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Abstract: Deep learning has emerged as a powerful tool for medical image analysis and diagnosis,
demonstrating high performance on tasks such as cancer detection. This literature review synthesizes
current research on deep learning techniques applied to lung cancer screening and diagnosis. This
review summarizes the state-of-the-art in deep learning for lung cancer detection, highlighting
key advances, limitations, and future directions. We prioritized studies utilizing major public
datasets, such as LIDC, LUNA16, and JSRT, to provide a comprehensive overview of the field. We
focus on deep learning architectures, including 2D and 3D convolutional neural networks (CNNs),
dual-path networks, Natural Language Processing (NLP) and vision transformers (ViT). Across
studies, deep learning models consistently outperformed traditional machine learning techniques
in terms of accuracy, sensitivity, and specificity for lung cancer detection in CT scans. This is
attributed to the ability of deep learning models to automatically learn discriminative features from
medical images and model complex spatial relationships. However, several challenges remain to be
addressed before deep learning models can be widely deployed in clinical practice. These include
model dependence on training data, generalization across datasets, integration of clinical metadata,
and model interpretability. Overall, deep learning demonstrates great potential for lung cancer
detection and precision medicine. However, more research is required to rigorously validate models
and address risks. This review provides key insights for both computer scientists and clinicians,
summarizing progress and future directions for deep learning in medical image analysis.
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1. Introduction

Cancer represents a predominant cause of mortality globally [1], and early detection
is pivotal for enhancing patient outcomes. Conventional techniques for cancer diagnosis,
including visual examination and biopsy [2], can be time-consuming, subjective, and
susceptible to mistakes. Deep machine learning (ML) constitutes a potent recent instrument
with the capability to transform cancer diagnosis.

Deep ML algorithms are trained on large datasets of medical images, text, and other
data. This allows them to learn to identify patterns that are invisible to the human eye. In
recent years, deep ML algorithms have been shown to achieve state-of-the-art performance
(SOAP) in cancer detection, often outperforming human experts [3]. This has led to a
number of benefits, including: Increased accuracy of cancer detection: Deep ML algorithms
can identify cancer with greater accuracy than traditional methods. This can lead to earlier
detection and treatment, which can improve patient outcomes. Reduced cost of cancer
diagnosis: Deep ML algorithms can analyze large datasets of medical images and data,
reducing the cost of cancer diagnosis. Improved patient experience: Deep ML algorithms
can automate cancer diagnosis, reducing the time and stress that patients experience.

Despite the numerous advantages of deep machine learning, certain challenges remain
to be tackled. These challenges include: Data availability: Deep ML algorithms necessitate
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substantial datasets of medical imagery and information to train. This can pose a difficulty,
as not every medical institution has access to such datasets. Bias: Deep ML algorithms
may exhibit bias if trained on datasets not illustrative of the population. This can result
in imprecise cancer detection. Explainability: Explaining the decision-making of deep
ML algorithms can be arduous. This can engender distrust in the outcomes of deep
ML algorithms.

However, the field of deep learning has witnessed remarkable advancements, driven
by the availability of vast amounts of data, significant computational power, and break-
throughs in neural network architectures. This progress has paved the way for the appli-
cation of deep learning techniques in various domains, including medical diagnosis [4].
Within the realm of medical imaging, deep learning algorithms have demonstrated excep-
tional capabilities in detecting and classifying diseases, particularly in cancer diagnosis.
The unique ability of deep learning algorithms to automatically learn intricate patterns
and features from complex datasets has enabled the development of robust and accurate
models for cancer detection. By training on large-scale datasets of medical images, these
algorithms can discern subtle nuances indicative of cancerous growth, facilitating early
detection and intervention.

Moreover, deep learning techniques have transcended traditional image-based ap-
proaches by incorporating multi-modal data sources. By integrating medical images,
clinical reports, genomics, and other patient-related information, deep learning algorithms
can extract comprehensive features and provide a holistic view of cancer diagnosis. This
integration of diverse data modalities not only enhances the accuracy of detection but also
contributes to a more personalized and precise approach to cancer management.

Despite the rapid progress in this field, several challenges need to be addressed to
ensure the widespread adoption and reliability of deep learning in cancer diagnosis. These
challenges include the need for standardized protocols, validation on diverse populations,
interpretation of deep learning model outputs, and integration into clinical workflows.

Several recent reviews have explored the application of AI in lung cancer detection. A
comprehensive study by [5] underscored the use of AI in lung cancer screening via CXR and
chest CT, highlighting the FDA-approved AI programs that are revolutionizing detection
methods. Dodia et al. [6] provides an overview of lung cancer, along with publicly available
benchmark datasets for research purposes. It also compares recent research performed
in medical image analysis of lung cancer using deep learning algorithms, considering
various technical aspects such as efficiency, advantages, and limitations. Ref. [7] provides
an overview of recent state-of-the-art deep learning algorithms and architectures proposed
as computer-aided diagnosis (CAD) systems for lung cancer detection in CT scans. The
authors divide the CAD systems into two categories: nodule detection systems and false
positive reduction systems. They discuss the main characteristics of the different techniques
and analyze their performance. Another review [8] provided an in-depth examination of AI
in improving nodule detection and classification, emphasizing the significant role of neural
networks in early-stage detection. A further review [9] summarized various AI algorithm
applications, including Natural Language Processing (NLP), Machine Learning, and Deep
Learning, elucidating their value in early diagnosis and prognosis. Qureshi et al. [10], high-
lighted specific advances in deep learning, such as AlphaFold2 and deep generative models
of deep learning with in understanding drug resistance mechanisms in the treatment of
non-small cell lung cancer (NSCLC). Al-Tashi et al. [11], reviewed the works that have
been carried out to highlight the contribution of deep learning, thanks to its ability to
process large quantities of data and identify complex patterns for the distinction between
prognostic, and predictive biomarkers in personalized medicine.

The main contributions of this paper diverge from existing literature in several
key aspects:

• A Unique Grouping of Articles: Unlike traditional reviews that often categorize
research based on methods or results, this review adopts a distinctive approach by
grouping articles based on the types of databases utilized, offering a fresh perspective
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on the research landscape. This approach allows for a more comprehensive and
nuanced understanding of the research landscape. By examining the types of databases
that researchers are using, it’s therefore possible to gain insights into the availability,
quality, and representativeness of data and the limitations of the current research. This
information can be used to identify gaps in the literature, suggest new avenues for
research, and develop more robust, and reliable research methods.

• Detailed Presentation of Widely-Used Databases: This review provides an extensive
examination of the most commonly used databases in lung cancer detection, shedding
light on their features, applications, and significance.

• Integration of Recent Research: In a rapidly evolving field, this review incorporates
recent articles on the subject, ensuring a contemporary understanding of the latest
developments and trends.

This paper is organized into distinct sections to provide a comprehensive review of AI
in lung cancer diagnosis. The article begins in Section 2 with a detailed presentation of the
methodology used for the selection and collection of articles, and specifically outlines the
methodological approach, presenting the steps taken, the search strategies used, and the
criteria for inclusion and exclusion. Following that, Section 3 describes the metrics used
for the evaluation of the results models in the selected articles. Section 4 focuses on the
public databases used in these selected works. Section 5, is divided into two sub-sections.
Section 5.1 presents articles that have employed public databases in their research. Each of
these studies is described in detail, highlighting their methods, findings, and implications
for the field. Meanwhile, Section 5.2 focuses on articles that have utilized private databases.
Emphasis is placed on those that have incorporated segmentation techniques, classification
methods, and Natural Language Processing (NLP). Finally, Section 6 critically analyses
how these different databases and techniques have influenced the results and how they
can potentially contribute to advancements in the field of AI for lung cancer diagnosis.

2. Methodology

The main objective was to gather relevant articles encompassing the keywords “lung
cancer”, “deep learning”, “transformer”, “NLP”, “diagnosis”, “machine learning”, “chest” and

“computed tomography”.
To perform this review of literature on deep machine learning for medical diagnosis,

with a specific focus on its application to lung cancer detection, a systematic methodology
was followed. The search process commenced by utilizing various academic databases,
including PubMed, IEEE Xplore, and Google Scholar. A combination of the above keywords
was used to retrieve a wide range of articles. In particular, these combinations were: “Lung
cancer + deep learning + transformer + diagnosis”, “lung cancer + Machine learning + chest +
Computed Tomography + diagnosis”, “Lung cancer + deep learning + diagnosis + chestray”, “Lung
cancer + deep learning + diagnosis + NLP, “Deep Learning lung cancer”. Also, the search was
not constrained by date range, encompassing both recent and older publications to provide
a comprehensive overview of the topic.

The initial search produced a large number of articles, which were then refined by
scrutinizing their titles, abstracts and keywords for relevance. The selection process in-
volved eliminating articles that were not directly related to deep machine learning for lung
cancer diagnosis or that did not use relevant techniques, such as transformers and machine
learning algorithms.

Following this selection process, a final set of articles was obtained for the literature
review, ensuring a diverse representation of studies addressing the intersection of deep
learning, lung cancer and medical diagnosis. The PRISMA diagram [12] in Figure 1
summarizes the successive stages of our literature search, from the initial identification of
articles to the final selection of studies included in this review.
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Identification of studies via databases

Records identified from:
Databases (n = 990)

Records removed before
screening:

Records marked as ineligible by
our criteria (n = 880)

Records removed for other
reasons (n = N/A)

Records screened
(n = 110)

Records excluded
(n = 20)

Reports sought for retrieval
(n = N/A)

Reports not retrieved
(n = N/A)

Reports assessed for eligibility
(n = 90) Reports excluded:

Not really focused on lung
cancer diagnosis with deep

learning (n = 20)

Studies included in review
(n = 70)

id
en

ti
fi

ca
ti

o
n

S
cr

ee
n

in
g

In
cl

u
d

ed

N/A : Not Applicable

Figure 1. PRISMA diagram: Systematic Selection Process for our Literature Review.

3. Performance Metrics

Evaluation metrics play an important role in measuring the performance of these
algorithms and determining their clinical utility [13]. Some commonly used evaluation
metrics include Accuracy, Sensitivity [14], Specificity [14], Receiver Operating Character-
istic curves (ROC) [15], Precision and Recall [16], F1-score [17] and Area Under -ROC-
Curve (AUC) [18], Dice Similarity Coefficient (DSC) [19], Intersection over Union (IOU).
Appendix A Table A1 presents metrics commonly used in lung cancer diagnosis for
different tasks.

Therefore, the choice of metrics plays a crucial role in the development and evaluation
of deep learning models, particularly in the medical domain. Selecting the appropriate
metrics can help ensure that models are accurate, reliable, and clinically relevant. Inaccurate
or poorly chosen metrics can lead to flawed models that are unsuitable for clinical use. In
the context of lung cancer diagnosis, the use of segmentation metrics such as Dice Similarity
Coefficient and Intersection over Union can help assess the accuracy of segmentation masks
and improve the localization of lung tumors. Similarly, classification metrics such as
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Classification Accuracy and F1-score can be used to evaluate the overall performance of
models in detecting lung tumors. However, it is important to note that different metrics may
have different strengths and weaknesses and may be better suited to specific applications
or datasets. Finally, it is essential to carefully consider the selection of metrics in the
development and evaluation of deep learning models for lung cancer diagnosis and other
medical applications.

4. Datasets

In the field of deep learning for lung cancer diagnosis, having access to high-quality
datasets is crucial for developing accurate and reliable models [20]. These datasets typically
consist of medical images, as well as associated clinical data, such as patient demographics
and medical history. By training deep learning models on these datasets, researchers
and clinicians can improve their ability to accurately detect and diagnose lung cancer,
ultimately improving patient outcomes. By understanding the strengths and limitations of
each dataset, researchers and clinicians can make informed decisions about which dataset
is most appropriate for their specific research or clinical needs. Table 1 summarizes the
publicly available databases used for lung cancer diagnosis in the reviewed articles.

Table 1. Databases used for lung cancer diagnosis.

Ref. Dataset Description Number of Images Data Type File Format Label Type

[21]

LIDC-IDRI is a comprehensive
collection of lung CT scans and
annotations designed to support the
development of computer-aided
diagnostic systems for lung cancer.

1010 patients CT Nifti,
DICOM Detection

[22]
LUNA16 derived from the LIDC
database, specializing in lung
nodule detection.

888 patients, 1186 nodules CT DICOM Detection
Segmentation

[23]

ChestX-Ray8 aims to enable the
detection and localization of
diseases, by providing a large-scale
database annotated with NLP and
specialists for clinical challenges.

108,948 front view X-ray
images of 32,717 patients Chest X-ray DICOM Classification

Localization

[24]

JSRT is composed of digital
radiographs of Japanese patients
with a resolution of
2048 × 2048 pixels, provides
detailed annotations of lung
nodules.

247 chest radiographs CT Big-endian
raw

Segmentation
Classification

[25]

NLST contains data from a large
clinical trial conducted by the
National Cancer Institute to assess
low-dose CT screening for lung
cancer.

Information on 53,000
individuals

CT, Chest
X-ray DICOM Classification

[26]

MSKCC contains digitized
histopathology slide images with
resolution of 512 × 512 pixels and
an 8-bit color depth from patients
with different cancer types that have
been manually annotated by
pathologists to identify regions of
cancerous tissue.

