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Simple Summary: Protein structure prediction using computer algorithms has long been a challenge;
however, the recent introduction of algorithms like AlphaFold2 and ESMFold to predict protein
structure has raised the hope for in silico drug discovery, a long sought-after breakthrough. Since the
release of these algorithms, it has not been realized whether these algorithms apply if the structure
is already reported to be available to the algorithms. Still, the confidence in the predicted structure
varies from very low to very high, which is an observation that is unrelated to any physicochemical or
biological property of the protein. Any amino acid chain sequence change fails to predict the structure,
limiting the utility of these algorithms to an academic exercise. Still, researchers continue to search
for the utility of the confidence scores and, despite failing, continue to suggest possible applications,
resulting from the logical belief that if the confidence scores are different and reproducible, this
must relate to the protein structure. To end this misconception, we predicted the structures of 204
FDA-approved therapeutic proteins, with a wishful thought that the confidence scores, if correlated
on this large database, can assist in rank-ordering these proteins for their possible batch-to-batch
variability, which could help to reduce testing when these molecules are developed as biosimilars. We
also studied modified structures that were not predicted since no reference structure was available
for the algorithms to function. This conclusion applies to the two tested algorithms, which showed
comparable and proportional confidence intervals. This conclusion is controversial but deserves the
attention of researchers who continue to hope to find any drug discovery utility for these algorithms.

Abstract: The three-dimensional protein structure is pivotal in comprehending biological phenomena.
It directly governs protein function and hence aids in drug discovery. The development of protein pre-
diction algorithms, such as AlphaFold2, ESMFold, and trRosetta, has given much hope in expediting
protein-based therapeutic discovery. Though no study has reported a conclusive application of these
algorithms, the efforts continue with much optimism. We intended to test the application of these
algorithms in rank-ordering therapeutic proteins for their instability during the pre-translational
modification stages, as may be predicted according to the confidence of the structure predicted by
these algorithms. The selected molecules were based on a harmonized category of licensed ther-
apeutic proteins; out of the 204 licensed products, 188 that were not conjugated were chosen for
analysis, resulting in a lack of correlation between the confidence scores and structural or protein
properties. It is crucial to note here that the predictive accuracy of these algorithms is contingent
upon the presence of the known structure of the protein in the accessible database. Consequently,
our conclusion emphasizes that these algorithms primarily replicate information derived from exist-
ing structures. While our findings caution against relying on these algorithms for drug discovery
purposes, we acknowledge the need for a nuanced interpretation. Considering their limitations and
recognizing that their utility may be constrained to scenarios where known structures are available
is important. Hence, caution is advised when applying these algorithms to characterize various
attributes of therapeutic proteins without the support of adequate structural information. It is worth
noting that the two main algorithms, AlfphaFold2 and ESMFold, also showed a 72% correlation in
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their scores, pointing to similar limitations. While much progress has been made in computational
sciences, the Levinthal paradox remains unsolved.

Keywords: protein structure prediction; AlphaFold2; ESMFold; biosimilars; Levinthal paradox

1. Introduction

The first protein structure prediction algorithm was reported in the late 1960s, yet pro-
tein structure prediction has remained a paradox for a long time. Levinthal’s dilemma was
put forth in a seminal study by Cyrus Levinthal in 1969, titled “How to Fold Graciously”,
in Science [1]. The paradox demonstrated the enormous range of potential conformations a
protein might adopt, indicating that it would be unrealistic to sample all potential configu-
rations and determine the native structure of the protein through a random positioning of
the amino acids. Even though Levinthal did not suggest using a precise algorithm to predict
protein structures, his study generated considerable interest and served as a springboard
for further investigation.

A few years later, in 1973, Christian B. Anfinsen postulated that proteins do not follow
a random configuration process and that the amino acid sequence is theoretically sufficient
to determine the three-dimensional structure of a protein within certain limits [2]. This
postulate posed a significant challenge to the structural bioinformaticians of predicting,
with high accuracy, the structure of proteins based only on amino acid sequence data [3].
Until recently, such ab initio models were lagging behind the accuracy of template-based
approaches, where an experimentally determined, homologous protein structure drives
the modeling of the protein of interest [4].

The creation of the first successful protein folding algorithm, named ‘DREIDING’,
developed by Richard Corey and Irving Kuntz in 1974, represents a significant turning
point in the history of protein structure prediction algorithms. DREIDING predicted the
folding of tiny proteins using a distance geometry technique [5].

