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Abstract: Diffuse large B-cell lymphoma is one of the most frequent mature B-cell hematological
neoplasms and non-Hodgkin lymphomas. Despite advances in diagnosis and treatment, clinical
evolution is unfavorable in a subset of patients. Using molecular techniques, several pathogenic
models have been proposed, including cell-of-origin molecular classification; Hans’ classification and
derivates; and the Schmitz, Chapuy, Lacy, Reddy, and Sha models. This study introduced different
machine learning techniques and their classification. Later, several machine learning techniques and
artificial neural networks were used to predict the DLBCL subtypes with high accuracy (100–95%),
including Germinal center B-cell like (GCB), Activated B-cell like (ABC), Molecular high-grade
(MHG), and Unclassified (UNC), in the context of the data released by the REMoDL-B trial. In order
of accuracy (MHG vs. others), the techniques were XGBoost tree (100%); random trees (99.9%);
random forest (99.5%); and C5, Bayesian network, SVM, logistic regression, KNN algorithm, neural
networks, LSVM, discriminant analysis, CHAID, C&R tree, tree-AS, Quest, and XGBoost linear
(99.4–91.1%). The inputs (predictors) were all the genes of the array and a set of 28 genes related
to DLBCL-Burkitt differential expression. In summary, artificial intelligence (AI) is a useful tool for
predictive analytics using gene expression data.

Keywords: diffuse large B-cell lymphoma; Burkitt lymphoma; artificial intelligence; machine learning;
artificial neural networks; multilayer perceptron; aggressive mature B-cell lymphomas; predictive
analytics; Molecular high-grade DLBCL; bioinformatics

1. Introduction
1.1. Introduction to Artificial Intelligence Analysis

Varying kinds and degrees of intelligence occur in people, animals, and some machines.
The birth of artificial intelligence (AI) dates back more than half a century. In Alan Turing’s
seminal work, Computing Machinery and Intelligence [1], intelligence was defined as the
computational part of the ability to achieve goals in the world. Alan Turing introduced the
concept of digital computers as opposed to human computers.
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A human computer is a person performing mathematical calculations. The term “com-
puter” was used in the early 17th century but it was not until the 19th century that it became
a profession. For example, the National Advisory Committee for Aeronautics (NACA)
used human computers following World War II in flight research. Digital computers are
machines intended to perform operations which could be performed by a human computer,
in other words, systems that act like humans [1].

In 2007, John McCarthy from the Computer Science Department of Stanford University
defined AI as “the science and engineering of making intelligent machines, especially
intelligent computer programs” [2].

AI is a field that combines datasets with computer science to solve problems and to
make predictions and classifications. There are two types of AI. Weak (narrow) AI is trained
to perform specific tasks. Strong AI includes artificial general intelligence (AGI), which
would theoretically be equal to humans including self-consciousness, and artificial super
intelligence (ASI), which would surpass the ability of the human brain.

AI includes the subfields of machine learning and deep learning. Classical machine
learning is more dependent on human intervention that determines the hierarchy of the fea-
tures. Common machine learning algorithms are linear and logistic regression, clustering,
and decision trees. On the other hand, deep learning does not necessarily require a labeled
dataset and comprises neural networks, such as convolutional [3] and recurrent neural
networks [4] (CNNs and RNNs, respectively). Generative AI refers to deep learning models
that generate statistically probable outputs based on the raw data of images, speech, and
other complex data. A well-known example is the Chat Generative Pre-Trained Transformer
(ChatGPT).

Recent developments within AI have demonstrated the capability and potential of
this technology on several applications including speech recognition, customer service,
computer vision, recommendation engines, and automated stock trading.

1.2. Machine Learnig

Machine learning analysis aims to predict the characteristics of unknown data using a
dataset of samples. Each sample can have one characteristic, or be multi-dimensional (i.e.,
multivariate). In general, there are two types of analyses: supervised and unsupervised
learning [5–11].

Supervised learning is characterized by the presence of target variables and a series of
predictors. It can be divided into classification and regression methods.

Unsupervised analysis is characterized by a series of cases with several characteristics
(variables, inputs, predictors), but without a corresponding target (predicted) variable. The
aim of unsupervised analyses is to identify similar groups within the data (clustering), to
assess the distribution of the data (density estimation), or to simplify the high-dimensional
data into a low-dimensional visualization of two or three dimensions [12].

The classification with examples of types of analysis is shown in Figure 1.

1.3. Types of Data Modeling in Predictive Analytics

AI is revolutionizing the medical field [13]. There are many AI applications in medicine
such as disease detection and diagnosis, personalized disease treatment, medical imaging,
clinical trials, and drug development. In the medical field, AI is a broad term that includes
many types of machine learning analyses and neural networks (deep learning). Each
method has certain strengths and is best suited for particular types of problems.

