significant hits obtained from the original ECM-related gene list
(around 5%= 52 genes). This was before implementing the 2- and 3-step selection pro-
cesses described earlier that further restricted the 52 genes to 12 and 6 genes, respectively
(Supplementary File S3). This result drove the premise that the current study has taken a
“classical” approach to the ECM-related genes which showed statistically significant OS,
meaning that each individual gene may indeed play a role in the tumourigenic processes,
and are hence worth taking forward.

Of note, the OS establishment using the PCAT database (with, for instance, the auto-
calculate setting) also allowed for the application of Cox proportional hazard ratio (HR)
analyses for covariates, including histology status. NB patient samples upregulating AMBN,
HSPE1, LRP5, MUC6, RAMP2, RUVBL2, SSBP1 and UMOD genes displayed statistically
significant increased HR (and decreased OS) with the following HR, confidence interval
(CI) and p-values: 0.5 (CI: 0.29–0.87; p-value: 0.014), 0.43 (CI: 0.26–0.71; p-value: 0.001),
0.48 (CI: 0.29–0.78; p-value: 0.003), 0.44 (CI: 0.27–0.74; p-value: 0.002), 0.45 (CI: 0.28–0.73;
p-value: 0.001), 0.4 (CI: 0.24–0.66; p-value: <0.001), 0.46 (CI: 0.28–0.74; p-value: 0.002) and
0.48 (CI: 0.28–0.83; p-value: 0.008), respectively (Supplementary File S3). These specific
patient groups also showed higher HR for unfavourable histology status (also linked
to decreased OS) with the following HR, confidence interval (CI) and p-values: 4.3 (CI:
1.56–12.04; p-value: 0.005), 4.37 (CI: 1.58–12.07; p-value: 0.004), 5.42 (CI: 1.97–14.92; p-value:
0.001), 4.35 (CI: 1.57- 12.04; p-value: 0.005), 5.3 (CI: 1.92–14.61; p-value: 0.001), 4.2 (CI:
1.50–11.55; p-value: 0.006), 4.11 (CI: 1.48–11.43; p-value: 0.007) and 4.61 (CI: 1.67–12.71;
p-value: 0.003), respectively (Supplementary File S3). This result linked these patient groups
with unfavourable histology profiles, suggesting that the expression of these genes and
unfavourable histology status significantly reduced NB patient survival.

Given these results, the correlations between the 12 ECM-related genes with MYCN
amplification status and risk groups were calculated based on RNA-sequencing information
of 143 NB patients in cBioPortal (TARGET). HSPE1 and RAMP2 expressions showed a
correlation with NB patient groups demonstrating MYCN amplification using cBioPortal
built-in Chi-square tests (p-values: 2.58 × 10−3, q-value: 0.014, and 4.52 × 10−4, q-value:
0.05, respectively) (Figure 4A). HAS3 was excluded since the q-value was not significant



Onco 2022, 2 96

based on the built-in cBioPortal Chi-square test, despite being significant using FDR tests
(Supplementary File S5).
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Figure 4. The correlation of selected ECM-related genes with patient clinical attributes. (A) The
correlation of HSPE1 and RAMP2 genes with NB patient groups displaying MYCN amplification
(p-values: 2.58 × 10−3, q-value: 0.014, and 4.52 × 10−4, q-value: 0.05, respectively) (Chi-square
test). (B) RUVBL2 was upregulated in high-risk NB patients, while it was downregulated in their
low-risk counterparts based on Welch’s t-test; p-value: 0.0001, q-value: 0.0012, showing a statistically
significant difference between low and high-risk NB patient cases. The data were obtained from
studying 143 NB tissue samples with RNA-sequencing information in cBioPortal (TARGET) (Z = 2).

Furthermore, RUVBL2 was upregulated in high-risk NB patients compared to their
low-risk counterparts using Welch’s t-test for unequal variances in GraphPad (Figure 4B).
Based on the resulting p-value: 0.0001, q-value: 0.0012, the null hypothesis of equal means
was rejected, hence RUVBL2 was statistically differentially expressed between high and low-
risk groups. In addition, HSPE1, SSBP1 and HAS3 were also upregulated and significantly
differentially expressed in high-risk NB patients compared to their low-risk counterparts
(p-value: 0.001, q-value: 0.006; p-value: 0.0046, q-value: 0.0184; p-value: 0.006, q-value: 0.018,
respectively) (Supplementary File S5).