In 2020, two parallel breakthroughs were achieved in ab initio modeling, relying
on applying artificial intelligence techniques. AlphaFold demonstrated that predicting
protein structures with high accuracy and at an unprecedented scale is possible and has
already been achieved [6]. Shortly after the publication of the AlphaFold methodology,
DeepMind and EMBL-EBI developed and launched a data resource, the AlphaFold Protein
Structure Database (AlphaFold DB) [7]. Other AI-based structure prediction tools include
ESMFold [8], trRosetta, Robetta, RoseTTA Fold [9], RaptorX [10], and OmegaFold [11]; the
field of protein structure prediction witnessed a groundbreaking advancement.

Specific novel proteins and therapeutics have unique structures that can be predicted
using computational methods like I-TASSER [12], SWISS-MODEL [13], MODELLER [14],
Rosetta [15], Phyre2 [16], etc., which are template-based homology modeling, protein
threading, and ab initio approaches. While prediction methods for protein structure exhibit
substantial variations in their specific procedures, there are fundamental steps that remain
consistent across different approaches. These steps typically involve selecting templates,
reconstructing the structure, refining the predictions, and conducting a subsequent analysis.

Since AF2 depends upon Multiple Sequence Alignment (MSA), it is limited by the
availability of sequential and spatial data and experimentally derived structures present
in the databases, i.e., PDB. By training the network to predict the distances between pairs
of residues in a protein sequence, AF2 infers the 3D spatial arrangement of the protein by
incorporating a combination of convolutional layers, residual connections, and attention
mechanisms within the Evoformer architecture. Further optimization is guided by a scoring
function that considers the various physical and geometric properties of proteins. This
refinement stage helps to improve the accuracy of the final predicted structures. However,
AF2 is trained on PDB, which may not necessarily have the structures of proteins in their
natural fold states (i.e., some of the PDB structures are documented in the presence of
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other proteins or conjugates during the solvation process). This limitation is most clearly
observable for proteins with multiple native structures. Regardless, by analyzing the vast
amount of known protein structures from various databases, AF2 has shown the ability to
generate highly reliable structural predictions for proteins, even without close homologous
structures [17–19].

AlphaFold can predict the structures of proteins even when there are no known
structures for a particular amino acid sequence in the databases. It does not rely solely
on having an exact match in the database. Still, it leverages the information from similar
or related protein sequences and structures to predict the structure of the new protein.
The level of accuracy in such predictions can vary depending on the uniqueness of the
sequence and the availability of related protein information. AlphaFold begins by creating
an MSA, aligning the target sequence with thousands of similar sequences found in large
sequence databases like UniProt. This process helps even when there is no exact match
or known structure for the target sequence. The algorithm identifies patterns of amino
acid co-evolution in the MSA. These patterns reveal which amino acid residues will likely
be near the 3D structure. AlphaFold uses these co-evolution patterns to predict contacts
between amino acid residues, which are critical constraints for predicting the 3D structure.

Like AF2, ESMFold employs transformer models to encode protein sequences 60 times
faster than AF2, eliminating the MSA while maintaining high-quality predictions and
using as many as 15 billion parameters. Its most significant advantage is its ability to
predict structures many times faster than any other tools that are available, making it
excellent for identifying remote homology and conservation in an extensive collection of
novel sequences. ESMFold generates structure predictions using only one sequence as an
input by leveraging the internal representations of the language model. By examining the
co-evolutionary patterns among the amino acid residues in a protein family to capture
valuable information about residue interactions and structural constraints, ESMF makes
accurate predictions. The strength of ESMF lies in its ability to integrate diverse sources of
information and incorporate predicted secondary structure information and contact maps.
These additional inputs provide valuable insights into local structural elements and the
spatial proximity of amino acids, further refining the accuracy of the predicted protein
structures. ESMFold produces a more accurate atomic-level prediction than AlphaFold2
or RoseTTAFold. However, similar to AlphaFold2, it is limited by the training data that
require significant computational resources to run, which can limit its accessibility.

AF2 and ESMF, along with 3D structures, also generate model confidence prediction
scores as predicted local distance difference test (pLDDT) scores and predicted template
modeling (pTM) scores. The predicted local distance difference test (pLDDT) measures
confidence or reliability assigned to each residue in the predicted protein structure. It
represents the predicted accuracy of the local distance difference, the difference between
the predicted and actual distances in the experimentally determined protein structure. The
pLDDT score ranges from 0 to 100, with higher scores indicating higher confidence in
the predicted local structure. Regions with high pLDDT scores (e.g., >80) are considered
to have accurate predictions, while lower scores (e.g., <50) indicate regions where the
predictions may be less reliable. Lower pLDDT scores may also indicate that the fold is in
intrinsically disordered protein regions (IDPRs). On the other hand, the predicted template
modeling, or TM scores (pTM), is the global metric of structure assessment and evaluates
the overall quality of the predicted protein structure by comparing it to experimentally
determined structures of similar proteins available in the Protein Data Bank (PDB). The
pTM score assesses how well the predicted structure aligns with the known structure of a
related protein template. It ranges from 0 to 1, and a higher pTM score signifies a better
alignment and a higher likelihood of the predicted structure being accurate [20–22].