Supervised models use the values of one or more predictors (input fields) to predict
the value of one or more predicted variables (target or output field). Some examples of
these techniques are decision trees (C&R Tree, QUEST, CHAID, and C5.0 algorithms),
regression (linear, logistic, generalized linear, and Cox regression algorithms), neural
networks, Support Vector Machines, and Bayesian networks. Supervised models allow us
to predict known results.
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unsupervised (used to understand relationships).

Association models identify patterns in the data where one or more entities are as-
sociated with one or more other entities. The models create rule sets that define these
relationships. In this type of analysis, the variables can act as both inputs and targets, and
complex patterns can be identified. Apriori, CARMA, and sequence detection are examples.

Segmentation models divide the data into segments or clusters that have similar
patterns of input fields (variables). In these analyses, there is no concept of output, and the
clustering is performed without prior knowledge about the groups and their characteristics.
When clustering the data, there is no correct or incorrect solution. Their value is determined
by finding interesting groups. Examples are two-step clusters, K-Means clusters, anomaly
detection, and Kohonen networks.

This section classifies the AI methods into three groups: supervised (Table 1), as-
sociation (Table 2), segmentation (Table 3), and additional techniques (Table 4). A brief
description of the different types of analysis is made in the following sections.

Table 1. Supervised analyses.

Bayesian Network C&R Tree C5.0 CHAID
Cox Discriminant GenLin GLMM

KNN Linear Regression Logistic LSVM
Neural Networks QUEST Random Trees SLRM

STP SVM TCM Tree-AS



BioMedInformatics 2024, 4 298

Table 2. Association analyses.

Apriori Association Rules CARMA Sequence

Table 3. Segmentation analyses.

Anomaly K-Means Kohonen TwoStep

Table 4. Additional techniques.

Gaussian Mixture GLE HDBSCAN Isotonic Regression
KDE Modeling One-Class SVM Random Forest Time series
XGBoost Linear XGBoost Tree PCA/FA

1.3.1. Supervised Analyses

The Bayesian network is a visualization method that shows the variables of a dataset
and the probabilistic independencies between them [14].

Classification and Regression (C&R) Tree generates a decision tree that allows us to
predict or classify future observations. It can handle datasets with a large number of variables
or missing data, and the results have quite a straightforward interpretation [15–21].

The C5.0 algorithm builds a decision tree (rule set) and predicts one categorical
variable [15–21].

Chi-squared Automatic Interaction Detection (CHAID) identifies optimal splits by
building decision trees and applying chi-square statistics. The first examines the crosstab-
ulations between predictors and the outcome and calculates the significance. Unlike the
C&R Tree and QUEST, CHAID can generate nonbinary trees (splits of more than two
subgroups) [22–24].

Cox regression creates time-to-event data predictive models. It is a method for analyz-
ing the effect of several variables on the occurrence of a particular event in time.

Discriminant analysis is a multivariate method that creates a predictive model, which
separates groups of observations and calculates the contribution of each variable in the
group [25].

The generalized linear (GenLin) model builds an equation that relates the predictors
(and covariates) to the predicted variable. It includes several statistical models [26].

The Generalized Linear Mixed Model (GLMM) is an extension of the linear model; it
is a flexible decision-tree method for multilevel and longitudinal data [27–29].

Nearest-Neighbor Analysis (KNN) classifies cases based on the similarity to other
cases. Similar cases are near each other, but dissimilar cases are distant. Therefore, the
distance between two cases is a measure of their dissimilarity. This method allows us to
recognize patterns of data without requiring any exact match to any recorded pattern or
cases [30,31].

Common linear regression is a statistical analysis that fits a straight line [25].
Logistic (nominal) regression is analogous to linear regression but with a categorical

target variable (predictor) instead of a numeric one. The target variable can be binomial
(two categories) or multinomial (more than two categories) [25].

Linear Support Vector Machine (LSVM) is useful to use with large datasets with many
predictive variables. It is similar to SVM but linear and better in handling large amounts of
data [32,33].

Neural networks are a simplified type of model that is based on the functional architec-
ture of the nervous system. The process units are arranged into an input layer (predictors),
one or more hidden layers, and an output layer (target fields). The network learns through
training [34–40].

Quick, Unbiased, Efficient Statistical Tree (QUEST) is a binary classification method
for building decision trees. It is faster than C&R Trees [41,42].
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Random trees is a tree-based classification and prediction method that is based on the
Classification and Regression Tree (C&R Tree) methodology [5–7,43].

The Self-Learning Response Model (SLRM) creates a model that can be continually
updated, or re-estimated, as a dataset grows without having to rebuild the model every
time using the complete dataset [12].

Spatio-Temporal Prediction (STP) analysis uses data that contain location data, pre-
dictors, a time variable, and a predicted variable. It can predict target values at any
location [44,45].

Support Vector Machine (SVM) is a solid classification and regression technique that
is useful when the database has very large numbers of predictors [46]. It maximizes the
accuracy without overfitting the training data [47–50].