The high and low-risk stratification was based on a 5-year EFS descriptor reported
by the INRG. Accordingly, very low, low, intermediate and high-risk NB patients were
defined as having a 5-year EFS of >85%, 75–85%, 50–75% and <50%, respectively [3]. These
results collectively suggest that 12 ECM-related genes were significantly correlated with
altered OS prognosis of NB patients, while a subset of three genes correlated with crucial
clinical aspects of this cancer, including MYCN amplification and risk stratification; this
lends support to their significance, warranting further preclinical investigation. Reviewing
the NB literature using the combination of “neuroblastoma”, “extracellular matrix” and the
12 selected ECM-related genes did not yield any results, suggesting that these genes may
have not been investigated within the framework of NB and the ECM. Widening the search
by using “neuroblastoma” and the 12 selected ECM-related genes, however, yielded some
supporting literature (Table 1).
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Table 1. The relevance of the selected ECM-related genes to tumourigenesis in NB.

Gene Name Cancer Type Examples of Roles in Tumourigenesis Reference

HAS3 Neuroblastoma HAS3 potentiated melatonin-based
differentiation in neuroblastoma [35]

LRP5 Neuroblastoma LRP5/6 protected SH-SY5Y cells against
neurotoxicity induced by H2O2

[36]

RAMP2 Neuroblastoma RAMP2 expression was decreased in
IMR-32 cells in hypoxic conditions [37]

RUVBL2 Neuroblastoma RUVBL2 potentiated cell death mediated
by PCI-24781 in SK-N-DZ cells [38]

SSBP1 Neuroblastoma
A gene involved in mitochondrial DNA
replication which may have promising

therapeutic roles
[39]

In addition, the cellular and molecular functions that these genes played in cells were
also investigated. Accordingly, the Genecard link to the compartment database revealed
the roles of the ECM-related genes in subcellular organisation. For instance, LMAN1, an
ER-Golgi intermediate protein, was involved in the recognition of molecules with sugar
residues, and the recycling of molecules in the cell (Table 2). Thus, some of the ECM
proteins on this list may indeed display functions within the cell or relate to the plasma
membrane, which could then in turn impact ECM proteins, functions and processes, hence
justifying the widening of the terms used to include “extracellular-matrix related”.

Table 2. The biological roles of the 12 ECM-related genes, based on GeneCards/compartment
subcellular localisation database and GSEA/hallmark.

Gene Name Subcellular Localisation Database Attributed Role

AMBN Ameloblastin, involved in the structural organisation and mineralisation of the enamel

COLQ Single-stranded homotrimer (collagen-like tail structure) of asymmetric acetylcholinesterase (AChE),
attaches the catalytic subunits of asymmetric AChE to the basal lamina of the synapse

ELFN1 Fibronectin type III domain-containing protein 1 (extracellular leucine-rich repeat), a postsynaptic
protein that regulated the circuit dynamics of the nervous system

HAS3 Hyaluronic acid synthase 3, essential for hyaluronan synthesis, that is a component of the ECM with
structural roles

HSPE1 Heat shock protein family E, a co-chaperonin involved in mitochondrial protein transport and the
assembly of macromolecules

LMAN1 Mannose-specific lectin, ER-Golgi intermediate protein, could recognise sugar residues in molecules
and may be involved in recycling

LRP5 Low-density lipoprotein receptor-related protein 5 implicated in the Wnt-frizzled-LRP5-LRP6
complex that can instigate β-catenin signalling

MUC6 Mucin-6, oligomeric mucus/gel-forming; played a role in the cryoprotection of epithelial layers and
may be implicated as cancer markers

RAMP2 Receptor activity-modifying protein 2, involved in transport to the plasma membrane

RUVBL2 A member of the RuvB family, RuvB like AAA ATPase 2, and is involved in the endoplasmic
reticulum (ER)-associated degradation pathways (ERAD) which impact ER stress-triggered responses

SSBP1 Single-stranded DNA-binding protein, this protein binds to single-stranded DNA, may be involved
in mitochondrial DNA replication

UMOD Involved in the synthesis of the apical membrane of epithelial cells and may be implicated in water
barrier permeability, may also assist neutrophil migration



Onco 2022, 2 98

This list was also validated against the GSEA database under the gene sets/ hallmarks
module, and revealed the enrichment of ‘hallmark MYC target genes’ (p-value: 2.47 × 10−5,
q-value: 1.24 × 10−3) including HSPE1, RUVBL2 and SSBP1 [23,24]. This result was
interesting, since links between MYC-regulated proteins, lncRNAs and miRNAs have
been extensively reported in the literature [40]. Given these results, the gene networks
formed by these 12 selected ECM-related genes with other genes, lncRNAs and miRNAs
were investigated.