2. Finding Applications

A quest among researchers continued with the hope of finding applications of these
tools on multiple fronts, such as in predicting the structural context of mutations associated
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with a disease or an escape from an immune response. The PubMed database reported
over 825 peer-reviewed articles published on AlphaFold [23] since the 2021 publication
detailing AlphaFold, and only 10 mention ESMFold [24]. Multiple studies have shown
conclusive analyses, with some questioning the utility of these algorithms. The most
robust and reliable protein structures are based on experimentally derived data [25]. These
structures are archived and made publicly available through the Protein Data Bank (PDB),
the global resource of experimentally determined protein and nucleic acid models [26].
However, due to the difficulties in solving the structures of proteins using experimental
techniques, the gap between known protein sequences and experimentally determined
structures continues to grow [27].

With the development of AlphaFold, various applications could be suggested and
are currently underway. AlphaFold has been applied to decipher complex structures
and the mechanisms of binding of multiple proteins in vast domains. Recently, it aided
in unveiling the structure of the human Nuclear Pore Complex (NPC) [28] model using
nucleoporin structure models. It was also employed to solve complicated structures of
the ATP-dsDNA-SMC5/6 protein based on the combination of cryo-EM density maps and
AlphaFold-generated models [29]. Furthermore, it has been used to identify a new distinct
fold in rotavirus group B, revealing its functionality and the predicted stress-inducible
phosphoprotein 1 (STIP1) structure. This study further revealed its role as a neuroprotective
factor against Parkinson’s disease [30–32]. It has also helped predict the structure of a
whole host adhesion device from the Lactobacillus casei bacteriophage J-1. As the human
gut phagosome exemplifies, these AF2-based structure predictions can be further used to
revisit phage genome annotations and efficiently characterize newly discovered phages [33].
Besides this, AF2 has been used to identify the descriptors of variant pathogenicity, aids
in discriminating disorder regions, helps in characterizing local dynamics, differentiates
strong and weak binders, and aids in inferring the binding transitions of apo-holo pairs
of proteins and ligands [34–38]. In contrast, the AF2 model remains relatively stable to
point mutations, and the scores do not vary. Since the potential of AF2 predictions in
the designability of new therapeutics and structural stability testing through mutagenesis
analysis failed, a direct way to use AF2 for predicting ∆∆G upon mutation in the sequence
has not yet been identified [39–41].

The plethora of these studies presents the need to determine the interpretability of the
prediction scores and their applicability to real-world problems. Even though the creators
of these algorithms have said that no importance should be given to the predictability
scores, various studies, as discussed previously, remain proof of the scores’ appropriation
and use as the descriptors of variant pathogenicity and the discriminants of intrinsically
disordered regions, for the characterization of the local dynamics of proteins, to identify
strong vs. weak binders, to infer ligand binding transitions in apo-holo pairs, to analyze the
effect of specific mutations on proteins’ structures, and much more. A vast space requires
searching to determine the further applications of these predicted structures and scores.

3. Testing a New Application

Given the consistent reproducibility of prediction scores (pLDDT and pTM) in Al-
phaFold 2 (AF2) and ESMF, an inference could be made that lower confidence scores may
suggest a higher degree of structural variability. It is important to note that this assumption
is made within the context of the inherent limitations of the algorithms. While the corre-
lation between a lower confidence score and increased structural variability is a logical
observation based on our analysis, it should be considered that this inference is contingent
upon the specific constraints and capabilities of the algorithms under consideration. One
application of this argument can be made in rank-ordering proteins for their structural
instability, which might show up as structural variability when a recombinant protein is
expressed in a culture medium. It can be suggested that a protein with a low pLDDT score
(e.g., pLDDT < 50) is more likely to have structural variability. Thus, when developing
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biosimilars, this rank order of susceptibility to variation can be utilized to create testing
protocols for biosimilars.

It is also interesting to further explore the factors determining confidence scores.
Still, the AF2 developers have suggested that such correlations are not possible despite
the difference in the physicochemical properties of proteins. These two considerations
prompted the study of the confidence scores of the FDA-approved therapeutic proteins
to explore if any conclusions can be drawn from these scores that might help compare a
biosimilar product with its reference product.