25,000 digitized slides, age,
sex, cancer type CT TSV, SEG Prediction
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Table 1. Cont.

Ref. Dataset Description Number of Images Data Type File Format Label Type

[27]

TCGA includes subtypes such as
lung adenocarcinoma and lung
squamous cell carcinoma, and is
designed to support cancer research
and diagnostic and therapeutic
development.

Data for over 11,429 patient
sample CT DCM Classification

[28]

Managed by the National Cancer
Institute, the SEER dataset includes
more than 40 years of cancer
incidence and survival data from
registries across the U.S., analyzing
cancer trends, risk factors and
treatment outcomes to inform
cancer research and guide health
policy decisions.

9.5 million cancer cases CT N/A Segmentation
Classification

[29]

MSD contains 3D medical images
covering 10 imaging modalities and
10 anatomical structures to support
research and evaluation of
segmentation algorithms in medical
image analysis. It was used to
develop the MSD Challenge, which
tests the ability of machine learning
algorithms to generalize to various
semantic segmentation tasks.

2633 scans CT, MRI, US Nifti Segmentation

[30]

TCIA (Lung) has been created to
promote research in the field of
medical image analysis, in
particular in the development and
evaluation of computer-assisted
diagnostic systems for cancer
offering a wide variety of images.

48,723 scans CT Nifti,
DICOM

Segmentation
Classification

[31]

Tianchi encourages early detection
of cancer, by providing various
medical images with radiologist
labels indicating the presence,
location, size and malignancy of the
nodule. The dataset contains
various imaging parameters and
patient demographics to extract
lung nodule characteristics.

800 scans CT MHD Detection

[32]

DSB contained more 256 × 256 pixel
grayscale microscope images of
cells, labeled with annotations
indicating the presence of cancer, to
challenge participants to develop
image recognition algorithms for
cancer detection. The various
images of cell cultures, tissues and
blood samples presented
complexities such as variation in
cell size, shape and texture for the
classification task.

800 scans CT DICOM Classification
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5. Deep Learning Approach for Lung Cancer Diagnosis

As deep learning techniques continue to revolutionize the field of medical imaging,
researchers have increasingly turned to large-scale databases to train and validate their
algorithms. Many studies have been done to diagnose lung cancer using different datasets,
both public and private. Each dataset has its own unique characteristics and challenges. To
provide a comprehensive overview of the state-of-the-art in this field, this section presents
a review of the relevant literature organized by the databases used in each study. By
examining the approaches and results of each study in turn, we aim to identify common
trends, best practices, and areas for future research in the use of deep learning for lung
cancer diagnosis.

5.1. Deep Learning Techniques Using Public Databases

This section of the review aims to provide a comprehensive overview of research
studies focused on the segmentation, classification, and detection of Regions of Interest
(ROIs) in lung cancer using data from public databases. Appendix A Table A2 summarizes
the reviewed methods for lung cancer diagnosis using Public Datasets.

5.1.1. Deep Learning Techniques for Lung Cancer Using LIDC Dataset

One of the most widely used databases for evaluating deep learning algorithms in the
context of lung cancer diagnosis is the LIDC dataset. Since its release in 2011, the LIDC
dataset has been used in numerous studies to develop and test deep learning algorithms for
automated nodule detection, classification, and segmentation. In this section, we review a
selection of studies that have utilized the LIDC database to train and validate deep learning
models for lung cancer diagnosis. By examining the methods and results of these studies,
we aim to identify key insights and challenges in using the LIDC dataset.

Da et al. [33] explored the performance of deep transfer learning for the classification of
lung nodules malignancy. The study utilized CNN including VGG16, VGG19, MobileNet,
Xception, InceptionV3, ResNet50, Inception-ResNet-V2, DenseNet169, DenseNet201, NAS-
NetMobile, and NASNetLarge, and then classified the deep features returned using various
classifiers including Naive Bayes, MultiLayer Perceptron (MLP), Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), and Random Forest (RF). The best combination of
deep extractor and classifier was found to be CNN-ResNet50 with SVM-RBF achieving an
accuracy of 88.41% and an AUC of 93.19%. These results are comparable to related works
even using only a CNN pre-trained on non-medical images. The study therefore proved
that deep transfer learning is a relevant strategy for extracting representative imaging
biomarkers for the classification of lung nodule malignancy in thoracic CT images.

Song et al. [34] addressed the problem of inaccurate lung cancer diagnosis due to the
experience of physicians. To improve the accuracy of lung cancer diagnosis, deep learning
techniques were used in medical imaging. Specifically, the study compared the prediction
performance of three deep neural networks (CNN, DNN, and SAE) for classifying benign
and malignant pulmonary nodules on CT images. The results showed that the CNN
network outperformed the other two networks with an accuracy of 84.15%, sensitivity of
83.96%, and specificity of 84.32%. The study indicated that the proposed method can be
generalized for other medical imaging tasks to design high-performance CAD systems in
the future.

Zhang et al. [35] aimed to tackle the problem of classifying lung nodules in 3D CT
images for computer-aided diagnosis (CAD) systems. The early detection of lung nodules
is critical for improving the survival rate of lung cancer patients. The proposed approach
involved applying DCNN to perform an end-to-end classification of raw 3D nodule CT
patches, eliminating the need for nodule segmentation and feature extraction in the CAD
system. State-of-the-art CNN models such as VGG16, VGG19, ResNet50, DenseNet121, Mo-
bileNet, Xception, NASNetMobile, and NASNetLarge were modified to 3D-CNN models
for this study. Experimental results showed that DenseNet121 and Xception achieved the
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best results for lung nodule diagnosis in terms of accuracy (87.77%), specificity (92.38%),
precision (87.88%), and AUC (93.79%).

Shetty et al. [36] presented a new technique for accurate segmentation and classifica-
tion of lung cancer using CT images by applying optimized deformable models and deep
learning techniques. The proposed method involved pre-processing, lung lobe segmen-
tation, lung cancer segmentation, data augmentation, and lung cancer classification. In
the pre-processing step, median filtering was used, while Bayesian fuzzy clustering was
applied for segmenting the lung lobes. The lung cancer segmentation was carried out using
Water Cycle Sea Lion Optimization (WSLnO) based deformable model. To improve the
classification accuracy, the data augmentation process was used, which involved augment-
ing the size of the segmented region. The lung cancer classification was done effectively
using Shepard Convolutional Neural Network (ShCNN), which was trained by WSLnO
algorithm. The proposed WSLnO algorithm was designed by incorporating Water cycle
algorithm (WCA) and Sea Lion Optimization (SLnO) algorithm. The proposed technique
showed improved performance in terms of accuracy, sensitivity, specificity, and average
segmentation accuracy. The average segmentation accuracy achieved was 0.9091, while
the accuracy, sensitivity, and specificity values were 0.9303, 0.9123, and 0.9133, respectively.
The combination of optimized deformable model-based segmentation and deep learning
techniques proved to be effective in accurately detecting and classifying lung cancer using
CT images.

Brocki et al. [37] highlight the limitations of deep neural networks (DNNs) in clinical
applications for cancer diagnosis and prognosis due to their lack of interpretability. To
address this issue, the authors proposes ConRad, an interpretable classifier that combines
expert-derived radiomics and DNN-predicted biomarkers for CT scans of lung cancer.
The proposed model is evaluated using CT images of lung tumors, and compared to
CNNs acting as a black box classifier. The ConRad models using nonlinear SVM and
logistic regression with Lasso outperforms the others in five-fold cross-validation, with
the interpretability of ConRad being its primary advantage. The increased transparency of
the ConRad model allows for better-informed diagnoses by radiologists and oncologists
and can potentially helps in discovering critical failure modes of black box classifiers.
However, the study’s limitations include the focus on a single dataset, and the lack of
external validation, which warrants further investigation. Nonetheless, the proposed
model demonstrates the potential for the broader incorporation of explainable AI into
radiology and oncology, with the code available on [38] for reproducibility. In Figure 2
presents the differents step use to obtain there results.

Hua et al. [39] aim to simplify the image analysis pipeline of conventional CAD
with deep learning techniques for differentiating a pulmonary nodule on CT images.
The authors introduce two deep learning models, namely, a deep belief network (DBN)
and a CNN, in the context of nodule classification, and compare them with two baseline
methods that involve feature computing steps. The LIDC dataset is used for classification
of malignancy of lung nodules without computing the morphology and texture features.
The experimental results indicates that the proposed deep learning framework outperform
conventional hand-crafted feature computing CAD frameworks.

Khademi et al. [40] proposed a novel hybrid discovery Radiomics framework that
integrates temporal and spatial features extracted from non-thin chest CT slices to predict
Lung Adenocarcinoma (LUAC) malignancy with minimum expert involvement. The pro-
posed hybrid transformer-based framework consisted of two parallel paths: The first was
the Convolutional Auto-Encoder (CAE) Transformer path, which extracted and captured
informative features related to inter-slice relations via a modified Transformer architecture,
and the second the Shifted Window (SWin) Transformer path, which extracted nodules
related spatial features from a volumetric CT scan. The extracted temporal and spatial fea-
tures were then fused through a fusion path to classify LUACs. The proposed CAET-SWin
model combined spatial and temporal features extracted by its two constituent parallel
paths (the CAET and SWin paths) designed based on the self-attention mechanism. The



BioMedInformatics 2024, 4 244

experimental results on a dataset of 114 pathologically proven Sub-Solid Nodules (SSNs)
showed that the CAET-SWin significantly improved reliability of the invasiveness predic-
tion task while achieving an accuracy of 82.65%, sensitivity of 83.66%, and specificity of
81.66% using 10-fold cross-validation. The CAET-SWin significantly improved reliability
of the invasiveness prediction task compared to its radiomics-based counterpart while
increase the accuracy by 1.65% and sensitivity by 3.66%. Figure 3 presents the pipeline
proposed by Khademi et al.

Figure 2. Scheme of image processing, feature extraction, and t-distributed stochastic neighborhood
embedding (t-SNE) visualization in [37].

Figure 3. Pipeline of the CAET-SWin Transformer in [40].
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Mukhjerjee et al. [41] developed LungNet, a shallow CNN to predict the outcomes of
patients with NSCLC. LungNet was trained and evaluated on four independent cohorts
of patients with NSCLC from different medical centers. The results showed that the
outcomes predicted by LungNet were significantly associated with overall survival in
all four independent cohorts, with concordance indices of 62%, 62%, 62%, and 08% on
cohorts 1, 2, 3, and 4, respectively. Additionally, LungNet was able to classify benign versus
malignant nodules on the LIDC dataset with an improved performance (AUC = 85%)
compared to training from scratch (AUC = 82%) via transfer learning. Overall, the results
suggest that LungNet can be used as a non-invasive predictor for prognosis in patients
with NSCLC, facilitating the interpretation of CT images for lung cancer stratification and
prognostication. The Figure 4 shows the process of making predictions using LungNet. The
input to LungNet is a CT image of a lung tumor. The network then extracts features from
the image using a series of convolutional layers. These features are then passed through
a fully connected layer to make a prediction about the patient’s prognosis. The code for
LungNet is available at [42].

Figure 4. The proposed LungNet architecture in [41].

Da et al. [43] addressed the problem of early detection in lung cancer. To improve
early detection and increase survival rates, the study explored the performance of deep
transfer learning from non-medical images on lung nodule malignancy classification tasks.
The authors preprocessed the data by resizing and normalizing the images and extracting
patches around the nodules. Using various convolutional neural networks trained on the
ImageNet dataset, the study achieved the highest AUC value of 93.10% using the ResNet50
deep feature extractor and the SVM RBF classifier. In addition to comparing different
convolutional neural network architectures and classifiers, the authors also performed
ablation experiments to investigate the contribution of different components in their method
such as the use of data augmentation and different types of pretraining. They found that
data augmentation and using a more complex pretraining dataset ImageNet-21k [44]
improved the results.

Han et al. [45] proposed a data augmentation method to boost sensitivity in 3D object
detection. The authors suggested using 3D conditional GANs to synthesize realistic and
diverse 3D images as additional training data. Specifically, they proposed the use of 3D
Multi-Conditional GAN (MCGAN) to generate 32 × 32 × 32 nodules naturally placed
on lung CT images. The MCGAN model employed two discriminators for conditioning:
The context discriminator learned to classify real versus synthetic nodule/surrounding
pairs with noise box-centered surroundings while the nodule discriminator attempted
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to classify real versus synthetic nodules with size/attenuation conditions. The results of
the study indicated that 3D CNN-based detection could achieve higher sensitivity under
any nodule size/attenuation at fixed False Positive rates. The use of MCGAN-generated
realistic nodules helped overcome the medical data paucity and even expert physicians
failed to distinguish them from the real ones in a Visual Turing Test. The bounding
box-based 3D MCGAN model could generate diverse CT-realistic nodules at desired posi-
tion/size/attenuation blending naturally with surrounding tissues. The synthetic training
data boosted sensitivity under any size/attenuation at fixed FP rates in 3D CNN-based
nodule detection. This was attributed to the MCGAN’s good generalization ability which
came from multiple discriminators with mutually complementary loss functions along with
informative size/attenuation conditioning. In Figure 5 MCGAN generated realistic and
diverse nodules naturally on lung CT scans at desired position/size/attenuation based on
bounding boxes and the CNN-based object detector used them as additional training data.