3.2. cBioPortal, PCAT, MSigDB/ BioGRID, STRING, GeneMANIA, Omicsnet and Cytoscape
Revealed Network Connectivity of the Selected ECM-Related Genes

The Spearman and Pearson correlations of lncRNAs with each of the 12 ECM-related
genes obtained from cBioPortal revealed evidence of positive correlation, reported in
RPKM values. Accordingly, for each ECM-related gene, only the top positively correlated
lncRNA has been reported, although each ECM-related gene correlated positively or
negatively with numerous other lncRNAs. For instance, AMBN, COLQ, ELFN1, HAS3,
HSPE1, LMAN1, LRP5, MUC6, RAMP2, RUVBL2 and SSBP1 positively correlated with
NRG3-AS1, THUMPD3-AS1, ELFN1-AS1, SLC25A25-AS1, EPB41L4A-AS1, ATP1A1-AS1,
VPS9D1-AS1, GAS8-AS1, EPB41L4A-AS1, PITPNA-AS1 and PITPNA-AS1, respectively
(Spearman correlations: 0.35, 0.56, 0.68, 0.49, 0.46, 0.33, 0.48, 0.46, 0.38, 0.49 and 0.56,
respectively) (Figures 5A–F and 6A–E). Figures 5 and 6 were not combined in order to
prevent reduced resolution. These links were based on NB patient data in cBioPortal, hence
would be directly applicable to this cancer.

No significant lncRNA correlations were obtained for UMOD, although none of the
links presented displayed a strong Spearman correlation (>0.7); however, these correlations
were nonetheless significant, and may bear links to oncogenic pathways in NB and other
cancers. In evidence, THUMPD3-AS1 was associated with non-small cell lung cancer
(NSCLC) self-renewal through the axis of ONECUT2 and miR543 [41], while ELFN1-AS1
enhanced the progression of oesophagal cancer via the gene-miRNA network of GFPT1-
miR-183-3p [42]. Collectively, these data suggest that the selected ECM-related genes in NB
may form networks with lncRNAs that in turn have been implicated in oncogenic processes
in other cancers [43].

The links obtained between the 12 selected ECM-related genes and lncRNAs led to
profiling the other networks formed by these genes in order to understand the extended
gene networks they may form in NB and other cancers. Notably, the networks formed
between the 12 selected ECM proteins were studied using the pairwise correlation module
in PCAT, MSigDB/ BioGRID, and STRING [26]. The former predicted that, for instance,
HSPE1 positively correlated with RAMP2, RUVBL2 and SSBP1 (Figure 7A), with the fol-
lowing correlation (R) and p-values: 0.17 (0.024), 0.46 (1.03 × 10−9) and 0.54 (8.99 × 10−14),
respectively (Supplementary File S4). The red and blue colour coding suggest a positive
and negative correlation, respectively. In agreement with this, the protein-protein inter-
action prediction module of STRING revealed interactions between HSPE1 and SSBP1
(co-expression score: 0.171) (Figure 7B). This score was estimated based on similar pat-
terns of mRNA expression. Furthermore, MSigDB/ BioGRID database prediction of the
interaction of the 12 ECM-related genes revealed interactions between HSPE1 and SSBP1
(score= 0.97) (Figure 7C) [27].



Onco 2022, 2 99

Onco 2022, 2, 7 15 of 28 
 

 

resolution. These links were based on NB patient data in cBioPortal, hence would be di-
rectly applicable to this cancer. 

 
Figure 5. LncRNAs were co-expressed with ECM-related genes. (A–F) AMBN, COLQ, ELFN1, HAS3, 
HSPE1 and LMAN1 positively correlated with NRG3-AS1, THUMPD3-AS1, ELFN1-AS1, SLC25A25-
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Figure 5. LncRNAs were co-expressed with ECM-related genes. (A–F) AMBN, COLQ, ELFN1, HAS3,
HSPE1 and LMAN1 positively correlated with NRG3-AS1, THUMPD3-AS1, ELFN1-AS1, SLC25A25-
AS1, EPB41L4A-AS1 and ATP1A1-AS1 (Spearman correlations: 0.35, 0.56, 0.68, 0.49, 0.46 and 0.33,
respectively). The data were obtained from studying 143 NB tissue samples with RNA-sequencing
information in cBioPortal (TARGET) (Z = 2).
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Figure 6. LncRNAs were co-expressed with ECM-related genes. (A–E) LRP5, MUC6, RAMP2, 
RUVBL2 and SSBP1 positively correlated with VPS9D1-AS1, GAS8-AS1, EPB41L4-AS1, PITPNA-Figure 6. LncRNAs were co-expressed with ECM-related genes. (A–E) (LRP5, MUC6, RAMP2,