4. Materials and Methods
4.1. Data Collection

The investigation into the hypothesis involved retrieving data on FDA-approved
therapeutic proteins with established safety and efficacy. After the removal of redundancies,
a total of 223 molecules were initially gathered from the THPdb database [42] along with
the FDA’s Purple and Orange Books [43,44]. At the outset, any molecule categorized as
a ‘Therapeutic Protein’ was documented. Subsequently, 11 molecules characterized by
conjugation, modification, pegylation, or combination protein features were omitted from
the analysis, resulting in a final set of 204 molecules for hypothesis testing. Given the focus
on predicting protein structures using an AI-based tool, excluding post-translationally or
artificially modified molecules was deemed logical to facilitate a more accurate comparison.

The therapeutic protein’s amino acid sequences were obtained from the FDA’s Purple
Book, Orange Book, patents, and regulatory filings [45] and the Inxight Drug [46], Kegg
Pathway [47], and DrugBank [48] databases. The sequences in the UniProt database were
found to have residual differences compared to the amino acid sequences in patents; hence,
the resources mentioned above were used and cross-checked through these references
for similarity. A total of 8 molecules falling outside the cut-off range of 5 to 1000 amino
acids were removed, leaving 204 molecules behind. This list of 204 products included
188 protein molecules and 16 molecules with amino acid sequence lengths less than 40,
classified as polypeptides and not treated as biological drugs by the FDA [49]. The final
dataset contained two classes: ‘peptides’ for 16 polypeptides and ‘proteins’ for 188 products
(Supplementary File).

Each category’s file contains information on the therapeutics name (both generic and
brand name), accession number from Inxight, KeggDrug, or DrugBank databases, and
Biologics License Application (BLA) number or New Drug Application (NDA) number
acquired from FDA approval documentation. Furthermore, amino acid sequence, sequence
length along with molecular weight computed by the Cusabio tool [50], and the type of
therapeutic molecule (i.e., enzyme, monoclonal antibody, blood factor, cytokine, growth
factor, hormone, inhibitors, fusion protein, recombinant human protein, etc.) are part of
the data.

4.2. Structure Prediction and Scores

The amino acid sequences were subjected to 3D structure prediction using two different
tools: ColabFold using the UCSF ChimeraX (version 1.5) [51] software for AF2 and an
independent Google Colaboratory notebook for ESMF [52,53]. The confidence scores
obtained from the predictions are referred to as ‘AlphaFold pLDDT Score’, ‘AlphaFold
pTM Score’, ‘ESMFold pLDDT Score’, and ‘ESMFold pTM Score’ for all of the molecules
analyzed. These scores provided insights into the predicted accuracy and reliability of
the 3D structures generated by each respective prediction tool and were observed to be
highly correlating.

4.3. Physiochemical Properties

The physicochemical parameters, including hydrophobicity, isoelectric point, extinc-
tion coefficients, and instability index, for all 204 molecules were computed through a
Python script employing the Expasy ProParam package (Supplementary File) [54]. The
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hydrophobicity was calculated using the GRAVY (grand average of hydropathy) index
to measure the aggregation of hydropathy of amino acid residues. The isoelectric point
(pI) was used to account for the pH of the protein at a net neutral charge. In addition, the
theoretical molecular extinction coefficients for both reduced and non-reduced cysteine
residue structures were calculated to determine the protein concentration by measuring its
absorbance at ~280 nm wavelength [55]. Finally, the proteins’ instability index values were
calculated based on the compositions of their amino acids, with higher values indicating
greater instability and more propensity for protein degradation. These attributes were
analogized with the pLDDT/pTM scores to deduce dependence on amino acid sequence,
if any.

4.4. Protein Interactions

LZerD [56], a web server for multiple protein–protein docking, was used to acquire
the interactions of cytokines, hormones, and fusion proteins with their targets, identified
through the DrugBank database. The chosen complexes included one therapeutic protein
with a high pLDDT score and one with a low pLDDT score, as ranked by AF2 and ESMF,
respectively. All target molecules were retrieved from the PDB database. PDB structures
often have non-standard chain names and residue numbering that can cause compatibility
issues with the docking tools. For standardization, chains were renamed, and residues were
renumbered using UCSF Chimera (version 1.17) [57] software. Docked complexes with the
highest rank-sum from GOAP [58], DFIRE [59], and ITScore scores [60] from the LZerD
server were given to the PRODIGY [61] server, and their Gibbs free energy/binding affinity
(∆G), dissociation constant (Kd), Interfacial Contacts (ICs) and Non-Interacting Surfaces
(NIS) values were computed. Combining these methods provided a comprehensive assess-
ment of protein–protein interactions and improved the accuracy of the docking predictions
acquired from the LZerD server. As discussed later, these physiological, chemical, and
functional parameters were employed to analyze their relationships with prediction scores.