Temporal causal models (TCM) discover key causal relationships in time series
data [51].

Tree-AS is a decision tree that can use either a CHAID or exhaustive CHAID analysis,
based on crosstabulations between inputs and outcomes [16,17,40].

1.3.2. Association Analyses

Among the several types of association analyses, four types are worth mentioning:
Apriori, Association Rules, CARMA, and Sequence (Table 2).

Apriori analysis searches Association Rules in the data, in the form of “if something
happens, then there is a consequence”. It uses a sophisticated indexing scheme to process
large datasets [52].

Association Rules associate a specific conclusion with a set of conditions. In compari-
son to standard decision tree algorithms such as the C5.0 and C&R trees, the associations
can occur between any of the variables [53–55].

CARMA is similar to Apriori analysis but it does not require input (predictors) or
target (predicted) fields (variables). Therefore, all variables are set at both [56].

Sequence analysis detects frequent sequences and makes predictions. It discovers
patterns in sequential or time-oriented data. The sequences are item sets that form a single
transaction [25].

1.3.3. Segmentation Analyses

Anomaly detection is an unsupervised method that identifies outlines in the data, for
further analysis [57–60].

The K-Means method clusters the data into distinct groups that are fixed. It uses
unsupervised learning to identify patterns in the input data [61–64].

Kohonen analysis generates a type of neural network that clusters the dataset into
groups [65–69].

TwoStep is a type of cluster analysis. Similar to the K-Means and Kohonen methods,
TwoStep does not have a target (predicted) variable. It tries to identify patterns of cases
based on the predictors (input fields). The method has two steps. First, a single pass
identifies subclusters. Then, the subclusters are merged into larger clusters. This method
can handle mixed types of variables as well as large datasets. However, it cannot handle
missing data [70–73].

1.3.4. Additional Analyses

Gaussian Mixture is a probabilistic model that implements the expectation–maximization
(EM) algorithm [74] and determines clusters [75–77].

GLE analysis creates an equation that relates predictors with the predicted variables.
One equation/algorithm is created that can estimate values for new data.

Hierarchical Density-Based Spatial Clustering (HDBSCAN) is an unsupervised method
that finds clusters, or dense regions, of a dataset. In this type of unsupervised analysis,
there is no target field (output, predicted variable), and the analysis tries to find patterns
and clusters within the input variables [78–81].
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Isotonic Regression [82] belongs to the family of regression algorithms [83,84].
Kernel Density Estimation (KDE) utilizes KD Tree or the Ball Tree algorithms for

systematic inquiries [15]. It is a mixture of data modeling, unsupervised learning, and
feature engineering (i.e., extraction and transformation of variables from raw data). Al-
though KDE can include any number of variables and dimensions, it can result in a loss of
performance [85–88].

The One-Class Support Vector Machine (SVM) is a type of unsupervised analysis. This
learning algorithm can be used to identify novelty detection [89]. It is used for anomaly detection
analysis that aims to identify unusual cases or unknown patterns in a dataset [90–92].

Random Forest is an implementation of a bagging algorithm that has a tree as a
model [93]. It is a widely used algorithm of machine learning in which multiple decision
trees are used to reach a final single result [94–99].

Time series creates and scores time series models. For each variable, an individual time
series is created. This type of modeling requires a uniform interval between each measure-
ment. Time series include exponential smoothing, the univariate Autoregressive Integrated
Moving Average (ARIMA), or the multivariate ARIMA (or transfer function) [12,25].

Extreme Gradient Boosting (XGBoost) Linear is based on the gradient boosting algo-
rithm, based on a linear model [100], and it is a supervised learning method [101].

Scalable and Flexible Gradient Boosting (XGBoost) Tree creates a sequential ensemble
of tree models that work together to improve and determine the final output [101].

PCA/FA are powerful data-reduction analyses that allow us to decrease the complexity
of the data. It includes Principal Component Analysis (PCA) and Factor Analysis (FA). PCA
finds linear combinations of the predictors that best capture the variance in the entire set of
variables, where the components are orthogonal (perpendicular) to each other. PA identifies
underlying factors that explain the pattern of correlations within a set of observed fields.
Both techniques aim to find a reduced, small number of derived variables that correctly
summarize the information of the original set of predictors (fields) [102,103]. While PCA
itself is unsupervised, it can be combined with supervised learning methods for tasks such
as classification and regression.

1.4. Diffuse Large B-Cell Lymphoma

Diffuse large B-cell lymphoma (DLBCL) is one of the most frequent subtypes of
non-Hodgkin lymphoma, representing around 25% of adult cases. It originates from B-
lymphocytes of the germinal centers, or from the post-germinal center region. The molecu-
lar pathogenesis is complex, heterogeneous, and follows a multistep process [104–112]. The
best characterized pathogenic changes include BCL6 aberrant expression, TP53 downregu-
lation, BCL2 overexpression, MYC overexpression, immune evasion, abnormal lymphocyte
trafficking, and an aberrant somatic hypermutation [113].