RUVBL2 and SSBP1 positively correlated with VPS9D1-AS1, GAS8-AS1, EPB41L4-AS1, PITPNA-AS1
and PITPNA-AS1, respectively) (Spearman correlations: 0.48, 0.46, 0.38, 0.49 and 0.56, respectively).
The data were obtained from studying 143 NB tissue samples with RNA-sequencing information in
cBioPortal (TARGET) (Z = 2).
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Figure 7. Pairwise correlations and network connectivity of ECM-related genes. (A) The ECM-
related genes were inter-correlated; for instance, HSPE1 was positively correlated with RAMP2,
RUVBL2 and SSBP1 with the following correlation (R) and p-values: 0.17 (0.024), 0.46 (1.03 × 10−9)
and 0.54 (8.99 × 10−14), respectively. Red and blue colour coding represent positive and negative
correlations, respectively, based on TARGET-NBL expression data in the PCAT database. (B) STRING
protein-protein interaction module also predicted a correlation between HSPE1 and SSBP1 proteins
(co-expression score: 0.171). (C) GSEA MSigDB/BioGRID database prediction of the interaction of the
12 ECM-related genes revealed the protein-protein interaction between HSPE1 and SSBP1 proteins
(score = 0.97). (D) GeneMANIA network analysis revealed the co-expression of the 12 ECM proteins
with other proteins such as FOXL1, NFATC4, SNRPG, FAM111B and SNRPF (co-expression 98.48%).
The networks displayed functions in ribonucleoprotein assembly and spliceosome function. The 12
ECM-related genes are depicted in purple.
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Furthermore, GeneMANIA network analysis revealed the co-expression of the 12 ECM
proteins with other proteins such as FOXL1, NFATC4 and SNRPF (genetic interaction score:
1.52% and network co-expression score: 98.48%) (Figure 7D) [29]. These network proteins
functioned in ribonucleoprotein assembly, transcription and spliceosome complexes, terms
related to structural and molecular processes. The weights of each interaction are reported
in Supplementary File S5.

In addition, Cytoscape was used to interrogate miRNA-related networks established
by the ECM-related genes, which could further substantiate their extended networks. For
instance, a network formed by RAMP2 in the development of the nervous system described
in TCGA-uveal melanoma (UVM) was established by exporting these data from Cytoscape
to NDEx and selecting 1-step neighbourhood interactions (q-value: 6.02) (Figure 8A) [28].
RAMP2 negatively correlated with hsa-mir-935 (p-value: 1.087 × 10−6, correlation: −0.5139)
(depicted using blue edges) (Figure 8B). In evidence, the mir-935/ HIF-1α axis inhibited
cell proliferation and invasive behaviour in gliomas [44], hence the roles of RAMP2 and
mir-935 and their potential interplay in NB may be further investigated. Using the Omicsnet
portal, the network connectivity of the 12 ECM-related genes was established. RUVBL2,
SSBP1, HSPE1 and LMAN1 displayed the greatest degree of connectivity with 153, 119,
72 and 26 genes, respectively (Figure 8C) [30]. For instance, SSBP1 and RUVBL2 were
linked to JUN, a proto-oncogene. This software allowed for the interrogation of gene
ontology term enrichment of the networks formed. Accordingly, the described networks
showed enrichment for ‘cancers’, ‘signalling molecules and pathways’ and ‘transcriptional
regulation’, bringing into focus their links with oncogenic pathways (Figure 8D). The
relevant p- and q-values (FDRs) were reported in the figure.

3.3. Selected ECM-Related Genes Were Correlated with Patient Prognoses in Other Cancers

Using the Human Pathology Atlas, the association of the 12 ECM-related genes with
favourable or unfavourable patient prognoses in other cancers was reported. Namely,
the expressions of ELFN1, LRP5 and SSBP1 were associated with favourable outcomes
in renal, liver and ovarian cancers, respectively, while HAS3, RUVBL2 and SSBP1 were
associated with unfavourable outcomes in pancreatic, liver and liver cancers, respectively
(Figure 9A). Based on the GEPIA2 DIY module, for example, the expressions of ELFN1 and
RUVBL2 were revealed to be significantly down- or upregulated in liver hepatocellular
carcinoma (LIHC) compared to matched normal, which is in agreement with the favourable
and unfavourable prognostic values obtained in Figure 9A–C. Notably, a log2-fold change
(log2 FC) = 1 and p-value <0.01 were applied, while a one-way ANOVA was used to test
the statistical difference between the tumour and normal tissue groups. The expression
levels were reported in log 2 TPM + 1 (transcript per million).