Figure 5. 3D MCGAN-based DA for better object detection in [45].

Katase et al. [46] worked on the development of a CAD system that automatically
detects lung nodules in CT images. The main challenge faced by radiologists is identifying
small nodule shadows from 3D volume images which can often result in missed nodules.
To address this issue, the researchers used deep learning technology to design an automated
lung nodule detection system that is robust to imaging conditions. To evaluate the detection
performance of the system, the researchers used several public datasets including LIDC-
IDRI and SPIE-AAPM as well as a private database of 953 scans and 1177 chest CT scans
from Kyorin University Hospital. The system achieved a sensitivity of 98.00/96.00% at
3.1/7.25 false positives per case on the public datasets and sensitivity did not change
within the range of practical doses for a study using a phantom. To investigate the clinical
usefulness of the CAD system a reader study was conducted with 10 doctors including
inexperienced and expert readers. The study showed that using the CAD system as a
second reader significantly improved the detection ability of nodules that could be picked
up clinically (p = 0.026). The analysis was performed using the Jackknife Free-Response
Receiver Operating Characteristic (JAFROC). Figure 6 shows the Feature extraction layers
extract characteristics from 3D image data by 3D convolution, and region proposal layers
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output multiple candidate regions, region classification layers determine whether each
candidate region is a nodule, and make this the final output.

Figure 6. Overview of the Feature extraction layers network in [46].

Tan et al. [47] proposed a new approach to automated detection of juxta-pleural
pulmonary nodules in chest CT scans. The article highlighted the challenge of using CNN
with limited datasets which can lead to overfitting and presented a novel knowledge-
infused deep learning-based system for automated detection of nodules. The proposed
CAD methodology infused engineered features, specifically texture features into the deep
learning process to overcome the dataset limitation challenge. The system significantly
reduced the complications of traditional procedures for pulmonary nodules detection while
retaining and even outperforming the state-of-the-art accuracy. The methodology utilized
a two-stage fusion method (early fusion and late fusion) which enhanced scalability and
adaptation capability by allowing for the easy integration of more useful expert knowledge
in the CNN-based model for other medical imaging problems. The results demonstrated
that the proposed methodology achieved a sensitivity of 88.00% with 1.9 false positives per
scan and a sensitivity of 94.01% with 4.01 false positives per scan. The methodology showed
high performance compared to both existing CNN-based approaches and engineered
feature-based classifications achieving an AUC of 0.82 with an end-to-end voting-based
CNN method for lung nodule detection.

Feng et al. presented in [48] a novel weakly-supervised method for accurately seg-
menting pulmonary nodules at the voxel-level using only image-level labels. The objective
was to extend a CNN model originally trained for image classification to learn discrimi-
native regions at different resolution scales and identify the true nodule location using a
candidate-screening framework. The proposed method employed transfer learning from a
CNN trained on natural images and adapted the VGG16Net architecture to incorporate
GAP operations. The authors demonstrated that their weakly-supervised nodule seg-
mentation framework achieved competitive performance compared to a fully-supervised
CNN-based segmentation method, with accuracy values of 88.40% for 1-GAP CNN, 86.60%
for 2-GAP model and 84.40% for 3-GAP model on the test set. Furthermore, the proposed
method exhibited smaller standard deviations, indicating fewer large mistakes. The pro-
posed method was based on the Nodules Activation Maps (NAM) framework. Figure 7
illustrate the process of the method: In the Training part (A) a CNN model is trained to
classify CT slices and generate NAMs; In Segmentation (B) for test slices classified as “nod-
ule slice”, nodule candidates are screened using a spatial scope defined by the NAM for
coarse segmentation. Residual NAMs (R-NAMs) are generated from images with masked
nodule candidates for fine segmentation.

Aresta et al. [49] introduced iW-Net, a deep learning model that allowed for automatic
and interactive segmentation of lung nodules in computed tomography images. iW-Net
was composed of two blocks: the first one provided automatic segmentation, and the
second one allowed the user to correct it by analyzing two points introduced in the nodule’s
boundary. The results of the study showed that iW-Net achieved SOAP with an intersection
over union score of 55.00%, compared to the inter-observer agreement of 59.00%. The
model also allowed for the correction of small nodules which is essential for proper patient
referral decisions and improved the segmentation of challenging non-solid nodules, thus
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increasing the early diagnosis of lung cancer. iW-Net improved the segmentation of more
than 75.00% of the studied nodules especially those with radii between 1–4 mm, which are
crucial for referral. In Figure 8 the network used a 3 × 3 × 3 × N convolution followed by
batch normalization and rectified linear unit activation where N is the number of feature
maps indicated on top of each layer. It also used a 3 × 3 × 3 × N convolution with a
2 × 2 × 2 stride followed by batch normalization and rectified linear unit activation. The
network then employed a 2 × 2 × 2 nearest neighbor up-sample and a 3 × 3 × 3 × N
convolution with sigmoid activation. The source code for iW-Net is available at [50].

Figure 7. Architecture of the automated detection of juxta-pleural pulmonary nodules in [48]:
(A) Training: a CNN is trained to identify CT images and create nodule activation mappings (NAMs);
(B) Segmentation: test images identified as containing nodules are subjected to potential nodule
filtering, based on a spatial delineation established by the NAM for initial segmentation. Residual
NAMs (R-NAMs) are then generated using images in which potential nodules are masked, enabling
more precise segmentation.
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Figure 8. iW-Net: a network for guided segmentation of lung nodules as proposed in [49].

Joana Rocha et al. [51] proposes three distinct methodologies for pulmonary nodule
segmentation in CT scans. The first approach is a conventional one that implements the
Sliding Band Filter (SBF) to estimate the filter’s support points and match the border
coordinates. The other two approaches are Deep Learning based and use the U-Net and
a novel network called SegU-Net to achieve the same goal. The study aims to identify
the most promising tool to improve nodule characterization. The authors used a database
of 2653 nodules from the LIDC database and compared the performance of the three
approaches. The results showed Dice scores of 66.30%, 83.00%, and 82.30% for the SBF,
U-Net, and SegU-Net, respectively. The U-Net based models yielded more identical results
to the ground truth reference annotated by specialists making it a more reliable approach
for the proposed exercise. The novel SegU-Net network revealed similar scores to the U-Net
while at the same time reducing computational cost and improving memory efficiency. The
Figure 9 illustrate SegU-Net. SegU-Net adds a few modifications to the U-Net architecture.
Firstly, it uses reversible convolutions in the ascending part. This enables SegU-net to
preserve image detail during segmentation. Secondly, it uses a fusion layer to combine
information from both parts of the network. This enables SegU-net to achieve more
accurate segmentations.

Figure 9. SegU-Net’s model in [51].
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Wang et al. [52] present an approach called Multi-view Convolutional Neural Net-
works (MVCNN) that captures a diverse set of nodule-sensitive features from axial, coronal
and sagittal views in CT images simultaneously. The objective is to segment various types
of nodules, including juxta-pleural, cavitary, and nonsolid nodules. The methodology
consists of three CNN branches each with seven stacked layers that take multi-scale nodule
patches as input. These branches extract features from three orthogonal image views in
CT which are then integrated with a fully connected layer to predict whether the patch
center voxel belongs to the nodule. The approach does not involve any nodule shape hy-
pothesis or user-interactive parameter settings. The study uses 893 nodules from the public
LIDC-IDRI dataset where ground-truth annotations and CT imaging data were provided.
The results show that MVCNN achieved an average dice similarity coefficient (DSC) of
77.67% and an average surface distance (ASD) of 24.00%, outperforming conventional
image segmentation approaches.

Tang et al. [53] proposed a novel approach to solve nodule detection, false positive
reduction, and nodule segmentation jointly in a multi-task fashion. The authors presented
a new end-to-end 3D deep convolutional neural net (DCNN) called NoduleNet. The goal
was to improve the accuracy of nodule detection and segmentation on the LIDC dataset.
To avoid friction between different tasks and encourage feature diversification, the authors
incorporated two major design tricks in their methodology. Firstly, decoupled feature maps
were used for nodule detection and false positive reduction. Secondly, a segmentation
refinement subnet was used to increase the precision of nodule segmentation. The authors
used the LIDC dataset as their base dataset for training and testing their model. They
showed that their model improves the nodule detection accuracy by 10.27%, compared to
the baseline model trained only for nodule detection. The cross-validation results on the
LIDC dataset demonstrate that the NoduleNet achieves a final CPM score of 87.27% on
nodule detection and a DSC score of 83.10% on nodule segmentation, which represents the
current state-of-the-art performance on this dataset. The code of NoduleNet is available
on [54].

The early identification and classification of pulmonary nodules are crucial for improv-
ing lung cancer survival rates. This is considered a key requirement in computer-assisted
diagnosis. To address this challenge, ref. [55] proposed a method for predicting the malig-
nant phenotype of pulmonary nodules. The method is based on weighted voting rules.
Features of the pulmonary nodules were extracted using Denoising Auto Encoder, ResNet-
18, and modified texture and shape features. These features assess the malignant phenotype
of the nodules. The results showed a final classification accuracy of 93.10 ± 2.4%, highlight-
ing the method’s feasibility and effectiveness. This method combines the robust feature
extraction capabilities of deep learning with the use of traditional features in image rep-
resentation. The study successfully identified multi-class nodules which is the first step
in lung cancer diagnosis. The study also explored the importance of various features in
classifying the malignant phenotype of pulmonary nodules. It found that shape features
were most crucial followed by texture features and deep learning features.

5.1.2. Deep Learning Techniques for Lung Cancer Using LUNA16 Dataset

Xie et al. [56] introduce a new approach to the complex task of automated pulmonary
nodule detection in CT images. The aim of this work is to assist in the CT reading process
by quickly locating lung nodules. A two-stage methodology is used, consisting of nodule
candidate detection and false positive reduction. To accomplish this, the authors present
a detection framework based on Faster Region-based CNN (Faster R-CNN). The Faster
R-CNN structure is modified with two region proposal networks and a deconvolutional
layer for nodule candidate detection. Three models are trained for different kinds of
slices to integrate 3D lung information, and then the results are fused. For false positive
reduction, a boosting 2D CNN architecture is designed. Three models are sequentially
trained to handle increasingly difficult mimics. Misclassified samples are retrained to
improve sensitivity in nodule detection. The outcomes of these networks are fused to
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determine the final classification. The Luna16 database serves as the evaluation benchmark,
achieving a sensitivity of 86.42% for nodule candidate detection. For false positive reduction,
sensitivities of 73.40% and 74.40% are reached at 1/8 and 1/4 FPs/scan, respectively.

Sun et al. [57], address the problem of low accuracy in traditional lung cancer detection
methods particularly in realistic diagnostic settings. To improve accuracy, the authors pro-
pose the use of the Swin Transformer model for lung cancer classification and segmentation.
They introduce a novel visual converter that produces hierarchical feature representations
with linear computational complexity related to the input image size. The LUNA16 dataset
and the MSD dataset are used for segmentation to compare the performance of the Swin
Transformer with other models. These include Vision Transformer (ViT), ResNet-101 and
data-efficient image transformers (DeiT)-S [58]. The findings reveal that the pre-trained
Swin-B model achieves a top-1 accuracy of 82.26% in classification tasks, outperforming ViT
by 2.529%. For segmentation tasks, the Swin-S model shows an improvement over other
methods with a mean Intersection over Union (mIoU) of 47.93%. These results indicate that
pre-training enhances the Swin Transformer model’s accuracy.

Agnes et al. [59], address the challenge of manually examining small nodules in com-
puted tomography scans, a process that becomes time-consuming due to human vision
limitations. To address this, they introduce a deep-learning-based CAD framework for
quick and accurate lung cancer diagnosis. The study employs a dilated SegNet model to
segment the lung from chest CT images and develops a CNN model with batch normaliza-
tion to identify true nodules. The segmentation model’s performance is evaluated using the
Dice coefficient, while sensitivity is used for the nodule classifier. The discriminative power
of features learned by the CNN classifier is further validated through principal component
analysis. Experimental outcomes show that the dilated SegNet model achieves an average
Dice coefficient of 89.00 ± 23.00% and the custom CNN model attains a sensitivity of 94.80%
for classifying nodules. These models excel in lung segmentation and 2D nodule patch
classification within the CAD system for CT-based lung cancer diagnosis. Visual results
substantiate that the CNN model effectively classifies small and complex nodules with
high probability values. Figure 10 highlights the dilated SegNet for lung segmentation.

Figure 10. The proposed dilated SegNet for lung segmentation proposed in [59].

Yuan et al. [60] introduce a novel method for early diagnosis, and timely treatment
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of lung cancer through the detection and identification of malignant nodules in chest
CT scans. The proposed multi-modal fusion multi-branch classification network merges
structured radiological data with unstructured CT patch data to differentiate benign from
malignant nodules. This network features a multi-branch fusion-based effective attention
mechanism for 3D CT patch unstructured data. It also employs a 3D ECA-ResNet, inspired
by ECA-Net [61], to dynamically adjust the features. When tested on the LUNA16 and
LIDC-IDRI databases, the network achieves the highest accuracy of 94.89%, sensitivity of
94.91% and F1-score of 94.65% along with the lowest false positive rate of 5.55%.