The gene expression of DLBCL has been extensively analyzed using gene expression
microarray technology and immunohistochemistry. Based on the cell of origin, the cases
can be classified into Germinal center B cell-like (GCB) that has a gene expression profile
similar to the normal germinal center B cells; Activated B cell-like (ABC) that has a profile
like the post-germinal center-activated B cells; and an Unclassified Type III heterogeneous
group [104–113].

As a result of deep sequencing studies, several pathogenic models have been proposed:

➀ Schmitz R. et al. identified four DLBCL subtypes: MCD (characterized by MYD88L265P
and CD79B mutations), BN2 (BCL6 fusions and NOTCH2 mutations), N1 (NOTCH1
mutations), and EZB (EZH2 mutations and BCL2 translocations) [114].

➁ Chapuy B. et al. identified five subtypes: a low-risk ABC-DLBCL subtype of extrafollic-
ular/marginal zone origin; two different subtypes of GCB-DLBCLs characterized with
different patients’ survival and targetable alterations; and an ABC/GCB-independent
subtype with an inactivation of TP53, CDKN2A loss, and genomic instability [115].

➂ Lacy S.E. et al. found six molecular subtypes: MYD88, BCL2, SOCS1/
SGK1, TET2/SGK1, NOTCH2, and Unclassified [116].
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➃ Reddy A. et al. created a prognostic model with better performance than the con-
ventional methods of the International Prognostic Index (IPI), cell of origin, and
rearrangements of MYC and BCL2 [117].

➄ Sha C. et al. defined Molecular high-grade B-cell lymphoma (MHG) using a gene
expression-based machine learning classifier [118]. This MHG was applied to a clinical
trial that tested the addition of bortezomib (proteasome inhibitor) to the conventional
RCHOP therapy. This study found that the MHG group was biologically similar
to the high-grade B-cell lymphoma of the Germinal center cell-of-origin subtype
(proliferative and centroblasts), and partially with cases of MYC rearrangement [118].

➅ This MHG gene expression profile was defined by genes of Burkitt lymphoma (BL),
and conferred a bad prognosis of DLBCL [119]. The classifier was downloaded on
github (https://github.com/Sharlene/BDC, accessed on 16 January 2024) and run
on R statistical software [119]. Of note, the gene set tested in the classifier comprised
28 genes [119,120].

1.5. Aim of this Study

The aims of this study were to apply machine learning techniques, including artificial
neural networks, on the diffuse large B-cell lymphoma REMoDLB dataset (GSE117556) [118]
and to reverse engineer the gene expression-based classification into the defined subgroups
of Activated B cell-like (ABC),Germinal center B cell-like (GCB), Molecular high-grade
(MHG), and Unclassified.

2. Materials and Methods
2.1. Materials

The dataset GSE117556 was downloaded from the NCBI Gene Expression Omnibus
webpage. This series of 928 DLBCL patients belonged to the REMoDLB clinical trial. The
last update was 15 January 2019; contact name: Dr. Chulin Shar, University of Leeds, School
of Mole&Cell Biology, United Kingdom [118].

The gene expression was assessed using the Illumina HumanHT-12 WG-DASL V4.0
R2 expression beadchip (GPL14951), with RNA extracted from formalin-fixed paraffin-
embedded tissue samples (FFPET) [118]. Total RNA was extracted from 5 mm paraffin
sections using the Ambion RecoverAll kit standard protocol. The standard Illumina hy-
bridization protocol was used, and the arrays were scanned on a BeadArray reader. The
data were normalized using lumi package in R [118].

The dataset of this study was a retrospective analysis of whole transcriptome data for
928 DLBCL patients from REMoDLB clinical trial, which identifies a subgroup of Molecular
high-grade (MHG) class that presents centroblast-like gene expression, enriched for MYC
rearrangement, double-hit (MYC rearrangement accompanied with BCL2 and/or BCL6
rearrangement), and associated with adverse clinical outcome.

Based on the cell-of-origin classification, 255/928 (27.5%) were Activated B-cell-like
(ABC), 543/928 (58.5%) were Germinal center B-cell-like (GCB), and 130/928 (14%) were Un-
classified (UNC). According to the Sha C. et al. classification of the REMoDLB study [118],
249/928 (26.8%) were ABC, 468/928 (50.4%) were GCB, 83/918 (8.9%) were MHG, and
128/928 (13.8%) were UNC. Correlation between the two classifications showed that the
MHG subtype was mainly included in the GCB subtype, but some cases were included
into the ABC and UNC subtypes (Table 5).

Table 5. Correlation between cell-of-origin classifications.