Reviewing the literature revealed that the role of these 12 ECM-related genes has been
investigated in multiple cancers (Table 3). For instance, strong nuclear and cytoplasmic
staining of RUVBL2 in hepatocellular carcinoma (HCC) was correlated with reduced OS
and recurrence-free survival (RFS), while higher levels of RUVBL2 mRNA only correlated
with reduced RFS in this cancer [45].
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blue colour coding, respectively). (B) The negative correlation of RAMP2 and hsa-miR-935 (p-value 
= 1.087 × 10−6, correlation: −0.5139). (C) RUVBL2, SSBP1, HSPE1 and LMAN1 displayed the highest 
degree of connectivity with 153, 119, 72 and 26 genes, respectively. (D) KEGG gene analysis revealed 
the enrichment of various ‘cancer’ types, ‘signalling’ and ‘transcriptional regulation’ terms. Relevant 
p- and q-values have been reported. 

Figure 8. Cytoscape analysis of RAMP2-miRNA network and network connectivity of the ECM-
related genes using Omicsnet. (A) Cytoscape analyses of RAMP2 in TCGA-UVM (Uveal melanoma)
in the development of the nervous system, established by exporting data to NDEx and selecting
1-step neighbourhood interactions of RAMP2 with other genes and miRNA, yielding a gene ontology
enrichment q value of 6.02. This approach generated correlated nodes for RAMP2 and the edges
between the nodes of this network (positive and negative correlations are displayed using red
and blue colour coding, respectively). (B) The negative correlation of RAMP2 and hsa-miR-935
(p-value = 1.087 × 10−6, correlation: −0.5139). (C) RUVBL2, SSBP1, HSPE1 and LMAN1 displayed
the highest degree of connectivity with 153, 119, 72 and 26 genes, respectively. (D) KEGG gene
analysis revealed the enrichment of various ‘cancer’ types, ‘signalling’ and ‘transcriptional regulation’
terms. Relevant p- and q-values have been reported.
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Figure 9. The validation of the prognostic value and expression of selected ECM-related genes in 
other cancers. (A) Data retrieved from the Human Pathology Atlas signified the association between 
Figure 9. The validation of the prognostic value and expression of selected ECM-related genes in
other cancers. (A) Data retrieved from the Human Pathology Atlas signified the association between
ELFN1, HAS3, LRP5, RUVBL2, SSBP1 and SSBP1 with prognostic predictions in liver, pancreatic,
renal, liver, ovarian and liver cancers, respectively. The pink and blue colour-coding represent
favourable and unfavourable prognoses, respectively. (B,C) ELFN1 and RUVBL2 were down- or
upregulated in liver hepatocellular carcinoma (LIHC), respectively. Notably, a log2-fold change
(log2FC) = 1 was reported in TPM + 1, a p-value <0.01 was applied, and one-way ANOVA was used
to test the statistical difference between the tumour and normal tissue groups in GEPIA2. Tumour (T)
and matched normal (N) sample counts were 369 and 50, respectively.
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Table 3. The relevance of the selected ECM-related genes to tumourigenesis pan-cancer.

Gene Name Cancer Type Examples of Roles in Tumourigenesis Reference

AMBN Osteosarcoma

AMBN promoted osteogenic differentiation by
inactivating Src, AMBN induced tumour

suppression and sensitivity to doxorubicin
through the AMBN-Src-Stat3 axis

[46]

HAS3 Urothelial carcinoma
HAS3 downregulation was correlated with
tumour grade, invasion and metastasis in

urothelial carcinoma
[47]

HSPE1 Clear cell renal cell carcinoma
(ccRCC)

HSPE1 was significantly downregulated in
patient samples of ccRCC [48]

LMAN1 Microsatellite instability
(MSI)-high colorectal cell lines

LMAN1 displayed a high mutation frequency
in microsatellite instability-high colorectal

cancer cell lines
[49]

LRP5 Gastric Cancer LRP5 promoted gastric cancer via the
Wnt/β-catenin pathway [50]

MUC6 Gastric Cancer
MUC6 promoter methylation led to

downregulating of this gene that promoted
gastric cancer progression

[51]

RAMP2 Lung cancer RAMP2 downregulation in lung cancer was
correlated with high tumour grade [52]

RUVBL2 Hepatocellular carcinoma
RUVBL2 mRNA overexpression was correlated
with reduced recurrence-free survival (RFS) in

hepatocellular carcinoma
[45]

SSBP1 Triple-negative breast cancer
(TNBC)