Hassan Mkindu et al. [62] propose a computer-aided diagnosis (CAD) scheme for
lung nodule prediction based on a 3D multi-scale vision transformer (3D-MSViT). The goal
of this scheme is to improve the efficiency of lung nodule prediction from 3D CT images
by enhancing multi-scale feature extraction.The 3D-MSViT architecture uses a local-global
transformer block structure where the local transformer stage processes each scale patch
separately and then merges multi-scale features at the global transformer level. Unlike
traditional methods, the transformer blocks rely solely on the attention mechanism without
including CNNs to reduce network parameters. The study uses the Luna16 database to
evaluate the proposed scheme. The results demonstrate that the 3D-MSViT algorithm
achieved the highest sensitivity of 97.81% and competition performance metrics of 91.10%.
However, the proposed scheme is limited to single image modality (CT images) and does
not include a stage for false-positive reduction. 3D-ViTNet is an architecture that relies
on a single-scale vision transformer encoder without using CNNs. Experimental results
show that the integration of 3D ResNet with the attention module improves the detection
sensitivity in all tenfold cross-validations compared to plain 3D ResNet. The introduction of
3DViTNet slightly reduces the sensitivities in each experiment fold. The optimal sensitivity
is achieved using the multi-scale architecture 3D-MSViT.

5.1.3. Deep Learning Techniques for Lung Cancer Using NLST Dataset

Ardila et al. [63] develop an end-to-end deep learning algorithm for lung cancer
screening using low-dose chest CT scans. The goal is to predict a patient’s risk of developing
lung cancer using their current and prior CT volumes, while demonstrating the potential
for deep learning models to increase accuracy, consistency and adoption of lung cancer
screening worldwide. The methodology consists of four components, all trained using the
TensorFlow platform: Lung segmentation: This component uses Mask-RCNN, which is
a 2D object detection algorithm, to segment the lungs in the CT images and compute the
center of the bounding box for further processing. Cancer ROI detection: This component
uses RetinaNet, which is a 3D object detection algorithm, to detect cancer ROIs in the
CT images; Full-volume model: This component uses 3D inflated Inception V1 to predict
whether the patient has cancer within 1 year; Cancer risk prediction model: This component
uses 3D Inception to extract features from the output of the previous two models and predict
the patient’s individual malignancy score. The algorithm achieves a higher performance
with an area under the curve of 94.40% on 6716 scans. The model outperforms all six
radiologists with absolute reductions of 11% in false positives and 5% in false negatives
when prior CT imaging was not available.

Than et al. [64], address the challenge of distinguishing between lung cancer and lung
tuberculosis (LTB) without invasive procedures which can have significant risks. The study
proposes using transfer learning on early convolutional layers to mitigate the challenges
posed by limited training datasets. The methodology used a customized 15-layer VGG16-
based 2D DNN architecture trained and tested on sets of CT images extracted from the
NLST and the NIAID TB Portals [65]. The performance of the DNN was evaluated under
locked and step-wise unlocked pretrained weight conditions. The results indicate that the
DNN achieved an accuracy of 90.40% with an F score of 90.10%, supporting its potential
as a noninvasive screening tool capable of reliably detecting, and distinguishing between
lung cancer and LTB.

Li et al. [66], address the problem of interpreting temporal distance between sparse,
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irregularly sampled spatial features in longitudinal medical images. They propose two
interpretations of a time-distance ViT using vector embeddings of continuous time and
a temporal emphasis model to scale self-attention weights. The proposed methods were
evaluated on the NLST dataset and the experiments showed a fundamental improvement
in classifying irregularly sampled longitudinal images compared to standard ViTs. The
two interpretations of the time-distance ViT are as follows: Time embedding strategy: This
strategy uses a vector embedding of continuous time to represent the temporal distance
between two spatial features. The vector embedding is learned during training; Temporal
emphasis model: This strategy learns a separate temporal emphasis model in each attention
head. The temporal emphasis model assigns a weight to each spatial feature, depending on
its temporal distance to the other spatial features. The experiments on the NLST dataset
showed that the time-distance ViTs with both the time embedding strategy and the temporal
emphasis model achieved the best performance. They achieved AUC scores of 78.50%
and 78.60%, respectively which significantly outperformed the standard ViTs (AUC score
of 73.40%) and the cross-sectional approach (AUC score of 77.90%). The results of this
study suggest that the time-distance ViTs have the potential to improve the classification
of longitudinal medical images. The study also provides a new way to interpret temporal
distance in longitudinal medical images. The Figure 11 explains the process of the proposed
method. A region proposal network (RPN) is used to propose five local regions in each
image volume. Then, the features of these regions are extracted and embedded as five
feature tokens. The time distance between the repeated images is then integrated into the
model using the time embedding strategy or the temporal emphasis model. The code for
the proposed method is available on [67].

Figure 11. Feature extraction of 2D data was done by taking uniform patches and linearly projecting
them in to a common embedding space proposed in [66].

Lu et al. [68] describe the development and validation of a CNN called CXR-LC
that predicts long-term incident lung cancer using data commonly available in the elec-
tronic medical record (EMR) 12 years before. The CXR-LC model was developed in the
Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial and validated in
additional PLCO and NLST smokers. The results showed that the CXR-LC model had
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better discrimination for incident lung cancer than CMS eligibility, with an AUC of 75.50%
vs. 63.40%, respectively (p < 0.001). The CXR-LC model’s performance was similar to that of
PLCOM2012 a state-of-the-art risk score with 11 inputs, in both the PLCO dataset (CXR-LC
AUC of 75.50% vs. PLCOM2012 AUC of 75.10%) and the NLST dataset (65.90% vs. 65.00%).
When compared in equal-sized screening populations, CXR-LC was more sensitive than
CMS eligibility in the PLCO dataset (74.90% vs. 63.80%; p = 0.012) and missed 30.70%
fewer incident lung cancers. On decision curve analysis, CXR-LC had higher net benefit
than CMS eligibility and similar benefit to PLCOM2012. The CXR-LC model identified
smokers at high risk for incident lung cancer, beyond CMS eligibility and using information
commonly available in the EMR.

5.1.4. Deep Learning Techniques for Lung Cancer Using TCGA Dataset

Khan et al. [69] propose an end-to-end deep learning approach called Gene Trans-
former to address the complexity of high-dimensional gene expression data in the clas-
sification of lung cancer subtypes. The study investigates the use of transformer-based
architectures which leverage the self-attention mechanism to encode gene expressions
and learn representations that are computationally complex and parametrically expensive.
The Gene Transformer architecture is inspired by the Transformer encoder architecture
and uses a multi-head self-attention mechanism with 1D convolution layers as a hybrid
architecture to assess high-dimensional gene expression datasets. The framework priori-
tizes features during testing and outperforms existing SOTA methods in both binary and
multiclass problems. The authors demonstrate the potential of the multi-head self-attention
layer to perform 1D convolutions and suggest that it is less expensive than ordinary 2D
convolutional layers.

The accurate identification of lung cancer subtypes in medical images is crucial for
their proper diagnosis and treatment. Despite the progress made by existing methods,
challenges remain due to limited annotated datasets, large intra-class differences, and high
inter-class similarities. To address these challenges, Cai et al. [70] proposed a dual-branch
deep learning model called the Frequency Domain Transformer Model (FDTrans). FDTrans
combines image domain and genetic information to determine lung cancer subtypes in
patients. To capture critical detail information a pre-processing step was added to transfer
histopathological images to the frequency domain using a block-based discrete cosine
transform. The Coordinate-Spatial Attention Module (CSAM) was designed to reassign
weights to the location information and channel information of different frequency vectors.
A Cross-Domain Transformer Block (CDTB) was then designed to capture long-term
dependencies and global contextual connections between different component features.
Feature extraction was performed on genomic data to obtain specific features and the
image and gene branches were fused. Classification results were output through a fully
connected layer. In 10-fold cross-validation, the method achieved an AUC of 93.16% and
overall accuracy of 92.33% which is better than current lung cancer subtypes classification
detection methods.

In [71], Primakov et al. address the importance of detecting and segmenting abnor-
malities on medical images for patient management and quantitative image research. The
authors present a fully automated pipeline for the detection and volumetric segmentation
of NSCLC using 1328 thoracic CT scans. They report that their proposed method is faster
and more reproducible compared to expert radiologists and radiation oncologists. The
authors also evaluate the prognostic power of the automatic contours by applying RECIST
criteria [72] and measuring tumor volumes. The results show that segmentations by their
method stratify patients into low and high survival groups with higher significance com-
pared to those methods based on manual contours. Additionally, the authors demonstrate
that on average, radiologists and radiation oncologists preferred automatic segmentations
in 56% of cases. The code is available at [73].
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5.1.5. Deep Learning Techniques for Lung Cancer Using JSRT Dataset

Ausawalaithong et al. [74], aim to develop an automated system for predicting lung
cancer from chest X-ray images using deep learning. They explore the use of a 121-layer
convolutional neural network, DenseNet121 and a transfer learning scheme to classify
lung cancer. The model is trained on a lung nodule dataset before being fine-tuned on
the lung cancer dataset to address the issue of a small dataset. The JSRT and ChestX-ray8
datasets are used to evaluate the proposed model. The results indicate a mean accuracy
of 74.43 ± 6.01%, mean specificity of 74.96 ± 9.85% and mean sensitivity of 74.68 ± 15.33%.
Additionally, the model provides a heatmap for identifying the location of the lung nodule.
These findings are promising for further development of chest X-ray-based lung cancer
diagnosis using the deep learning approach.

Gordienko et al. [75] aim to leverage advancements in deep learning and image
recognition to automatically detect suspicious lesions and nodules in CXRs of lung cancer
patients. The study preprocesses the CXR images using lung segmentation and bone
shadow exclusion techniques before applying a deep learning approach. The original JSRT
dataset and the BSE-JSRT dataset, which is the same as the JSRT dataset but without clavicle
and rib shadows were used for analysis. Both datasets were also used after segmentation,
resulting in four datasets in total. The results of the study demonstrate the effectiveness of
the preprocessing techniques, particularly bone shadow exclusion in improving accuracy
and reducing loss. The dataset without bones had significantly better results than the other
preprocessed datasets. However, the study notes that pre-processing for label noise during
the training stage is crucial because the training data was not accurately labeled for the test
set. The study also identifies potential areas for improvement, such as increasing the size
and number of images investigated and using data augmentation techniques for lossy and
lossless transformations. These improvements would enable a wider range of CXRs to be
analyzed and increase the accuracy and efficiency of the deep learning approach.

5.1.6. Deep Learning Techniques for Lung Cancer Using Kaggle DSB Dataset

Yu et al. [76] address the problem of divergent software dependencies in automated
chest CT evaluation methods for lung cancer detection, which makes it difficult to compare
and reproduce these methods. The study aims to develop reproducible machine learning
modules for lung cancer detection and compare the approaches and performances of
the award-winning algorithms developed in the Kaggle Data Science Bowl. The authors
obtained the source codes of all award-winning solutions and evaluated the performance
of the algorithms using the log-loss function and the Spearman correlation coefficient
of the performance in the public and final test sets. The low-dose chest CT datasets in
DICOM format from the Kaggle Data Science Bowl website were used. The datasets
consisted of a training set with ground truth labels and a public test set without labels.
Most solutions implemented distinct image preprocessing, segmentation and classification
modules. Variants of U-Net, VGGNet and residual net were commonly used in nodule
segmentation and transfer learning was used in most of the classification algorithms.

Tekade et al. [77] propose a solution to the problem of detecting and classifying lung
nodules, as well as predicting the malignancy level of these nodules using CT scan images.
The authors introduce a 3D multipath VGG-like network, which is evaluated on 3D cubes
and combined with U-Net for final predictions. The study uses the LIDC-IDRI, the LUNA16,
and the Kaggle DBS 2017 datasets. The proposed approach achieves an accuracy of 95.60%
and a logloss of 38.77%, with a dice coefficient of 90%. The results are useful for predicting
whether a patient will develop cancer in the next two years. The study concludes that
Artificial Neural Networks play an important role in better analyzing the dataset, extracting
features and classification. The proposed approach is effective for lung nodule detection
and malignancy level prediction using lung CT scan images.
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5.1.7. Deep Learning Techniques for Lung Cancer Using Decathlon Dataset

Said et al. [78] proposed a system using deep learning architectures for the early
diagnosis of lung cancer in CT scan imaging. The proposed system consists of two parts:
segmentation and classification. Segmentation is performed using the UNETR network [79],
while classification is performed using a self-supervised network. The segmentation part
aims to identify the ROI in the CT scan images. This is done by first projecting the 3D
patches from the volumetric image into an embedding space. A positional embedding is
then added to these patches. The Transformer encoder captures global and long-range
dependencies in the image through attention mechanisms. It extracts high-level repre-
sentations of the ROI. The classification part is then used to classify the output of the
segmentation part, either as benign or malignant. This part is developed on top of the
self-supervised network and aims to classify the identified regions as either cancerous or
non-cancerous. The proposed system uses 3D-input CT scan data, making it a powerful
tool for early diagnosing and combating lung cancer. The system shows promising results
in diagnosing lung cancer using 3D-input CT scan data, achieving a segmentation accuracy
of 97.83% and a classification accuracy of 98.77%. The Decathlon dataset was used for
training and testing experiments.