ABC GCB MHG UNC

ABC 249/255 (97.6%) 0/255 (0%) 6/255 (2.4%) 0/255 (0%)

GCB 0/543 (0%) 468/543 (86.2%) 75/543 (13.8%) 0/543 (0%)

UNC 0/130 (0%) 0/130 (0%) 2/130 (1.5%) 128/130 (98.5%)
Pearson Chi-square test, p < 0.001.

https://github.com/Sharlene/BDC
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Figure 2 shows the different gene expressions of the relevant markers of MYC, BCL2,
BCL6, and CD10 (MME). The MHG group was characterized by a higher expression of
MYC, BCL2 (with exception of the pairwise comparison with ABC), BCL6 (with exception
of GCB), and CD10 (MME) (all p values < 0.05; pairwise comparisons).
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Table 6 shows the clinicopathological characteristics of the REMoDLB study as de-
scribed by C. Sha et al. [118]. Figure 3 shows the survival of the patients according to the
molecular subtypes.
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Table 6. Clinicopathological characteristics of the series.

Age, mean ± STD 62 ± 12.4

Age > 60 573/905 (63.3%)

Male sex 517/928 (55.7%)

Ann Arbor stage III-IV 638/928 (68.8%)

ECOG performance status ≥ 2 105/928 (11.3%)

Serum LDH level > 230 U/L 604/928 (65.1%)

International Prognostic Index (IPI)

0–1 Low 246/928 (26.5%)

2 Low-intermediate 236/928 (25.4%)

3 High-intermediate 281/928 (30.3%)

4–5 High 165/928 (17.8%)

Treatment

R-CHOP 469/928 (50.5%)

RB-CHOP 459/928 (49.5%)

Clinical response 446/928 (48.1%)

Hit rearrangement *

Double-hit 35/928 (3.8%)

MYC-normal 309/928 (33.3%)

MYC-rearranged NOS 2/928 (0.2%)

n/a 568/928 (61.2%)

Single-hit 14/928 (1.5%)
* According to the Supplementary data of C. Sha et al. [118].

2.2. Methods

This was a supervised analysis of data classification. In this analysis, the input data
(predictors) were the genes of the array, and the output (predicted or target variable)
was the DLBCL subtypes as defined by the REMoDLB clinical trial such as Activated
B cell-like (ABC), Germinal center B cell-like (GCB), Molecular high-grade (MHG), and
Unclassified [118].

In the initial analysis, all genes of the array were used as predictors (inputs), and the
results of the most relevant genes for predicting the molecular subtypes were ranked.

The characterization of the molecular profile of diffuse large B-cell lymphoma and
Burkitt lymphoma, and the differentially expressed genes between both entities were
extensively analyzed [121–134]. In this study, in addition to the whole set of genes of the
array, a set of 28 genes were selected based on the previous work by Sandeep S Dave [122]
and Chulin Sha [119]. The list of gene probes is shown in Appendix A and in the Discussion
section. For example, genes associated with Burkitt lymphoma were SMARCA4, SLC35E3,
SSBP2, MME, RGCCC, BMP7, and BACH2, and genes associated with diffuse large B-cell
lymphoma were MDFIC, S100A11, BCL2A1, NFKBIA, and FNBP1, among others.

The principal analysis was an artificial neural network. The setup was the following:
multilayer perceptron, DLBCL subtype as predicted variable (dependent variable, out-
put), and gene expression as predictors (covariates, input). The covariates were rescaled
following the standardized method.

The dataset was divided into 2 partitions. The training set accounted for 70% of the
cases and the testing set accounted for 30%. There was no holdout. All 928 cases were
valid, and none were excluded. The cases were assigned to each partition randomly. The
number of units of the hidden layer was tested and selected. In the hidden layer, the
activation function was the hyperbolic tangent. In the output layer, the activation function
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was softmax, and the error-function was cross-entropy. The type of training was batch,
and the scaled conjugate gradient was selected as the optimization algorithm. The training
options were initial lambda 0.0000005, initial sigma 0.00005, interval center 0, and interval
offset ± 0.5. The synaptic weights were exported into an Excel file, and it is uploaded as
Supplementary Table S1.

The network performance was evaluated using the following parameters: model
summary, classification results, ROC curve, cumulative gains chart, lift chart, predicted-
by-observed chart, and residual-by-predicted chart. The genes were ranked accord-
ing to their relevance in predicting the DLBCL subtype using the independent variable
importance analysis.

Other machine learning techniques were also used in this study, including C5, logistic
regression, Bayesian network, discriminant analysis, KNN algorithm, LSVM, random trees,
SVM, Tree-AS, XGBoost linear, XGBoost tree, CHAID, Quest, C&R tree, random forest, and
neural network. All analyses were performed as previously described [98,99,135–138].