SSBP1 downregulation in TNBC promoted
metastasis in both in vitro and in vivo models [53]

4. Discussion

Scientific views on the ECM have shifted from describing it as a structure with inert
scaffolding properties, to a hugely dynamic network composed of proteins, proteoglycans
and glycoproteins that collectively allow for the amplification of signals and the mainte-
nance of its structural integrity [54,55]. ECM is present in all solid tissues, and is regarded
as a regulator of cell phenotype and behaviour [56]. Accordingly, tumours respond to
both biochemical signals and physical forces, including traction and compression [10,55],
and changes in ECM stiffness and its dysregulation have been regarded as a hallmark
of cancer [13]. Consistently, tumour cells with the greatest genotypic and phenotypic
adaptability will respond to ECM stiffness alterations and dysregulation, thereby influenc-
ing ECM remodelling into more favourable environments to support their survival and
migration [57–59]. In turn, aberrant ECMs can influence DNA repair mechanisms and
induce genetic instability [56,59,60]; hence, the interplay between tumour cells and the
ECM is of immense significance in tumour biology. On these grounds, the relationship
between ECM-related genes in an aggressive paediatric malignancy of the sympathetic
nervous system, NB, was investigated in this study. Previous studies have reported that
the ECM composition in 3D cell line cultures and organoids allowed for the realistic reca-
pitulation of the TME, and relevant ECM- and tumour cell-TME interactions. For instance,
in one study, collagen-based scaffolds were supplemented with nanohydroxyapatite and
glycosaminoglycans, usually found in the bone marrow, a common site for NB metastasis,
which permitted NB cell migration and cluster formation [61]. Another study showed that
NB patient-derived xenograft (PDX)-derived organoid systems responded to the addition
of foetal bovine serum (FBS) and basic fibroblast growth factor (bFGF), and displayed
more aggressive behaviour in culture [62]. Further to the significance of the composition of
the ECM, the prognostic role of ECM-related genes was also of significance, and this was
investigated in the current study using a myriad of databases and integrated bioinformatics
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tools. Accordingly, a list of 964 ECM-related genes was obtained from Gene Ontology
databases and published studies [15,20], and was subjected to cBioPortal mutational profile
analyses based on 1472 NB patient samples from various studies deposited to this database.
This analysis, for the most part, yielded genetic alterations of unknown significance with
low prevalence (<0.5%) in the NB patient study cohort, while a small fraction of the genetic
alterations displayed putative oncogenic activity. The latter included alterations in EPHA3,
ITGA11 and NF1, while the role of NF1 as a tumour suppressor gene has been previously
reported in NB [63]. 143 TARGET data sets for NB patients contained RNA-sequencing
gene expression information, which was also reported for the 946 ECM-related genes. The
identification of potential driver alterations, in addition to alterations of unknown signif-
icance along with their corresponding gene expression information, may inform future
diagnostic and therapeutic investigations. Further, gene ontology enrichment studies of the
964 ECM-related genes using KEGG gene ontology, revealed high enrichment for collagen
and integrin-related terms, and remodelling of ECM and platelet degranulation, suggesting
a greater enrichment of ECM-related molecular functions. Subsequently, the list of 964
ECM-related genes was subjected to Kaplan–Meier OS analyses that utilised 143 NB patient
RNA-sequencing data sets in the cBioPortal (TARGET), and TARGET-NBL in the PCAT
databases. The data obtained from both databases showed that NB patients expressing
AMBN, ELFN1, HSPE1, LRP5, MUC6, RAMP2, RUVBL2, SSBP1 and UMOD displayed
lower OS. The predictions for three genes (i.e., COLQ, HAS3 and LMAN1) using these two
methods reduced and increased NB patient OS, respectively, which suggested that testing
larger cohorts of NB patient data may help clarify this result; however, currently no other
publicly available databases for NB patient tissue samples are available.