5. Results
5.1. Orthogonal Comparison—AF2 vs. ESMF

Evidence from the literature shows the Pearson correlation of the pLDDT scores
between the AF2 and ESMF on a random subset of around 4000 metagenomic sequences to
be ~0.79 [62]. The Pearson correlation for the pLDDT scores from our data of 204 molecules
was found to be ~0.72, whereas for the pTM scores, it was ~0.88.

For a comparison among the peptide and protein classes, we used two cut-offs:
AA < 40 (amino acid count less than 40) and 40 < AA < 1000 (amino acid number be-
tween 40 and 1000), respectively. The first was used to understand the predictability of
polypeptides below 40 amino acids from AF2 and ESMF, which resulted in a correlation of
~0.83 using the pLDDT score and ~0.95 using the pTM score. The second cut-off was of all
of the proteins above 40 amino acids and below 1000, which resulted in a correlation of
~0.69 using the pLDDT score and ~0.84 using the pTM score. The Pearson correlation (corr.)
and correlation coefficient (R2) for the pTM scores from both algorithms agreed better than
the pLDDT scores. Recently, an AF2-based mode, AFDistill, estimated the structural consis-
tency measured by the pTM or pLDDT scores for a given protein sequence. Interestingly,
the experimental results demonstrated that the pTM-based structural consistency scores
positively impacted the model’s performance more than the pLDDT-based scores. This
indicates that pTM scores might be more reliable than pLDDT scores for evaluating protein
structure [63].

5.2. Complexity of Structures and Prediction Scores

It was anticipated that the pLDDT and pTM scores would decrease with an increase in
the complexity of a structure. An increase in sequence length can increase the complexity
of a structure; keeping this in view, no significant correlation (significance threshold:
R2 > 0.5) between the complexity of the protein structure and the pLDDT or pTM scores
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was observed (Figures 1 and 2). The peptides showed a weak positive correlation (R2~0.40)
with pLDDT from AF2 only, whereas a significant correlation from the AF2 and ESMF was
seen for the pTM scores (R2~0.61 and R2~0.63). In conclusion, the pTM scores were shown
to better agree with the pLDDT from AF2 and ESMF.
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5.3. Physiochemical Attributes and 3D Structure

The properties of the constituent amino acids determine the physicochemical prop-
erties of proteins [64]. Since the relationship between the protein sequence and structure
arises entirely from the amino acids’ physical properties, their activities and properties
result from interactions among their constitutive amino acids [65]. Understanding the
relationship between the position-specific properties of amino acid sequences and how
these physiochemical properties influence the structure formation is vital. The amino acid
sequence forms the secondary fold of a protein that plays a critical role in determining
its 3D structure, which, in turn, governs its therapeutic potential, especially in the case of
therapeutic proteins and biosimilars [66,67]. Henceforth, there is a strong interdependence
of the physicochemical properties of proteins on amino acid sequences, secondary struc-
tures, and 3D structures. Understanding this relationship is essential for predicting protein
stability and its implicit dependence on the amino acid sequence.

The prediction scores and physiochemical properties were compared to gain insights
into therapeutic proteins’ physiological and functional properties to enable rank-ordering
proteins for the risk of structural variability that might be used to establish biosimilar-
ities [68]. There was a weak correlation between the proteins and the peptide, but no
correlation was found in the hydrophobicity, isoelectric point, EC, and I-index for the
proteins and peptides.

5.4. Protein Interactions—Effects of Structural Folds

The atomic pLDDT by AF2 and ESMF measures the atomic-level prediction accuracy
based on the degree of agreement between the predicted model and the experimental
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structure. In principle, certain portions of a protein hold therapeutic potential with residues
responsible for binding.

Parathyroid (PTH) structures predicted from AF2 and ESMF, when docked to the
PTHR1 receptor (PDB: Q03431) through the LZerD server and evaluated through the
PRODIGY server, produced ∆G (binding energy) values of −11.1 and −10.3, respectively.
Despite the ability of AF2 to misfold structures, as observed in other studies [69,70], the
predicted structure has a higher prediction score (pLDDT: ~71.00, pTM: ~0.37) as well as
binding energy (∆G: −11.1). Compared to the PTH predicted from AF2, the ESMF-predicted
structure has lower values (pLDDT: ~58.50, pTM: ~0.25, ∆G: −10.3). The evidence from
the literature [71] and residue–residue pair file (.ic) produced by the PRODIGY server
indicated that residues 1 to 37 of PTH contributed to the binding with PTHR1. Few of the
residues involved in the binding—Ser1, Ser3, Glu4, Ile5, Leu7, Met8, Leu11, His14, Leu15,
Ser17, Met18, Glu19, Arg20, and Phe34—of the PTH structure predicted from ESMF had
low pLDDT values, but when predicted from AF2, they had high pLDDT values. It can be
inferred that the lower confidence residues lead to lost interactions, lowering the binding
affinity for ESMF-PTH (Table 1).