3. Results
3.1. Prediction of DLBCL Subtypes Using Neural Networks
3.1.1. Prediction Using All Genes of the Array

Using all the genes of the Illumina array, it was possible to predict the DLBCL subtypes
with relatively good performance. All the characteristics of the neural network, including
the architecture, model summary, classification, and performance with the area under the
curve, are shown in Tables 7 and 8 and Figure 4. Overall, the areas under the curve were
above 0.85, with the highest for the MHG subtype (0.904). In the classification table, the
best percentage of classification was for the GCB subtype (Table 8).

Table 7. Neural network characteristics.

Parameters All Genes 28 Genes

Case processing
Training 642 (69.2%) 667 (71.9%)
Testing 286 (30.8%) 261 (28.1%)
Valid 928 (100%) 928 (100%)

Input layer
No. units 29372 33

Rescaling method covariates Standardized Standardized
Hidden layer

No. 1 1
No. units 12 6

Activation function Hyperbolic tangent Hyperbolic tangent
Output layer

No. of dependent variables 1 1
No. units 4 4

Activation function Softmax Softmax
Error function Cross-entropy Cross-entropy

Model summary
Training

Cross-entropy error 442.169 234.386
Incorrect predictions % 27.6% 12.0%

Stopping rule 1 1
Training time 6:49.55 0:00.35

Testing
Cross-entropy error 250.727 167.121
Incorrect predictions 35.0% 23.8%
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Table 7. Cont.

Parameters All Genes 28 Genes

Classification
Training

ABC 73.7% 74.3%
GCB 84.2% 93.5%
MHG 42.9% 100%
UNC 43.9% 86.4%

Overall 72.4% 88.0%
Testing

ABC 65.4% 68.6%
GCB 86.2% 80.3%
MHG 25.9% 83.3%
UNC 20.9% 72.5%

Overall 65.0% 76.2%
Area Under the Curve

ABC 0.888 0.932
GCB 0.862 0.947
MHG 0.904 0.994
UNC 0.850 0.958

No., number; UNC, Unclassified.

Table 8. Classification of DLBCL subtype using all the genes.

Predicted

Sample Observed ABC GCB MHG UNC % Correct

Training ABC 126 32 4 9 73.7%
GCB 35 278 6 11 84.2%
MHG 8 23 24 1 42.9%
UNC 17 28 3 37 43.5%

Overall% 29.0% 56.2% 5.8% 9.0% 72.4%
Testing ABC 51 24 1 2 65.4%

GCB 12 119 2 5 86.2%
MHG 1 19 7 0 25.9%
UNC 13 20 1 9 20.9%

Overall% 26.9% 63.6% 3.8% 5.6% 65.0%
UNC, Unclassified.

3.1.2. Prediction Using the 28 Genes

Using the 28 genes of the Burkitt lymphoma vs. DLBCL signature, it was possible to
predict the DLBCL subtypes with very good performance. All the characteristics of the
neural network, including the architecture, model summary, classification, and performance
with the area under the curve, are shown in Tables 7–10 and Figure 5. Overall, the areas
under the curve were above 0.93, with the highest for the MHG subtype (0.99). In the
classification table, the best percentage of classification was for the MHG subtype (Table 9).
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is the same as that for ROC curves.
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Table 9. Classification of DLBCL subtype using the 28 genes.

Predicted

Sample Observed ABC GCB MHG UNC % Correct

Training ABC 133 30 0 16 74.3%
GCB 16 319 1 5 93.5%
MHG 0 0 59 0 100.0%
UNC 7 5 0 76 86.4%

Overall% 23.4% 53.1% 9.0% 14.5% 88.0%
Testing ABC 48 14 0 8 68.6%

GCB 15 102 4 6 80.3%
MHG 0 3 20 1 83.3%
UNC 2 8 1 29 72.5%

Overall% 24.9% 48.7% 9.6% 16.9% 76.2%
UNC, Unclassified.

Table 10. Prediction of DLBCL subtypes using several machine learning techniques.

Prediction of 4 DLBCL Subtypes MHG vs. Others

Model No. of Genes Overall
Accuracy

No. of
Genes

Overall
Accuracy

XGBoost tree 33 99.56% 33 100.00%
Random forest 33 98.92% 33 99.46%
Random trees 33 94.18% 33 99.88%

C5 28 88.04% 10 98.28%
Bayesian network 33 86.42% 33 99.14%

SVM 33 83.62% 33 99.35%
Logistic regression 33 80.93% 33 99.03%

KNN algorithm 33 80.93% 33 98.06%
Neural network 33 79.74% 33 99.25%

LSVM 33 79.63% 33 98.28%
Discriminant analysis 33 75.43% 33 95.69%

CHAID 19 74.25% 9 95.91%
C&R tree 26 70.37% 11 94.94%
Tree-AS 6 61.53% 6 93.43%
Quest 17 58.51% 24 94.50%

XGBoost linear 33 50.43% 33 91.06%
No., number. Of note, the Illumina array has two probes for genes in 5 genes, which makes the total number of
fields 33.