Guo et al. [80] propose a solution to the anisotropy problem in 3D medical image
analysis. This problem occurs when the slice spacing varies significantly between training
and clinical datasets, which can degrade the performance of machine learning models.
The authors propose a transformer-based model called TSFMUNet, which is adaptable
to different levels of anisotropy and is computationally efficient. TSFMUNet is based on
a 2D U-Net backbone consisting of a downsampling stream, upsampling stream and a
transformer block (Figure 12). The downsampling stream takes 3D CT scans as input
and extracts features at multiple resolutions. The upsampling stream then reconstructs
the image from the extracted features. The transformer block is used to encode inter-
slice information using a self-attention mechanism. This allows the model to adapt to
variable slice spacing and to capture long-range dependencies in the image. The authors
evaluated TSFMUNet on the MSD database, which includes 3D lung cancer segmentation
data. The results showed that TSFMUNet outperforms baseline models such as the 3D
U-Net and LSTMUNet. TSFMUNet achieved a segmentation accuracy of 87.17% which is
significantly higher than the 77.44% achieved by the 3D U-Net and the 85.73% achieved by
the LSTMUNet.

Figure 12. The propose TSFMUNet in [80].
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5.1.8. Deep Learning Techniques for Lung Cancer Using Tianchi Dataset

Hao Tang et al. [81] propose a novel end-to-end framework for pulmonary nodule
detection, that integrates nodule candidate screening and false positive reduction into one
model. The objective is to improve nodule detection by jointly training the two stages
of nodule candidate generation and false positive reduction. The proposed framework
follows a two-stage strategy: (1) Generating nodule candidates using a 3D Nodule Proposal
Network. (2) Classifying the nodule candidates to reduce false positives. The nodule
candidate screening branch uses a 3D Region Proposal Network (RPN) adapted from Faster
R-CNN. The RPN predicts a set of bounding boxes around potential nodule candidates.
The predicted bounding boxes are then used to crop features of the nodule candidates
using a 3D ROI Pool layer as shown in Figure 13. These features are then fed as input to
the nodule false positive reduction branch. The nodule false positive reduction branch
uses a CNN to classify the nodule candidates as either true positives or false positives.
The CNN is trained to minimize the loss between the predicted labels and the ground
truth labels. Convolution blocks are then built using residual blocks and maxpooling to
further reduce the spatial resolution. This allows the model to learn more abstract features
from the image while reducing the amount of memory required. The authors evaluated
the proposed framework on the Tianchi competition dataset. The results showed that the
end-to-end system outperforms the two-step approach by 3.88%. The end-to-end system
also reduces model complexity by one third and cuts inference time by 3.6 fold.

Figure 13. End-to-end pulmonary nodule detection framework in [81]. (*) is equivalent to the times
(×) sign.

Huang et al. [82] propose an improved CNN framework for the more effective detec-
tion of pulmonary nodules. The framework consists of three 3D CNNs, namely CNN-1,
CNN-2 and CNN-3 which are fused into a new Amalgamated-CNN model to detect pul-
monary nodules. To detect nodules, the authors first use an unsharp mask to enhance the
nodules in CT images. Then, CT images of 512 × 512 pixels are segmented into smaller
images of 96 × 96 pixels and the plaques corresponding to positive and negative samples
are segmented. CT images segmented into 96 × 96 pixels are then downsampled to 64 × 64
and 32 × 32 sizes respectively. The authors discard nodules less than 5 mm in diameter
and use the AdaBoost classifier to fuse the results of CNN-1, CNN-2, and CNN-3. They
call this new neural network framework the Amalgamated-Convolutional Neural Network
(A-CNN). The authors evaluated the proposed A-CNN model on the LUNA16 dataset
where it achieved sensitivity scores of 81.70% and 85.10% when the average false positives
number per scan was 0.125 FPs/scan and 0.25 FPs/scan respectively. These scores were
5.40% and 0.50% higher than those of the current optimal algorithm.

Tang et al. [83] address the challenge of detecting nodules in three-dimensional medical
imaging data using DCNN. While previous approaches have used 2D or 2.5D components
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for analyzing 3D data, the proposed DCNN approach is fully 3D end-to-end and utilizes
SOTA object detection techniques. The proposed method consists of two stages: candidate
screening and false positive reduction. In the first stage, a U-Net-inspired 3D Faster R-CNN
is used to identify nodule candidates while preserving high sensitivity. In the second
stage, 3D DCNN classifiers are trained on difficult examples produced during candidate
screening to finely discriminate between true nodules and false positives. Models from
both stages are then ensembled for final predictions allowing for flexibility in adjusting
the trade-off between sensitivity and specificity. The proposed approach was evaluated
using data from Alibaba’s 2017 TianChi AI Competition for Healthcare. The classifier was
trained for 300 epochs using positive examples from the Faster R-CNN detector balanced
with hard negative samples. The input candidates for test set predictions were provided by
the detector and the checkpoint with the highest CPM on the validation set was used for
prediction on the test set. The proposed approach achieved superior performance with a
CPM of 81.50%.

5.1.9. Deep Learning Techniques for Lung Cancer Using Peking University Cancer
Hospital Dataset

Clinical staging is crucial for treatment decisions and prognosis evaluation for lung
cancer. However, inconsistencies between clinical and pathological stages are common
due to the free-text nature of CT reports. In [84], Fischer et al. developed an information
extraction (IE) system to automatically extract staging-related information from CT reports
using three components: NER [85], relation classification (RC) [86] and postprocessing (PP).
The NER component was used to identify entities of interest such as tumor size, lymph
node status and metastasis. The RC component was used to classify the relationships
between these entities. The PP module was used to correct errors and inconsistencies in the
extracted information. The IE system was evaluated on a clinical dataset of 392 CT reports.
The BERT model outperformed the ID-CNN-CRF model and the Bi-LSTM-CRF model for
NER, with macro-F1 scores of 80.97%, 90.06% and 90.22% respectively. The BERT-RSC
model outperformed the baseline methods for RC, with macro-F1 and micro-F1 scores of
97.13% and 98.37% respectively. The PP module achieved macro-F1 and micro-F1 scores
of 94.57% and 96.74% respectively for all 22 questions related to lung cancer staging. The
experimental results demonstrated the system’s potential for use in stage verification and
prediction to facilitate accurate clinical staging.

Zhang et al. [87] proposed a novel deep learning approach for extracting clinical
entities from Chinese CT reports for lung cancer screening and staging. The free-text nature
of CT reports poses a significant challenge to effectively using this valuable information for
clinical decision-making and academic research. The proposed approach utilizes the BERT-
based BiLSTM-Transformer network (BERT-BTN) with pre-training to extract 14 types of
clinical entities. The BERT-BTN model first uses BERT [88] to generate contextualized word
embeddings. This is followed by a BiLSTM layer to capture local sequential information.
Then a Transformer layer is added to model global dependencies between words regardless
of distance. The BiLSTM provides positional information while the Transformer draws
long-range dependencies. After the BERT-BiLSTM-Transformer encoder a CRF layer is
added to further incorporate constraints from the labels. The proposed approach was
evaluated on a clinical dataset consisting of 359 CT reports collected from the Department
of Thoracic Surgery II of Peking University Cancer Hospital. The results showed that the
BERT-BTN model achieved an 85.96% macro-F1 score under exact match scheme which
outperforms the benchmark BERT-BTN, BERT-LSTM, BERT-fine-tune, BERT-Transformer,
FastText-BTN, FastText-BiLSTM, and FastText-Transformer models. The results indicate
that the proposed approach efficiently recognizes various clinical entities for lung cancer
screening and staging and holds great potential for further utilization in clinical decision-
making and academic research. The propose BERT-BTN is shown in Figure 14.
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Figure 14. The propose BERT-BTN in [87].

5.1.10. Deep Learning Techniques for Lung Cancer Using MSKCC Dataset

Kipkogei et al. [89] introduced the Clinical Transformer a variation of the transformer
architecture that is used for precision medicine to model the relationship between molecular,
and clinical measurements and the survival of cancer patients. The Clinical Transformer
first uses an embedding strategy to convert the molecular and clinical data into vectors.
These vectors are then fed into the transformer which learns long-range dependencies
between the features. The transformer also uses an attention mechanism to focus on
the most important features for predicting survival. The authors proposed a customized
objective function to evaluate the performance of the Clinical Transformer. This objective
function takes into account both the accuracy of the predictions and the interpretability of
the model. The authors evaluated the Clinical Transformer on a dataset of 1661 patients
from the MSKCC. The results showed that the Clinical Transformer outperformed other
linear and non-linear methods currently used in practice for survival prediction. The
authors also showed that initializing the weights of a domain-specific transformer with
the weights of a cross-domain transformer further improved the predictions. The attention
mechanism used in the Clinical Transformer successfully captures known biology behind
these therapies.

5.1.11. Deep Learning Techniques for Lung Cancer Using SEER Dataset

Doppalapudi et al. [90] aimed to develop deep learning models for lung cancer sur-
vival prediction in both classification and regression problems. The study compared the
performance of ANN, CNN and RNN models with traditional machine learning models
using data from the SEER. The deep learning models outperformed traditional machine
learning models achieving a best classification accuracy of 71.18% when patients’ survival
periods were segmented into classes of “≤6 months”, “0.5–2 years” and “>2 years”. The
RMSE of the regression approach was 13.5% and the R2 value was 0.5. In contrast, the
traditional machine learning models saturated at 61.12% classification accuracy and 14.87%
RMSE in regression. The deep learning models provide a baseline for early prediction
and could be improved with more temporal treatment information collected from treated
patients. Additionally, the feature importance was evaluated to investigate the model
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interpretability and gain further insight into the survival analysis models and the factors
that are important in cancer survival period prediction.

5.1.12. Deep Learning Techniques for Lung Cancer Using TCIA Dataset

Barbouchi et al. [91] present a new approach for the classification and detection of
lung cancer using deep learning techniques applied to PET/CT images. Early detection is
crucial for increasing the cure rate and this approach aims to fully automate the anatomical
localization of lung cancer from PET/CT images and classify the tumor to determine the
speed of progression and the best treatments to adopt. The authors used the DETR model
based on transformers to detect the tumor and assist physicians in staging patients with
lung cancer. The TNM staging system and histologic subtype classification were taken as
a standard for classification. The proposed approach achieved an IoU of 0.8 when tested
on the Lung-PET-CT-Dx dataset, indicating a high level of accuracy in detecting tumors.
It also outperformed SOTA T-staging and histologic classification methods, achieving
classification accuracy of 0.97 and 0.94 for T-stage and histologic subtypes respectively.

In [91], Barbouchi et al. present a new approach for the classification and detection
of lung cancer using deep learning techniques applied to positron emission tomogra-
phy/computed tomography (PET/CT) images. Early detection is crucial for increasing
the cure rate and this approach aims to fully automate the anatomical localization of lung
cancer from PET/CT images and classify the tumor to determine the speed of progression
and the best treatments to adopt. The authors used the DETR model which is a transformer-
based model to detect the tumor and assist physicians in staging patients with lung cancer.
The TNM staging system and histologic subtype classification were used as a standard
for classification. The proposed approach achieved an IOU of 80% when tested on the
Lung-PET-CT-Dx dataset, indicating a high level of accuracy in detecting tumors. It also
outperformed SOTA T-staging and histologic classification methods achieving classification
accuracy of 97% and 94% for T-stage and histologic subtypes respectively. An IOU of 80%
indicates that the predicted region overlaps with the ground truth region by 80%.

5.2. Deep Learning Technics Using Proprietary Datasets

In addition to publicly available datasets, many studies on DL-based lung cancer
diagnosis have utilized private databases which may be proprietary or collected specifically
for research purposes. While private datasets may offer advantages such as greater size
or more detailed annotations they are often not publicly accessible and may be subject
to confidentiality agreements. In this section, we review a selection of studies that have
utilized private databases for the development and validation of deep learning algorithms
for lung cancer diagnosis. These studies demonstrate the potential benefits of working with
large and detailed datasets but also raise questions about reproducibility and generalizabil-
ity of results. By examining the methods and results of these studies, we aim to identify
key insights and challenges in using private datasets for deep learning-based lung cancer
diagnosis and consider the implications of this approach for the wider research community.
Appendix A Table A3 summarizes the reviewed methods for lung cancer diagnosis using
proprietary datasets.