Table 1. Interacting PTH-PTHR1 residues of pLDDT from AF2 and ESMF; although they have
different pLDDT scores, they produced similar binding interactions and scores.

PTH Residue PTH Residue Number AF2 Residual pLDDT ESMF Residual pLDDT
(Average)

Ser 1 85.82 48.86

Ser 3 94.47 66.06

Glu 4 95.84 63.25

Ile 5 96.16 65.74

Leu 7 96.63 65.94

Met 8 97.32 68.10

Leu 11 97.24 61.35

His 14 96.93 64.82

Leu 15 97.02 69.84

Ser 17 96.32 66.47

Met 18 96.94 66.27

Glu 19 96.60 48.86

Arg 20 96.58 66.06

Phe 34 97.32 63.25

In some cases, proteins, by nature, can retain their functional properties regardless
of the conformational variation, given that the domains were predicted confidently and
the remaining structure does not hinder binding. To explore any correlation among cy-
tokines, hormones, and fusion proteins, the binding affinity values were calculated from
the PRODIGY server. No statistically significant difference was recorded across the class
protein structure comparisons.

The structural differences in proteins can influence the binding affinity. The ICs, NIS of
proteins, and residue pairs with charged and aromatic side chains are essential for binding.
These residues influence the formation of cationic, electrostatic, and aromatic interactions
between the protein and target molecule, helping to explain the drastic variance in the
binding affinity [72,73]. The ESMF-predicted structures had more robust interactions and
higher binding affinity with their targets regardless of a lower pLDDT (68.90) value.
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These contrasting results led us to conclude that the prediction scores do not relate to
the binding value. Thus, these algorithms cannot be correlated with proteins’ chemical and
functional attributes.

6. Discussion

The bioavailability, pharmacokinetics, and pharmacodynamics of a therapeutic drug
are greatly influenced by its structural elements, as well as the concentration and dosage
of the drug. The extinction coefficient is often used in protein purification, quantification,
and structural studies where accurate protein concentration determination is required for
therapeutics [74,75]. Proteins must be folded into their native stable states to perform
their function, which typically involves binding to their respective targets. They have
the inherent ability of stable fold formation and strong binding interactions, acquired
through adaptation and conservation, even when these changes do not directly increase
the organism’s fitness [76]. The distribution of polar and apolar residues on the surface
mediates protein–target interactions, influencing their specificity and affinity.

Multiple studies have concluded that the charged residues interact with targets
through the exposed surfaces rather than the interface to affect the binding ability of
the interacting proteins. Enhanced intra-molecular electrostatic interactions lower the
desolvation penalty. In contrast, the inter-molecular interactions with charged residues on
the target molecule enable better complementarity and electrostatic steering, resulting in
increased solubility and bioavailability of these proteins in living systems [77]. A study
evaluated the effects of five processing strategies of coordinates generated by AF2 (i.e.,
spatial filtering, the singular value decomposition of a distance map, secondary structure
feature, and relatively accessible surface area (rASA)) on the proteins. This study concluded
that all of the strategies predicted novel features that could aid in some deep learning-based
prediction of the binding sites of proteins through primary sequences only [78].

Physicochemical parameters like hydrophobicity and the isoelectric point also play
crucial roles in these interactions, contributing to the stability of the formation of 3D
folds. The computed list of physicochemical parameters was analyzed to gain insights
into therapeutic proteins’ physiological and functional properties; however, no significant
correlation was found, which could be used as a metric. Proteins with a higher abundance
of residues with a lower half-life tend to have a relatively higher instability index. Therefore,
they may have a shorter lifespan in vivo, and may be more prone to degradation. However,
even when the pLDDT scores are high, few proteins have higher instability index values
(more susceptible to degradation), i.e., choriogonadotropin alfa has an AF2 pLDDT score
of ~83.40, and the chances of its degradation in vivo are high (instability index 67.46).

Similarly, Sargramostim has a confidence-predicted structure from AF2 with a pLDDT
score of 90.10. Still, the instability index is 63.87, indicating that a reliable structure pre-
diction cannot vouch for the structure’s stability in vivo. This eliminates the possibility
of correlating pLDDT scores with instability indexes; hence, a predicted structure cannot
vouch for the stability of a protein in in vivo systems.