3.2. Prediction of DLBCL Subtypes Based on the 28 Genes Using Other Machine Learning
Techniques

Using the 28 genes of the Burkitt lymphoma vs. DLBCL signature, it was possible to
predict the DLBCL subtypes. The overall accuracies for each machine learning technique
are shown in Table 10. Overall, the best performances were found using XGBoost tree (99.6%
accuracy), random forest (98.9%), C5 (88.0%), and the Bayesian network (86.4%) (Table 8).
Interestingly, the overall accuracies were very high (100–95% in most of the tests) when
the analysis predicted the MHG subtypes against the other subtypes (Table 10, Figure 6).
Figures A1–A7 in Appendices A and B show the results of MHG vs. Others for XGBoost
tree, the Bayesian network, random forest, C5 tree, neural networks, functional network
interaction analysis, and the approach to diagnosing diffuse large B-cell lymphoma, high-
grade B-cell lymphomas, and Burkitt lymphoma, respectively, and Appendix B shows the
logistic regression results.
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Figure 6. Neural network architecture and classification table of the analysis of MHG subtype vs. the
Others. In this model, the overall accuracy of prediction was 99.25%.

4. Discussion

Diffuse large B-cell lymphoma (DLBCL) is one of the most frequent non-Hodgkin
lymphomas and mature B-cell hematological neoplasms. DLBCL belongs to the group of
aggressive B-cell lymphomas.
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In this group of aggressive lymphomas, there are many subtypes. Among them, it
is worth mentioning the following: diffuse large B-cell lymphoma NOS, large B-cell lym-
phoma with 11q aberration, nodular lymphocyte predominant B-cell lymphoma, primary
diffuse large B-cell lymphoma of the testis, HHV-8 and Epstein–Barr virus-negative primary
effusion-based lymphoma, Epstein–Barr virus-positive mucocutaneous ulcer, Epstein–Barr
virus-positive diffuse large B-cell lymphoma NOS, lymphomatoid granulomatosis, Epstein–
Barr virus-positive polymorphic B-cell lymphoproliferative disorder NOS, primary effusion
lymphoma and extracavitary primary effusion lymphoma, Burkitt lymphoma, high-grade
B-cell lymphoma with MYC and BCL2 rearrangements, high-grade B-cell lymphoma with
MYC and BCL6 rearrangements, and mediastinal gray-zone lymphoma [104,109].

From a histological point of view, the distinction between Burkitt lymphoma and
diffuse large B-cell lymphoma NOS can be challenging sometimes. In this situation, the use
of molecular techniques may be of help.

Several pathogenic models have been created for DLBCL NOS. Sha C. et al. defined
Molecular high-grade B-cell lymphoma (MHG) using a gene expression-based machine
learning classifier. This MHG was applied to the clinical trial of bortezomib (proteasome
inhibitor) to the conventional RCHOP therapy. This study found that the MHG group
was biologically similar to the high-grade B-cell lymphoma of the Germinal center cell-of-
origin subtype (proliferative signature and centroblasts), and partially with cases of MYC
rearrangement with or without BCL2 rearrangement [118–120].

This MHG gene expression profile was defined by genes of Burkitt lymphoma (BL)
and conferred a bad prognosis of DLBCL. Recent data from the authors seem to sup-
port this fact [139,140]. Of note, the gene set tested in the original classifier comprised
28 genes [118–120]. The genes were associated with either Burkitt lymphoma or DL-
BCL NOS. The genes of Burkitt lymphoma were SMARCA4, SLC35E3, SSBP2, MME
(CD10), RGCC, BMP7, BACH2, RFC3, DLEU1, TERT, TCF3, ID3, TCL6, LEF1, SUGCT
(C7orf10), SOX11, and TUBA1A. The genes associated (overexpressed) with DLBCL NOS
were MDFIC, S100A11, BCL2A1, NFKBIA, FNBP1, CTSH, CD40, STAT3, CD44, CFLAR, and
BCL3 [118–120]. The fact that these genes were differentially expressed between Burkitt
lymphoma and DLBCL highlights the importance of these genes in the disease pathogen-
esis. In future, the Molecular high-grade signature may be relevant for the assessment
of the clinical outcome of lymphoma patients. Interestingly, other groups have already
investigated the relevance of this signature and added new prognostic markers to the
equation [141].

The molecular classification of diffuse large B-cell lymphoma (DLBCL), based on the
cell of origin, is ABC, GCB, and Unclassified. The study of Chulin Sha proposed a different
stratification, with the addition of the MHG subtype, but how the MHG subtype is defined
is not so clear. Recently, Davies AJ et al. [140] published an update to the REMoDL-B clinical
trial study with a 5-year follow-up, and they showed that in the MHG group, RB-CHOP
had an advantage over R-CHOP treatment in terms of progression-free survival. Therefore,
the definition of MHG seems to be clinically important.