Weikert et al. [92] aimed to develop and test a Retina U-Net algorithm for detecting
primary lung tumors and associated metastases of all stages on FDG-PET/CT. The method-
ology involved evaluating detection performance for all lesion types, assigning detected
lesions to categories T, N, or M using an automated anatomical region segmentation and vi-
sually analyzing reasons for false positives. The study used a dataset of 364 FDG-PET/CTs
of patients with histologically confirmed lung cancer, which was split into a training, vali-
dation and internal test dataset. The results showed that the Retina U-Net algorithm had a
sensitivity of 86.2% for T lesions and 94.3% accuracy in TNM categorization based on the
anatomical region approach. The Figure 15 shows that Retina U-Net architecture resembles
a standard U-Net with an encoder-decoder structure. It is a segmentation model that is
complemented by additional detection network branches in the lower (coarser) decoder
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levels for end-to-end object classification and bounding box regression. This allows the
detection network to exploit higher-level object features from the segmentation model.
The segmentation model provides high-quality pixel-level training signals that are back-
propagated to the detection network. This enables Retina U-Net to leverage segmentation
labels for object detection in an end-to-end fashion. The study’s performance metrics had
wide 95% confidence intervals as the internal test set was only a small portion of the whole
internal data set.

Figure 15. Retina U-Net architecture presented in [92]. The encoder-decoder structure resembles
a U-Net.

Nishio et al. [93] presented a CADx method for the classification of lung nodules into
benign nodule primary lung cancer and metastatic lung cancer. The study evaluated the
usefulness of DCNN for CADx in comparison to a conventional method (hand-crafted
imaging feature plus machine learning), the effectiveness of transfer learning, and the effect
of image size as the DCNN input. To perform the CADx, the authors used a previously-
built database of CT images and clinical information of 1236 patients out of 1240. The
CADx was evaluated using the VGG-16 convolutional neural network with and without
transfer learning. The hyperparameter optimization of the DCNN method was performed
by random search. For the conventional method, CADx was performed using rotation-
invariant uniform-pattern local binary pattern on three orthogonal planes with a support
vector machine. The study found that DCNN was better than the conventional method for
CADx and the accuracy of DCNN improved when using transfer learning. Additionally,
the authors discovered that larger image sizes as inputs to DCNN improved the accuracy of
lung nodule classification. The best averaged validation accuracies of CADx were 55.90%,
68.00% and 62.40% for the conventional method, the DCNN method with transfer learning
and the DCNN method without transfer learning respectively. For image size of 56,112,
and 224, the best averaged validation accuracy for the DCNN with transfer learning were
60.70%, 64.70%, and 68.00%, respectively. The study demonstrates that the 2D-DCNN
method is more useful for ternary classification of lung nodule than the conventional
method for CADx and transfer learning enhances the image recognition for CADx by
DCNN when using medium-scale training data.

Lakshmanaprabu et al. [94] presented a novel automated diagnostic classification
method for CT images of lungs with the aim of enhancing lung cancer classification
accuracy. The methodology comprises two phases: in the first phase, selected features are
extracted and reduced using Linear Discriminant Analysis (LDA); in the second phase,
an Optimal Deep Neural Network (ODNN) is employed, incorporating the Modified
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Gravitational Search Algorithm (MGSA) optimization algorithm for classifying CT lung
cancer images. The study was conducted on a dataset of 50 low-dosage and recorded
lung cancer CT images. The results demonstrate that the proposed classifier achieves a
sensitivity of 96.20%, specificity of 94.20% and accuracy of 94.56%.

Shin et al. [95] present a new method for accurately diagnosing early-stage lung cancer
using deep learning-based surface-enhanced Raman spectroscopy (SERS) of exosomes. The
objective of this study was to analyze the SERS spectra of human plasma-derived exosomes
based on features of cell-derived exosomes using the deep learning algorithm with the
hypothesis that the Raman signal of cancer cell exosomes can be detected from the plasma
exosomes. The deep learning model was trained with SERS signals of exosomes derived
from normal and lung cancer cell lines. Exosomes were first isolated from cell culture
supernatant and human plasma samples, and their SERS signals were collected using a
gold nanoparticle (GNP)-coated plate. The spectral dataset of exosomes from cell culture
supernatant was used to train the deep learning models for binary classification of cell types.
The total dataset consisted of 2150 cell-derived exosome data. For binary classification,
the normal and cancer cell exosomes were respectively labeled with 0 and 1. The entire
data were shuffled randomly before training to make the dataset have both normal cell-
and cancer cell-derived exosome data in each batch. The authors found that their deep
learning model could classify exosomes with an accuracy of 95%. In 43 patients including
stage I and II cancer patients, the deep learning model predicted that plasma exosomes
of 90.7% of patients had higher similarity to lung cancer cell exosomes than the average
of the healthy controls. Notably, the model predicted lung cancer with an AUC of 91.20%
for the whole cohort and stage I patients with an AUC of 91.0%. The Figure 16 shows that
the deep learning model utilizes a ResNet architecture. The input data passes through an
initial convolutional layer with 64 filters that expands the channel depth while reducing
the data length via a pooling layer with a 3 × 3 kernel. After several basic ResNet blocks,
the model connects two fully connected layers with ReLU activation and 40% dropout. The
basic blocks output feature maps of varying lengths and channel depths. During training,
the loss and accuracy were monitored at each epoch with dropout disabled. The training
loss decreased and accuracy increased over iterations, indicating convergence. After full
training, the model generated output scores for a representative sample of 200 data points.

Figure 16. Deep learning-based cell exosome classification in [95].

Shao et al. [96] approched the challenges of lung cancer screening in resource-limited
settings through the use of mobile CT scanning coupled with deep learning techniques.
The researchers enrolled over 12,000 participants who underwent scans using a mobile CT
vehicle. It was found that 9511 (76.95%) of the participants had pulmonary nodules detected.
The authors developed a deep learning system for nodule detection and malignancy
evaluation which achieved SOTA performance as measured by recall, FROC, accuracy, and
AUC. After 1-year of follow-up, 86 patients were diagnosed with lung cancer of which
80 (93.03%) cases were adenocarcinoma and 73 (84.88%) were early stage. For nodule
detection, the deep learning system attained a recall of 95.07% and FROC of 64.70%. For
lung cancer risk stratification it achieved an accuracy of 86.96% and macro-AUC of 85.16%.

Traditional Chinese medicine (TCM) has been proven effective in managing advanced
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lung cancer [97]. Accurate syndrome differentiation is crucial for successful TCM treatment.
Intelligent models for TCM syndrome differentiation have been developed by leveraging
documented TCM treatment cases and advancements in AI technology. In [98], Liu et
al. aimed to establish an end-to-end TCM diagnostic model for lung cancer syndrome
differentiation using unstructured medical records. The approach taken was to treat
lung cancer TCM syndrome differentiation as a multilabel text classification problem.
First, entity representation was conducted using BERT and conditional random fields
(CRF) models. Five deep learning-based text classification models were then employed
to construct a multilabel classifier for medical records. Two data augmentation strategies
were employed to mitigate overfitting concerns. Lastly, a fusion model approach was
employed to enhance model performance. The dataset utilized in the experiment comprised
1206 clinical records of patients diagnosed with non-small cell lung cancer. The resulting
models were anticipated to exhibit greater efficiency compared to approaches relying on
structured TCM datasets. The RCNN model with data augmentation achieved an F1 score
of 86.50%, demonstrating a 2.41% improvement over the unaugmented model. The text-
hierarchical attention network (Text-HAN) model achieved the highest F1 scores, 86.76%
and 87.51% respectively. The mean average precision for the word-encoding-based RCNN
was 10% higher than that of the character-encoding-based representation. A fusion model
comprising the text-convolutional neural network text-recurrent neural network and Text-
HAN models achieved an F1 score of 0.8884 showcasing superior performance among
the models.

Wang et al. [99] aimed to develop an automated method for lung cancer segmentation
using deep learning and dual-modality imaging and to evaluate the clinical performance
of the method. The methodology involved constructing a 3D neural network with dual
inputs from diagnostic PET and simulation CT based on U-Net. The performance of the 3D
dual-modality network was compared against that of a CT-only network and the results
were evaluated using a dataset of 290 pairs of PET and CT from lung cancer patients with
manual physician contours as the ground truth. The proposed 3D network with a novel
GTV volume-based stratification strategy generated clinically useful lung cancer contours
that were quantitatively similar to the ground truth and highly acceptable in physician
review. The GTV volume-based stratification strategy divides the dataset into two subsets:
a large GTV subset and a small GTV subset. The model for the large GTV subset is trained
with GTVs of all sizes and the model for the small GTV subset is trained with small GTVs
only. This strategy was found to improve the performance of the network for both large
and small GTVs. The results showed that the dual modality inputs delivered better results
than the CT-only inputs with a mean DSC, HD, and BLD of 79 ± 1%, 5.8 ± 3.2 mm, and
2.8 ± 1.5 mm respectively.

Park et al. [100] propose a two-stage U-Net architecture for automatic lung cancer
segmentation in [18F]FDG PET/CT scans. The proposed method involves a global U-Net in
Stage 1, which receives a 3D PET/CT volume as input and extracts the preliminary tumor
area generating a 3D binary volume as output. In Stage 2, a regional U-Net receives eight
consecutive PET/CT slices around the slice selected by the global U-net in Stage 1 and gen-
erates a 2D binary image as output. The proposed method was evaluated using a dataset of
887 patients with lung cancer which was randomly partitioned into training, validation and
test sets. The results showed that the proposed two-stage U-Net architecture outperformed
the conventional one-stage 3D U-Net in primary lung cancer segmentation. The two-stage
U-Net model successfully predicted the detailed margin of the tumors as confirmed by
quantitative analysis using the Dice similarity coefficient. The proposed method is expected
to reduce the time and effort required for accurate lung cancer segmentation in [18F]FDG
PET/CT. This study highlights the potential of deep learning approaches such as U-Net for
automatic lung cancer segmentation in medical imaging.

Li et al. [101] present the results of the Automatic Cancer Detection and Classification
in Whole-slide Lung Histopathology (ACDC@LungHP) Grand Challenge [102] which was
designed to evaluate different CAD methods for the automatic diagnosis of lung cancer.
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The focus of the challenge was on segmentation (pixel-wise detection) of cancer tissue
in whole slide imaging (WSI) using a dataset of 150 training images and 50 test images
from 200 patients. The article reviews the challenge and summarizes the top 10 submitted
methods for lung cancer segmentation. All methods were based on deep learning and
categorized into two groups: multi-model methods and single-model methods. In general,
multi-model methods were significantly better than single-model methods with mean Dice
coefficients of 79.66% and 75.44% respectively. The DC of the best method was near the
inter-observer agreement of 83.98%.

Chen et al. [103] developed a novel deep learning-based architecture for lung cancer
segmentation in CT images called MAU-Net. The methodology involves applying a
Dual Attention Module [104] at the bottleneck of the U-Net architecture which models
the semantic interdependencies in spatial and channel dimensions. A novel multiple
attention gate module is proposed to adaptively recalibrate and fuse multiscale features
from the dual attention module the previous decode feature maps and the corresponding
features from the encoder. Extensive ablation studies were conducted on a clinical dataset
comprising 322 CT images to evaluate the performance of the proposed architecture.
MAU-Net achieved average DSC, Haus95, and RAVD values of 86.67%, 13.00 and 15.52%
respectively. The performance gains for all three metrics illustrate the effectiveness of the
proposed MAU-Net. The study also highlights the importance of the attention mechanism
for segmentation as the DAU-Net significantly outperformed the base U-Net. Furthermore,
the study showed that MAU-Net achieved better segmentation results for smaller cancer
areas compared to the base U-Net and DAU-Net. MAU-Net is based on a 3D U-Net as
the backbone segmentation network. It incorporates two main attention mechanisms:
a dual attention module (DAM) and a multiple attention gated module (MAGM). The
DAM module contains a spatial attention block (SAB) and channel attention block (CAB)
applied at the bottleneck of the U-Net encoder to model interdependencies between spatial
locations and feature channels. The MAGM modules are inserted in the U-Net decoder
before concatenation with encoder features. They enable MAU-Net to selectively emphasize
informative features and semantic contexts across various scales thereby enhancing lung
tumor segmentation. Combining dual attention modeling and multi-scale feature fusion
with attention gates enhances the representational capabilities of MAU-Net.

Pan et al. [105] developed a deep learning-based system to automatically measure
bone mineral density (BMD) for opportunistic osteoporosis screening utilizing LDCT scans
acquired during lung cancer screening. The system was trained and tested on 200 annotated
LDCT scans to segment and label all vertebral bodies (VBs). This achieved a mean Dice
coefficient of 86.60% for VB segmentation and an accuracy of 97.50% for VB labeling. The
mean CT numbers of the trabecular region within the target VBs were derived using the
segmentation mask through geometric operations. A linear function was established to
correlate the trabecular CT numbers of the target VBs with their corresponding BMDs
collected from approved software utilized for osteoporosis diagnosis. The diagnostic
performance of the system was assessed using an independent dataset of 374 LDCT scans
with established BMD values and osteoporosis diagnoses. The results revealed strong
concordance between the predicted BMD values and the actual ground truth. The AUC
was 92.7% for osteoporosis detection and 94.2% for discerning low BMD. The developed
system holds promise as an automated tool for quantifying vertebral BMD in opportunistic
osteoporosis screening through LDCT scans acquired during lung cancer screening.