Reviewing the literature revealed that a fraction of the selected ECM-related genes has
been studied previously in NB tumourigenesis, but not necessarily in the context of ECM,
thus limiting the supporting evidence for the predictions made in this study. However,
widening the scope of the search revealed the link between NB and the 12 ECM-related
genes in various aspects of tumourigenesis. For example, a Wnt signalling cascade protein,
LRP5, linked to low-density lipoprotein receptor, displayed a protective role against neuro-
toxicity [36], while RAMP2 expression was decreased in NB IMR-32 cells under hypoxic
conditions [37]. Additionally, the role of RUVBL2, an ER-related protein, in enhancing cell
death mediated by a histone deacetylase inhibitor, PCI-24781, in NB has been reported [38].
These three links may be particularly significant about the TME, hypoxic conditions, and
stress-survival mechanisms in NB [64], while being inherently associated with an important
hallmark of cancer, the deregulation of cellular bioenergetics [65]. Furthermore, the role of
LRP5 and the G171V mutation in this gene in mice revealed that the G171V mutants devel-
oped stiffer bones than their wildtype counterparts, suggesting an exciting link. Despite
this, the stiffness of the ECM (a hallmark of cancer) and LRP5 in the framework of cancer,
requires further investigation [66]. Moreover, HAS3, essential for hyaluronan synthesis, po-
tentiated NB differentiation through melatonin [35], which conveys important ECM-related
links to differentiation-based treatment options in this cancer [67]. Finally, the potential
therapeutic roles of SSBP1 in NB may be of diagnostic and therapeutic significance, perhaps
from the angle of tumour cell bioenergetics and mitochondrial function [39].

In the current study, NB samples expressing AMBN, HSPE1, LRP5, MUC6, RAMP2,
RUVBL2, SSBP1 and UMOD genes showed a higher HR and reduced OS. An unfavourable
histology status also reduced patient OS based on the Cox proportional HR model. The
association between these two variables, however, requires further validation. Further,
HSPE1 and RAMP2 correlated with NB patients with MYCN amplification which is the
strongest predictor of poor prognosis in this cancer [68]. Further, RUVBL2, HSPE1, SSBP1
and HAS3 were upregulated in high-risk NB and correlated with reduced OS, suggesting
the significance of this ECM-related gene. The cellular and molecular functions of the
12 ECM-related genes were also reported in the study (Table 2). For instance, HAS3 was
involved in the biosynthesis of hyaluronan, a component of the ECM that bears structural
significance, which may be linked to oncogenic processes and mechanisms. In melanoma,
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HAS3 overexpression correlated with reduced migration [69]. Collectively, these data,
while significant in forming the framework for the discovery of biomarkers, will require
validation in preclinical study models and prospective clinical trials. In addition, another
limitation of the study was that the 143 NB RNA-seq samples represented 139 NB patients,
suggesting that a very small fraction of patients were overrepresented, which may be
corrected for in future efforts that validate this study.

Furthermore, the positive correlation of the 12 ECM-related genes AMBN, COLQ,
ELFN1, HAS3, HSPE1, LMAN1, LPR5, MUC6, RAMP2, RUVBL2 and SSBP1, with NRG3-
AS1, THUMPD3-AS1, ELFN1-AS1, SLC25A25-AS1, EPB41L4A-AS1, ATP1A1-AS1, VPS9D1-
AS1, GAS8-AS1, EPB41L4A-AS1, PITPNA-AS1 and PITPNA-AS1, respectively, was also
significant since these lncRNAs have been linked to oncogenic processes in previous studies.
In evidence, SLC25A25-AS1 by regulating the miR-195-5p/ITGA2 axis promoted oncogenic
processes in NSCLC [70]. Furthermore, VPS9D1-AS1 promoted prostate cancer progres-
sion through the miR-4739-MEF2D axis [71], while EPB41L4A-AS1 displayed oncogenic
functions in colorectal cancer through the Rho/ROCK pathway [72]. Finally, lncRNA
PITPNA-AS1 through the SOX4-miR-92a-3p axes promoted gastric cancer [73], collectively
providing useful links for future molecular biochemical validations of ECM-related gene-
lncRNA- miRNA-pathway axes in NB, although a mechanistic view of these links is cur-
rently absent from the literature.

Furthermore, in silico efforts using PCAT demonstrated that HSPE1 was positively
correlated with RAMP2, RUVBL2 and SSBP1 in NB. This result was confirmed by hierar-
chical clustering of gene expression, and STRING and MSigDB/BioGIRD protein-protein
interaction predictions, highlighting their relevance. The interactions of these genes have
not been previously reported in the NB literature, which perhaps is the most significant
finding of this study. It is plausible that the interaction of HSPE1, a heat shock-related pro-
tein, and SSBP1, a mitochondrial protein, may be linked through stress response-mediated
processes in NB tumourigenesis, and through extended protein networks to ECM proteins
and processes. Furthermore, GeneMANIA depicted protein-protein interactions between
all 12 ECM proteins with other proteins, including those involved in key cellular processes
such as ribonucleoprotein assembly and spliceosome complexes, which may be linked to
the structural roles of these 12 ECM-related genes.