The advantage of using a neural network is that in the final model, the network ar-
chitecture, the weights (parameters), and the bias are known, and based on a sensitivity
analysis, the most relevant genes can be highlighted. When using the 28 genes, the per-
centage of correct predictions was 93.5% in the training set and 83.3% in the testing set. In
Section 3.1, many machine learning methods are included and the best overall accuracy
was obtained using XGBoost tree (100%) when comparing MHG to the other subtypes.
Of note, in this comparison, the neural network had an accuracy of 99.25%, as shown in
Table 8 and Figure 4. In summary, the data highlight that the MHG group is related to
genes expressed by the Burkitt signature and/or the different signature between Burkitt
and DLBCL.

This research used several machine learning techniques including neural networks
to reverse engineer the DLBCL subtype classification based on the previous MHG work.
Several predictive analytic techniques were successfully used. Therefore, this study showed
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how powerful the artificial intelligence techniques are. However, AI has to be handled
carefully and under precise conditions.

DLBCL is a heterogenous disease and, so far, many gene expression studies have been
carried out. In recent years, as a result of combining transcriptomic and deep sequencing
studies, several pathogenic models have been proposed: Schmitz R. et al. identified
four DLBCL subtypes: MCD, BN2, N1, and EZB [114]. Chapuy B. et al. identified five
subtypes [115]. Lacy S.E. et al. found six molecular subtypes: MYD88, BCL2, SOCS1/SGK1,
TET2/SGK1, NOTCH2, and Unclassified [116]. Reddy A. et al. created a prognostic model
with better performance than the conventional methods of the International Prognostic
Index (IPI), cell of origin, and rearrangements of MYC and BCL2 [117]. Sha C. et al.
defined Molecular high-grade B-cell lymphoma (MHG) using a gene expression-based
machine learning classifier [118]. This study found that the MHG group was biologically
similar to the high-grade B-cell lymphoma of the Germinal center cell-of-origin subtype
(proliferative and centroblasts), and partially with cases of MYC rearrangement [118].
This MHG gene expression profile was defined by genes of Burkitt lymphoma (BL) and
conferred a bad prognosis of DLBCL [119]. The classifier was downloaded on github
(https://github.com/Sharlene/BDC, accessed on 16 January 2024) and run on R statistical
software [119]. Of note, the gene set tested in the classifier comprised 28 genes [119,120].

There are many markers with prognostic value in DLBCL. Our group has highlighted
some such as ENO3 [17,142], PTX3 and CD163 [143], RGS1 [144], CASP8 and TNFAIP8 [99],
and AID [145]. All these markers will have to be validated in other series in future. To date,
morphological features and the rearrangements of MYC, BCL2, and BCL6 by FISH appear
to be the consensus classification criteria (Appendix B Figure A7).

In summary, this study described the most frequent machine learning techniques
that can be applied in the medical field. And it showed how machine learning can be
successfully applied in this study of hematological neoplasia.
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Appendix A

The 28 gene probes used as inputs for the machine learning and neural networks
were the following: ILMN_1658143, ILMN_1659943, ILMN_1663618, ILMN_1664434,
ILMN_1670695, ILMN_1679185, ILMN_1681641, ILMN_1710514, ILMN_1711608, ILMN_17
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17366, ILMN_1732296, ILMN_1741566, ILMN_1749521, ILMN_1750101, ILMN_1763011,
ILMN_1769229, ILMN_1773154, ILMN_1773459, ILMN_1777439, ILMN_1784860, ILMN_17
86319, ILMN_1789830, ILMN_1797342, ILMN_1814173, ILMN_2043918, ILMN_2058468,
ILMN_2148819, ILMN_2213136, ILMN_2348788, ILMN_2367818, ILMN_2373119, ILMN_23
90853, and ILMN_2401978.
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+ 1.591 × ILMN_1711608 + 0.00611 × ILMN_1717366 + 4.074 × ILMN_1732296 + 5.556
× ILMN_1741566 + −1.02 × ILMN_1749521 + −17.06 × ILMN_1750101 + −1.292 ×
ILMN_1763011 + 3.113 × ILMN_1769299 + −18.76 × ILMN_1773154 + −0.4322 × ILMN_177
3459 + 3.067 × ILMN_1777439 + 0.5264 × ILMN_1784860 + 2.364 × ILMN_1786319 +
−6.706 × ILMN_1789830 + −7.649 × ILMN_1797342 + 11.0 × ILMN_1814173 + 5.908 ×
ILMN_2043918 + 1.886 × ILMN_2058468 + 2.979 × ILMN_2148819 + 4.354 × ILMN_2213136
+ −1.964 × ILMN_2348788 + 2.109 × ILMN_2367818 + −0.5111 × ILMN_2373119 + −5.342
× ILMN_2390853 + −6.19 × ILMN_2401978 + + 418.9.
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