AF2 has been used for protein–protein docking in various studies as a structural
template generator alongside physics-based docking algorithms to predict protein–protein
interactions [79,80]. It has also been used to improve peptide–protein docking by predicting
which peptides and proteins interact and by modeling the resulting interaction in combi-
nation with Rosetta. However, studies have also concluded that the accuracy of AF2 in
reproducing protein topology and binding site anatomy is insufficient to ensure that its
models can be reliably used for molecular docking purposes. Consequently, post-modeling
refinement techniques have been suggested to be necessary to improve the accuracy of AF2
models for docking [81,82].

Our study aimed to find interlinking attributes among the AF2 predictions and binding
of proteins through the scores generated for cytokines, hormones, and fusion proteins
to their respective targets. Supposedly, it can be said that if the domains are strongly
predicted, and the rest of the structure does not produce hindrance, strong binding can
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be obtained. Therefore, it is, in fact, possible for a protein residue to have low atomic
pLDDT scores and contribute towards a strong binding affinity with its target, and vice
versa. However, the lack of correlation of prediction scores with the binding affinity value
leads to inconclusive results.

It was also observed that nearly all of the multidomain molecules (mAbs, fusion
proteins, etc.) had higher prediction scores, directing that both AF2 and ESMF perform
well on multi-domain proteins, making single- and multiple-domain molecules equally
likely to have lower scores. Multi-domain molecules with longer sequence lengths tend to
have larger radii of gyration, resulting in increased complexity [83,84]. Generally, a larger
radius of gyration indicates a more extended or less compact structure; therefore, it might
add up to the challenge of structure prediction for prediction tools to model a structure
accurately, resulting in lower scores. However, our results negated this hypothesis.

Since it was demonstrated through previous studies and a comparative analysis in
this study that the pTM-based structural scores were better metrics of comparison than the
pLDDT-based scores, 13 proteins with lower pTM scores were selected (Table 2). Among
these, the proteins with larger radii of gyration and multiple domains resulted in relatively
better prediction scores (i.e., Aflibercept and Tositumomab), while the proteins with smaller
radii of gyration and single domains had relatively lower pTM scores (i.e., Lepirudin,
Parathyroid, and Lixisenatide). The larger molecules might have features that make them
easier to model accurately, such as distinctive folds, recognizable structural motifs, or
simply better MSA, resulting in relatively better scores.

Table 2. AF2 and ESMF prediction score comparison for mutated single and multiple domains.

Query
Coverage (%)

Percentage
Identity (%)

AF
pLDDT AF pTM ESMF pLDDT ESMF pTM

Trastuzumab:

original 99.00 93.73 91.00 0.61 82.01 0.58

one-domain-mutated 99.00 75.43 79.50 0.53 71.90 0.46

all-domains-mutated 3.00 100.00 25.20 0.15 19.19 0.13

Etanercept:

original 49.00 100.00 82.10 0.47 79.23 0.41

one-domain-mutated 37.00 100.00 68.50 0.38 68.34 0.39

all-domains-mutated 0.00 0.00 32.20 0.17 24.84 0.13

Coagulation Factor-VIIa:

original 62.00 100.00 86.10 0.77 87.42 0.79

one-domain-mutated 37.00 100.00 48.80 0.25 43.46 0.24

all-domains-mutated 25.00 40.87 28.10 0.18 25.19 0.14

Darbepoetin alfa:

original 86.00 95.18 87.70 0.84 83.95 0.85

domain-mutated 0.00 0.00 40.00 0.29 41.64 0.19

Furthermore, the prediction power of these AI-based tools also plays a vital role
in determining the quality of the predicted structure. Extending the analysis, monomer
proteins with lower pTM scores were predicted through Yang Servers trRosetta [85,86], and
momentous improvements in the pTM scores were seen, hence backing up the inference
that the accuracy of predicted protein structures increases with the prediction power of an
AI-based tool and the algorithm and data used during its training. The drastic increase
in pTM scores with prediction power and better training data indicates that it might be
possible to predict complex protein structures with accuracy closer to the experimentally
driven structures.
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With the observed improvements in the pTM scores from trRosetta, the dependence of
AI tools on data availability was significantly evident. Furthermore, to test the prediction
models’ extent of dependence on the training data, the domains identified from the NCBI-
CDD database of a few sequences were ‘shuffled’ using Molbiotool’s Random Sequence
Generator [87] to ensure the highest mutation rate. First, a single domain was randomized
through shuffling, followed by shuffling/randomizing all of the domains of Trastuzumab,
Etanercept, Coagulation Factor VIIa, and Darbepoetin alfa to produce novel molecules.
These mutated sequences, which resulted in novel molecules, were run through BLAST
PDB, and their query coverage and percentage identity scores were retrieved. These data
were generated and collected to identify similarities between the randomized sequence
combinations and folds in the UniProt and PDB databases. If the data were available, the
AF2 and ESMF models must have learned these folds and sequence patterns during the
training phase. However, if the coverage and identity scores were extremely low or zero,
the AF2 and ESMF models would rely solely on their trained models to predict the structure.
Since ESMF does not use MSA, it can be anticipated that this model would perform better
than the MSA-dependent model, AF2.