Cytoscape and Omicsnet revealed that HSPE1, RAMP2, RUVBL2, SSBP1, LMAN1 and
LRP5 formed various protein-protein and protein-miRNA networks, while they displayed
oncogenic roles in multiple cancers [45,48,52,53]. Accordingly, the networks formed by
RUVBL2, SSBP1, HSPE1 and LPR5 were enriched for gene ontology terms such as ‘renal cell
carcinoma’, ‘cancer pathways’, ‘proteoglycans in cancers’ and ‘transcriptional misregulation
in cancer’, which further substantiated links to tumourigenesis, cellular, molecular and
biochemical pathways, and transcriptional regulation input in cancers. Noteworthy is
that in silico predictions of functional interactions between proteins, genes, miRNAs and
lncRNAs are based on high-throughput genetic screens from large consortia.

The associations of selected ECM-related genes including ELFN1, HAS3, LPR5, RU-
VBL2 and SSBP1 with patient prognoses in other cancers including liver, pancreatic, renal
and ovarian cancers was also insightful, and put into context the predictive value of these
genes across cancer types. Previous studies have also implicated the 12 ECM-related genes
in various cancer pathways and processes (Table 3). For instance, LMAN1/ERGIC53, whose
functions pertain to the transit of glycosylated proteins, was highly mutated in microsatel-
lite instability-high (MSI-H) colorectal cell lines [49]. Specifically, in LMAN1-deficient
colorectal cell lines, a protein involved in angiogenesis inhibition, alpha 1 antitrypsin,
was reduced. This downregulation was correlated with larger tumour size [49,74]. Also,
previous studies have shown that RAMP2 expression, when reduced in lung tumours
correlated with higher tumour grades, signified the role of RAMP2 as a suppressor of tu-
mour growth. Interestingly, the transport of calcitonin-like receptors to the cell membrane
fine-tuned the ligand affinity (i.e., adrenomedullin) to this receptor, and this was regulated
by RAMP2, which could then impact tumour growth, since adrenomedullin suppressed
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tumour growth [52]. Consistently, RNA interference (RNAi)-mediated downregulation
of RAMP2 led to increased cell proliferation in this cancer [52]. Furthermore, the role of
single-stranded DNA-binding protein 1 (SSBP1) in triple-negative breast cancer (TNCB)
was investigated. This study showed that reduced expression of SSBP1 promoted metasta-
sis by various mechanisms, including TGFβ-driven epithelial-to-mesenchymal transition
(EMT). Reduced SSBP1 levels also correlated with unfavourable patient prognoses [53]. The
presence of conflicting prognostic values in different cancers attributed to a particular gene
reflects biological diversity and context-dependent cellular and molecular landscapes [75].
Collectively, the evidence of the implication of the 12 ECM-related genes in various onco-
genic processes in other cancers is significant, and lays the groundwork for future studies
aimed at validating these links.

5. Conclusions

Although requiring prospective clinical trial validation, this study has provided sig-
nificant links between these 12 selected ECM-related genes with NB patient prognostic
predictions and pivotal clinicopathological attributes of NB, including patient risk groups
and unfavourable histology, and MYCN amplification status. This study also provided
strong computational evidence to support the interaction of HSPE1 and SSBP1 proteins
in NB and potentially significant networks formed between the 12 ECM-related genes
with various lncRNAs and miRNAs previously linked to tumour progression. Future
preclinical studies may further validate ECM dynamics and the prognostic predictions
reported in this study and pave the way for discovering NB-specific biomarkers linked to
ECM and the TME, and assisting the design of ECM-linked therapeutics. Such biomarkers
and therapeutics ultimately will improve patient survival and quality of life.
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Abbreviations

bFGF Basic fibroblast growth factor
CI Confidence interval
ECM Extra-cellular matrix
EFS Event-free survival
EMT Epithelial-to-mesenchymal transition
ER Endoplasmic reticulum
ERAD Endoplasmic-associated degradation pathways
ENA European Nucleotide Archive
FBS Foetal bovine serum
FDR False discovery rate
FISH Fluorescent in situ hybridisation
GSEA Gene set enrichment analysis
HCC Hepatocellular carcinoma
HR Hazard ratio
INRG International Neuroblastoma Risk Group
LIHC Liver hepatocellular carcinoma
LncRNAs Long non-coding RNAs
miRNAs MicroRNAs
NB Neuroblastoma
NSCLC Non-small cell lung cancer
OS Overall survival
RNAi RNA interference
RPKM Reads per kilobase of transcripts per million
PCAT PDX for childhood therapeutics
PDX Patient-derived xenograft
RFS Recurrence-free survival
SSBP1 Single-stranded DNA-binding protein 1
TME Tumour microenvironment
TNBC Triple-negative breast cancer
TPM Transcript per million
UVM Uveal Melanoma
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