Shimazaki et al. [106] developed and validated a deep learning-based model to detect
lung cancer on chest radiographs through the application of a segmentation technique. The
objective was to assess the model’s capability in identifying lung cancer nodules/masses
and to evaluate its sensitivity and mean false positive indications per image (mFPI) using
an independent test dataset. The training dataset encompassed 629 radiographs containing
652 nodules/masses while the test dataset comprised 151 radiographs featuring 159 nod-
ules/masses both collected between January 2006 and June 2018 at the hospital. The
DL-based model exhibited a sensitivity of 73% along with an mFPI of 13% in the test
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dataset. Nevertheless, the sensitivity was reduced in instances where lung cancers over-
lapped with challenging areas like pulmonary apices, pulmonary hila, chest wall, heart and
subdiaphragmatic space (ranging from 50% to 64%) in contrast to non-overlapping regions
(87%). On average, the Dice coefficient for the 159 malignant lesions was 52%. The DL-
based model exhibited robust performance in lung cancer detection on chest radiographs
characterized by a low mFPI.

Feng et al. [107] aimed to evaluate the diagnostic value of deep learning-optimized
chest CT in patients with lung cancer. The study used a Mask-RCNN model for end-to-end
image segmentation and a DPN for nodule detection. The study included 90 patients
diagnosed with lung cancer through surgery or puncture. The accuracy of the DPN
algorithm model in detecting lung lesions in lung cancer patients was 88.74%, and the
accuracy of CT diagnosis was 88.37%, with a sensitivity of 82.91% and specificity of 87.43%.
When combining deep learning-based CT examination with serum tumor detection, the
accuracy improved to 97.94%, sensitivity to 98.12%, and specificity to 100%, showing
significant differences (p < 0.05).

Gil et al. [108] propose a new approach for using DL in medical imaging analysis by
employing two maximum intensity projection (MIP) images generated from whole-body
FDG PET volume as inputs to pre-trained models based on 2D images. The methodology
involves extracting image features using a pre-trained CNN model, ResNet-50 and depict-
ing the relationship between the images on a parametric 2D axes map using t-distributed
stochastic neighbor embedding (t-SNE) with clinicopathological factors. The results show
that the DL-based feature map extracted by two MIP images was embedded by t-SNE
and the PET images were clustered by clinicopathological features. The clustering pattern
showed a difference between the clusters of PET patterns according to the posture of
the patient.

Yan et al. [109] investigated the effectiveness of a deep learning algorithm-based CT
image segmentation in the diagnosis of lung cancer for perioperative rehabilitation nursing.
They constructed a hybrid feature fusion model (HFFM) by fusing a 2D and 3D CNN. Sixty
patients with lung cancer were randomly divided into control and intervention groups to
receive perioperative routine nursing and rehabilitation nursing. The HFFM showed higher
Dice coefficients (87.60%), sensitivities (0.84.90%) and positive predictive values (PPVs)
(87.50%) than other models for lung cancer CT image segmentation. The accuracy rate for
lung cancer diagnosis was 96.70%. After the nursing intervention, the pulmonary function
indexes of the intervention group were significantly improved compared to the control
group as reflected by increased PaO2 (partial pressure of oxygen) levels and decreased
PaCO2 levels.

Chen et al. [110] aimed to establish an auxiliary diagnosis model for lung cancer
based on lung CT image scores using the SegNet approach [111] and explore its value in
distinguishing benign and malignant lung CT images. They collected CT images from
240 patients, half of whom were diagnosed with early-stage lung cancer and half with
benign lung nodules. The authors proposed a SegNet recognition technology to segment
images and compared its performance with DeepLab v3 [112]), VGG19 and manual image
segmentation. SegNet recognition technology is a deep learning-based approach used for
image segmentation, which separates an image into multiple segments or regions based
on its content. In the context of the article, the SegNet approach was applied to lung CT
images to establish an auxiliary diagnosis model for lung cancer. The SegNet model had the
closest overlap rate to manual segmentation and showed a sensitivity of 98.33%, specificity
of 86.67%, accuracy of 92.50% and a total segmentation time of 30.42 s which is shorter than
manual segmentation.

Choe et al. [113] investigated the effect of different reconstruction kernels on radiomic
features and assessed whether image conversion using a CNN could improve the repro-
ducibility of radiomic features between different kernels. The CNN model was developed
using residual learning and an end-to-end approach. Kernel-converted images were gener-
ated from B30f to B50f and from B50f to B30f. Semi-automatically segmented pulmonary
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nodules or masses were analyzed and 702 radiomic features (tumor intensity, texture,
and wavelet features) were extracted. The study involved 104 patients with pulmonary
nodules or masses (mean age, 63.2 years ± 10.5), including 54 women and 50 men. The
Concordance Correlation Coefficient (CCC) between two readers using the same kernel
was 92% and 592 of 702 (84.30%) of the radiomic features were reproducible (CCC ≥ 85%).
Using different kernels, the CCC was 38% and only 107 of 702 (15.20%) of the radiomic
features were reproducible. Texture features and wavelet features were predominantly
affected by reconstruction kernel (CCC, from 88% to 61% for texture features and from 0.92
to 0.35 for wavelet features). After applying image conversion, the CCC increased to 84%
and 403 of 702 (57.40%) radiomic features were reproducible (CCC 0.85 for texture features
and 0.84 for wavelet features).

Yu et al. [114] addressed the limited research on social and behavioral determinants
of health (SBDoH) factors in clinical outcomes due to the absence of structured SBDoH
information within current electronic health record (EHR) systems. The authors propose
utilizing SOTA transformer-based NLP models such as BERT and RoBERTa to extract
SBDoH concepts from clinical narratives. The most effective model was utilized to extract
SBDoH concepts from a lung cancer screening patient cohort comprising 864 patients and
161,933 diverse clinical notes. The results of the study demonstrated that significantly
more detailed information regarding smoking, education and employment was exclusively
captured within clinical narratives and that utilizing both clinical narratives and structured
EHRs is essential for extracting comprehensive SBDoH information. The NLP model based
on BERT achieved the highest strict/lenient F1-scores of 87.91% and 89.99% respectively,
demonstrating its effectiveness in extracting SBDoH concepts. Comparing the SBDoH infor-
mation extracted through NLP with structured EHRs further underscored the limitations
of structured EHRs in comprehensively capturing SBDoH information.

Hwang et al. [115] examined the potential improvement in diagnostic yield for newly
identified lung metastases on chest radiographs in cancer patients using a deep learning-
based CAD system. The investigation employed a regulatory-approved CAD system
designed for lung nodules aiming to interpret chest radiographs from patients referred by
the medical oncology department in clinical practice. A total of 2916 chest radiographs from
1521 patients underwent analysis in the CAD-assisted interpretation group while 5681 chest
radiographs from 3456 patients were subjected to analysis in the conventional interpretation
group. The CAD-assisted interpretation group demonstrated a higher diagnostic yield for
newly identified metastases (0.86% vs. 0.32%; p = 0.004).

6. Discussion

In recent years, the field of cancer detection particularly lung cancer utilizing deep
machine learning has seen remarkable advancements. Deep learning’s capabilities in repre-
sentation learning and pattern recognition have demonstrated unparalleled performance
compared to traditional diagnostic methods. Yet, the integration of this technology into
medical practice presents numerous challenges and opportunities as discussed below.

(1) Utilization of Public and Private Databases:
The development of cancer detection models heavily relies on diverse and rich datasets.

The use of both public and private databases has been instrumental in training robust mod-
els. Challenges such as data privacy, accessibility and standardization hinder progress. It is
advisable to promote collaboration between institutions to build comprehensive datasets,
covering various types and stages of cancer adhering to ethical guidelines. The diagnosis
and detection of lung cancer through deep learning models heavily rely on the quality and
diversity of the datasets used for training. Public databases, such as LIDC-IDRI [21] with
1010 CT scans and LUNA16 [22] with 888 patients and 1186 nodules, ChestX-Ray8 [23] with
108,948 front view X-ray images of 32,717 patients have played a pivotal role in advancing
the field. These public databases offer a wealth of data for detection, characterization and
segmentation tasks. Private databases, have also contributed to the development of models
tailored to specific characteristics and tasks such as classification, detection and localization.
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The utilization of both public and private databases ensures a robust and comprehensive
evaluation of deep learning models fostering innovation and enhancing performance. The
results obtained from different databases reveal important trends in terms of algorithm
efficiency and prediction quality. As shown in Table A2, public databases such as LIDC-
IDRI, LUNA16 and NLST are frequently used due to their accessibility and standardization
which favors the comparability of studies. For example, ref. [33] using CNN-ResNet50 on
LIDC achieved an accuracy of 88.41% while [36] with SchCNN achieved an accuracy of
93.03%, illustrating the effectiveness of specific optimization methods despite the use of
the same dataset. Data quantity also plays a crucial role in model performance. In private
databases, where the number of data may be limited but more specific as in [94] with only
50 lung cancer records a high sensitivity of 96.20% was obtained, suggesting that targeted
high-quality data can sometimes compensate for the lack of quantity. However, it should
also be noted that large databases do not always guarantee superior performance, but
do show the robustness of the model trained to generalize. For example, ref. [96] with
12,360 participants achieved a recall of 95.05% which is comparable to studies using smaller
datasets. This may suggest that the quality of data labeling and the specific characteristics
of the lung cancer cases in the dataset may have a more significant impact than database
size alone. In addition, research advances in network architectures, such as Transformers
in [57] or attention methods as in [103] show that algorithmic improvements can also
improve performance independently of the data source even though these architectures
can benefit from large amounts of data for optimal training. Finally, the choice of datasets
whether public or private, as well as their size has a notable impact on the performance
of deep learning models for lung cancer diagnosis. Studies using public databases offer a
basis for standardized comparison of model performance, but high-quality private datasets
can also provide very good results. It is essential to strike a balance between data quantity
and quality and to continue developing more robust network architectures to process these
data efficiently.

(2) Enhancing Model Interpretability and Ethical Considerations:
Deep learning models often suffer from the “black box” phenomenon where the

decision-making process is obscured. Ensuring transparency and ethical considerations
in model deployment is paramount. Research should focus on explainable AI techniques
and ethical frameworks to ensure patient confidentiality and unbiased decision-making.
The “black box” phenomenon often associated with deep learning models poses challenges
in medical diagnosis particularly in the field of lung cancer detection. Highlighting this
issue, Brocki et al. [37] emphasized the limitations of DNNs advocating for enhanced
interpretability. Interpretability is crucial for ensuring trust and transparency in the decision-
making process. Research in this area has led to the development of models like ConRad
which combines expert-derived radiomics and DNN-predicted biomarkers for CT scans
of lung cancer providing a more interpretable classifier compared to traditional CNNs.
Efforts to combine various architectures such as CNN-ResNet50 and DenseNet121 with
Xception [35] further exemplify the push towards models that not only perform well but
also provide insights into their decision-making processes. Ethical considerations like
patient confidentiality and unbiased decision-making must also be at the forefront of model
deployment. Targeted research into explainable AI techniques and ethical frameworks is
essential to address these issues. By adding interpretability, the deep learning community
can increase confidence in these advanced models and potentially achieve better results in
lung cancer detection and diagnosis.

(3) Development of Lightweight Models for Real-time Applications:
Deep learning’s computational demands may hinder real-time applications in clinical

settings. Researchers should explore lightweight models and edge computing to enhance
efficiency without sacrificing accuracy. Techniques such as model pruning, quantization and
optimization should be explored. While achieving high accuracy is important in medical
diagnosis, there exists a critical balance between performance and computational efficiency.
Several works in the literature have demonstrated remarkable accuracy levels, exceeding
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90% in lung cancer detection tasks. For instance, a study utilizing DAU-Net [103] reported
a high performance in terms of DSC, with a 95% Hausdorff distance. Another work [43]
showed AUC reaching 93.10% highlighting the capabilities of deep learning models in this
domain. However, these high-performing models often utilize complex architectures that
are not suited for real-time applications. Techniques such as model pruning, quantization,
and optimization should be explored to enhance efficiency without sacrificing accuracy.
The success stories of high accuracy must be tempered by the fact that not all architectures
can be easily deployed in real-time clinical environments. Developing lightweight models
that can be deployed on edge devices offers the potential to revolutionize real-time lung
cancer detection and diagnosis making it more accessible and timely. It emphasizes the
importance of not only striving for optimal performance but also considering the practical
constraints of deployment in a real-world medical environment.

(4) Integration with Existing Medical Practices:
The seamless integration of deep learning models with existing medical practices is a

complex undertaking that requires careful consideration of various factors. The integration
of diverse data modalities, model outputs and 3D-ResNet with clinical practices has been
explored and shown promising results [60]. Challenges in generalization across datasets,
interoperability, standardization and technology adaptation must be addressed to ensure
that deep learning technologies augment rather than disrupt existing practices. Works
like [113] highlight the potential of integrating radiomics with deep learning for clinical
diagnostics. Moreover, the development of models that allow for easy integration of useful
features and the application of segmentation in clinical practice demonstrates the evolving
landscape of integration in lung cancer diagnosis [116]. The convergence of deep learning
with traditional medical practices holds great promise but requires a concerted effort in
terms of workflow design [98], infrastructure planning, training and policy development.
Collaborative initiatives and tailored solutions are needed to foster integration ensuring
that the transformative potential of deep learning in lung cancer detection is fully realized.