7. Conclusions

The newer structure prediction methods include improving pairwise and higher-order
residue distance constraints from multiple sequence alignments and understanding how
this information is eventually encoded into a predicted 3D structure. These developments
have been reviewed recently, showing how the increasing use of neural network models
forms the backbone of predicting protein structures from their primary sequence. This is
supported by the rise of protein sequence and structure databases, critical resources for
input, and training sophisticated prediction methods [88,89].

The structural complexity of proteins depends on the number of amino acids, resulting
in less confidence in the structure prediction, as predicted by Levinthal. This work shows
that for the category of therapeutic proteins above 40 amino acids, there is a weak or
no correlation between the number of amino acids and their pLDDT or pTM scores. In
the case of polypeptides, a reverse observation showed that a smaller number provides
more complexity in prediction and less confidence in structure predictability, as applied
to polypeptides [90,91]. Both tools correlate significantly positively, representing their
orthogonality. The finding of this paper suggests that the predictions based on sequence
alone cannot be used to describe the folding of a structure and its accuracy. The pLDDT and
pTM scores do not correlate with any structural or functional parameters, and hence, they
cannot be used to determine protein stability in in vivo systems or propose concentration
and dosing for better efficacy, nor can they be correlated with the binding properties of
proteins even though they are all dependent upon the amino acid sequence. It can be
concluded that the surface elements responsible for the physicochemical properties and
binding are not necessarily involved in the folding process to a degree that correlates with
structure prediction; therefore, they do not affect the pharmacology or toxicology of the
protein [92–94].

Even though AF2 slightly tends to misfold structures, it performs reliable predictions
on multidomain molecules. However, these predictions can be significantly improved
with better prediction power tools, concluding that it might soon be possible to predict
complex protein structures with an accuracy closer to the experimental structures with
more robust prediction tools. Few FDA- and EMA-approved biosimilars demonstrated
pLDDT scores greater than 80 using the AF2 predictions; thus, it can be concluded that there
is less variability in the 3D structure, and these molecules may not require extensive testing
to establish molecular biosimilarity. Extending this argument, 188 proteins (excluding
peptides) were rank-ordered in the context of structural variability using the AF2 pLDDT
and pTM scores. Biosimilars with high pLDDT and pTM scores were concluded to have
the highest stability and are less prone to variations in the 3D structure. This assumption
was proven wrong.
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In conclusion, while the current study primarily focused on prediction scores, rec-
ognizing the multifaceted nature of protein structure prediction, we acknowledge the
importance of incorporating additional defining factors for a more thorough evaluation
of prediction algorithms. Beyond prediction scores, factors such as accuracy in secondary
structure prediction, robustness to sequence variability, speed and efficiency, consistency
across protein families, handling large protein complexes, capability in predicting binding
sites, and sensitivity to input data quality are essential dimensions that could further enrich
our understanding. It is evident that the structural complexity of proteins, as highlighted
by Levinthal’s paradox, is not solely dictated by the number of amino acids. Our find-
ings underscore that the pLDDT and pTM scores, while essential metrics, do not directly
correlate with structural or functional parameters. Notably, this study highlights the or-
thogonality of the two tools and suggests that predictions based on sequence alone may not
fully describe the folding process. Although AlphaFold 2 exhibits reliability in predicting
multidomain molecules, improvements with more robust prediction tools are anticipated
for accurate predictions closer to experimental structures. The evaluation of biosimilars
further emphasizes the need for a nuanced understanding of structural variability.

Additionally, the dependency of the AlphaFold 2 and ESMF models on data from
databases like PDB and UniProt underscores the crucial role of training data availability.
Future investigations should identify influential amino acids and address challenges in loop
modeling, ensuring a comprehensive and informed approach to advancing protein struc-
ture prediction methodologies. While ongoing advancements may enhance predictability,
maintaining high confidence in structure predictability is essential for establishing biosimi-
larity and guiding drug development decisions.
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