(5) Research on Personalized Treatment and Predictive Analytics:
The application of deep learning in personalized treatment and predictive analytics

is an emerging frontier. Utilizing patient-specific data, genetic information and lifestyle
factors can lead to personalized treatment plans and early intervention strategies. Works
like the study by Doppalapudi et al. [90] which developed deep learning models for lung
cancer survival prediction demonstrate the potential of deep learning in this domain.
However, a significant challenge in this area lies in the focus of public databases on known
tasks such as segmentation and classification. This limitation often restricts the exploration
of personalized treatment methodologies and hinders the development of models tailored
to individual patient characteristics. Efforts to curate and standardize public databases that
encompass diverse patient profiles and treatment outcomes are essential to unleash the full
potential of personalized medicine. The ability to tailor treatments and predict outcomes
based on individual patient characteristics offers a pathway towards more personalized
and effective care outperforming traditional machine learning models. Continued research
and collaboration between oncologists, data scientists and technologists are needed to
realize the full potential of personalized treatment and predictive analytics.

7. Conclusions

Lung cancer detection is central to the modern medical landscape where accurate and
timely diagnosis can mean the difference between life and death. Traditional diagnostic
methods though firmly rooted in medical practice come with their own limitations and
constraints. In a transformative shift, the advent of deep learning has begun to reshape
the field offering new avenues for detection and personalization. This study looked at
the promising applications of deep learning in lung cancer detection exploring five key
dimensions in particular: data utilization, interpretability, lightweight model development,
integration with existing practices, and personalized treatment. By presenting a range of
methodologies, successes and challenges, the study paints a nuanced picture of a rapidly
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evolving field breaking traditional frontiers in some areas while addressing new issues in
others. The exploration of commonly used datasets, evaluation metrics and innovative
architectures provided a broad overview presenting both the potential and limitations of
this frontier. Therefore, the study underscored the importance of ethical considerations,
technological finesse and collaborative research in steering the future of deep-learning-
based lung cancer detection. A notable observation in the current landscape is the relative
underutilization of transformer architectures. Transformers, renowned for their ability
to capture long-range dependencies and complex patterns, have revolutionized many
domains, particularly in natural language processing and computer vision. Unlike conven-
tional convolutional and recurrent neural networks, transformers do not rely on sequential
processing, allowing for more parallelism and scalability. This unique capability could be
exploited for more complex analyses in lung cancer detection, including the interpretation
of complex medical images and multimodal data. The adaptability and flexibility of trans-
formers offer a promising avenue for exploration, potentially enhancing both accuracy and
efficiency. Additionally, the development of large-scale Foundation Models (FM), Large
language and vision models presents new opportunities for lung cancer detection. These
models are pre-trained on massive datasets to learn general world knowledge before being
fine-tuned on specialized medical tasks. Their ability to transfer learned knowledge could
boost performance on lung cancer datasets which tend to be small and scarce. Models
like GPT-3, GPT-4, GPT-4V(ision) and PaLM which demonstrate strong language under-
standing could aid in reading radiology reports and analyzing patient history. Multimodal
FM that combine vision, language and clinical data like Med-PaLM Multimodal may also
unlock new diagnostic capabilities. While challenges of explicability and bias must be
overcome, FM has great potential to improve deep learning for personalized and accurate
lung cancer detection.
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Appendix A. Details informations about Metrics and Results of Works Using
Private/Public Datasets

Table A1. Metrics commonly used for lung cancer diagnosis.

Metric Definition Note Task

Accuracy Acc = TP+TN
TP+TN+FP+FN

Quantifies the model’s effectiveness in correctly
classifying both positive and negative instances Classification

Sensitivity
(Recall) Sens = TP

TP+FN
Measures the proportion of actual positive cases
that are correctly identified Classification

Specificity Spec = TN
TN+FP

Measures the proportion of actual negative cases
that are correctly identified Classification

Precision Prec = TP
TP+FP

Measures the proportion of positive identifications
that are actually correct Classification

F1-score F1 = 2 × Precision×Recall
Precision+Recall

Harmonic mean of Precision and Recall, provides a
balanced measure Classification,

Segmentation

ROC Receiver Operating Characteristic
Curve

Graphical representation of Sensitivity vs
(1-Specificity) Classification

Dice (DSC) Dice = 2×|A∩B|
|A|+|B|

Measures the similarity of two sets, commonly
used for image segmentation Segmentation

IOU IOU = |A∩B|
|A∪B|

Intersection over Union, measures the overlap
between two sets Segmentation

TP (True Positives) represents instances correctly classified as positive, TN (True Negatives)
represents instances correctly classified as negative, FP (False Positives) represents instances
incorrectly classified as positive and FN (False Negatives) instances incorrectly classified as
negative. Also A and B are two sets (for example, the sets of pixels in a segmented image),
|A| and |B| are the sizes of these sets, and |A ∩ B| is the number of elements common to
both sets.

Table A2. Results of work using Public datasets.

Ref. Methodology Dataset Results(%) Tasks

[33]
Application of CNN-ResNet50 combined with RBF
SVM to 11 datasets generated by different deep
extractors.

LIDC Accuracy = 88.41,
AUC = 93.19 Classification

[34]

CNN has been trained with a learning rate of 0.01
and a batch size of 32. There are two convolution
operations, each with 32 filters and a kernel size of
5. An aggregate layer with a kernel size of 2 is
used to prevent excessive motion.

LIDC Accuracy = 84.15,
Sensitivity = 83.96 Classification

[35]

DenseNet121 uses identity connections between
layers, giving each layer access to the
characteristics of all previous layers. This increases
the use of information from all layers without
increasing the complexity of the model.

LIDC

Accuracy = 87.67,
Specificity = 93.38,

Precision = 87.88,
AUC = 93.79

Classification

[37]

ConRad is designed to extract various features
from cancer images using both biomarkers
predicted by CBM and radiomic features. CBM
predicts biomarkers such as subtlety, calcification,
sphericity, margin, lobulation, spiculation, texture
and diameter.

LIDC AUC = 96.10 Classification



BioMedInformatics 2024, 4 271

Table A2. Cont.

Ref. Methodology Dataset Results(%) Tasks

[39]

DBN models the joint distribution of lung nodule
images and hidden neural network layers. It is
built iteratively using RBMs stacked on top of each
other. Each MBR consists of a visible and a hidden
layer. RBMs are trained using stochastic gradient
descent and the contrastive divergence algorithm.

LIDC Sensitivity = 73.40,
Specificty = 82.20 Classification

[40]

CAET-SWin (Transformer) combines spatial and
temporal features extracted using two parallel
self-attention mechanisms to perform malignancy
prediction based on CT images. It takes advantage
of the 3D structure of unthin CT scans by
simultaneously extracting inter-slice and intra-slice
features. The extracted features are then merged to
form the final output.

LIDC
Accuracy = 82.65,
Sensitivity = 83.66,
Specificity = 81.66

Classification

[41]

LungNet extracts distinctive features from CT
scans. It includes three 3D convolution layers with
dimensions 16 × 3 × 3 and a 3D maximum
aggregate layer with kernel size = 2, stride = 2.
Three fully connected layers with decreasing
feature vectors (128, 64, and 64) were combined to
reduce the dimensionality of the learning
convergence characteristics of the model.

LIDC AUC = 85.00 Classification

[43]

ResNet50 was used as a feature extractor. The
extracted features were converted into feature
vectors. Each nodule image was transformed into
a digital vector representing the features extracted
by the model. These feature vectors served as
input data for the RBF SVM classifier.

LIDC AUC = 93.10 Detection

[45]

3D-CGAN generates realistic images of lung
nodules with various conditions such as size,
ground attenuation and presence of surrounding
tissue. CGAN consists of a generator and two
discriminators (context and node). The generator
takes as input noise regions (noise bins) of fixed
size and generates realistic lung nodes adhering to
specified size and damping conditions. It also uses
context information, such as surrounding tissue.

LIDC CPM = 55.00 Detection

[46]

A recognition system based on the Faster R-CNN
model with a regional recommendation network
consisting of 27 convolutional layers is proposed.
The model uses 3D convolutional layers to extract
three-dimensional information from chest CT
images.

LIDC Sensitivity = 96.00 Detection

[47]

CNN classifies INCs into lung nodules through
convolutional layers. Each layer applies filters to
extract important information from the input
image. These filters detect certain patterns in an
image, such as edges, shapes or textures.

LIDC Sensitivity = 94.01,
AUC = 82.00 Detection
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Table A2. Cont.

Ref. Methodology Dataset Results(%) Tasks

[36]

ShCNN is trained using a WSLnO-based
deformable model for lung region segmentation.
The results show that the ShCNN model based on
the proposed method outperforms several other
existing methods, including CNN, IPCT+NN,
dictionary-based segmentation+ShCNN and the
deformable model based on WCBA+ShCNN.

LIDC Precision = 93.03 Segmentation

[48]

A CNN based on the VGG16Net architecture is
trained to classify thoracic CT slices. It uses a full
convolutional layer structure and a convolutional
layer structure + a global average clustering layer
(Conv + GAP), resulting in a FC layer. A nodule
activation map (NAM) generated by a weighted
average of the activation maps with weights
learned in the FC layer.

LIDC Accuracy = 86.60 Segmentation

[49]

iW-Net works in 2 ways. Automatic segmentation:
iW-Net receives as input a cube of fixed
dimensions centered on the nodule, identified
either manually by the user or automatically by
the system. The network proposes an initial
segmentation of the nodule. Interactive
segmentation: If the user is not satisfied with the
proposed segmentation, he can adjust it by
manually inserting the ends of a line representing
the nodule’s diameter. iW-Net then integrates this
information to refine the segmentation.

LIDC IoU = 55.00 Segmentation

[51]

U-Net’s symmetrical architecture, consisting of
encoder and decoder blocks with jump
connections, enables detailed low-level
information to be retained and combined with
high-level information. This improves the accuracy
of nodular pixel localization in the image.

LIDC DSC = 83.00 Segmentation

[53]

NoduleNet combines node detection, false positive
reduction and node segmentation in a unified
framework trained for multiple tasks. This unified
approach improves model performance by solving
several aspects of the node detection problem.

LIDC CPM = 87.27,
DSC = 83.10 Segmentation

[52]

MV-CNN through Multivue structure incorporates
three branches processing axial, coronal and
sagittal views of CT images separately. This
multiview approach enables the model to capture
3D information without requiring the input of a
full 3D volume, thus reducing data redundancy
and increasing efficiency.

LIDC DSC = 77.67, ASD = 24.00 Segmentation

[62]

3D-MSViT processes information at different
scales, capturing both fine details and global
characteristics of nodules through the Patch
Embedding Block. It processes the patch features
at each scale dimension of CT images individually
using the Local Transformer Block. Feature maps
of different scales are scaled to uniform resolution
and merged into a unified representation using the
Global Transformer Block.

LUNA16,
LIDC Sensitivity = 97.81 Classification
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[60]

3D ECA-ResNet introduces residual connections
(skip connections), effectively alleviates the
problem of gradient disappearance, enabling
feature reuse and faster information transmission.
It emphasizes channel information by explicitly
modeling the correlation between them. It
adaptively adjusts the feature channel, thereby
strengthening the feature extraction capability of
the network.

LUNA16,
LIDC-IDRI Accuracy = 94.89 Classification

[57]

Swin Transformer transforms CT images into
non-overlapping blocks through patching
operations, including embedding, merging, and
masking patches. This method allows efficient
processing of images that are not naturally
sequential, as is the case with CT images.
Introducing connections between non-overlapping
windows in consecutive Swin Transformer blocks
improves network modeling capabilities.

LUNA16 Accuracy = 82.26 Classification

[59]

Dilated SegNet helps enlarge the receptive field of
filters with its dilated convolution layers. This
helps capture broader features of CT images,
which is effectively useful for detecting smaller
nodules.

LUNA16 DSC = 89.00 Segmentation

[56]

The framework uses an adapted version of Faster
R-CNN which includes 2 RPNs and a
deconvolution layer, to detect nodule candidates.
Multiple CNNs are trained sequentially each
handling more difficult cases than the previous
model. This boosting approach helps increase
sensitivity for detection of such small lung
nodules.

LUNA16 Sensitivity = 86.42 Segmentation

[63]

A 3D CNN model is used to analyze full CT
volumes end-to-end. This in-depth analysis can
detect cancer candidate regions in CT volumes.
This allows potentially cancerous areas to be
precisely located, facilitating a more targeted
assessment. An additional CNN model is
developed to predict cancer risk based on the
outputs of ROI detection models and full volume
analysis. This model can also incorporate regions
from previous CT scans of the patient, allowing for
longitudinal comparison and more accurate risk
assessment.

NLST AUC = 94.40 Classification

[66]

Time-distance ViT is proposed to interpret
temporal distances in longitudinal and irregularly
sampled medical images. The method uses
continuous time vector embeddings to integrate
temporal information into image analysis. Time
encoding is performed with sinusoids at different
frequencies, allowing a linear representation of
temporal distances. TEM is used to modulate
self-attention weights based on the time elapsed
between image acquisitions.

NLST AUC = 78.60 Classification
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[68]

CXR-LC based on a CNN, it combines
radiographic images with basic information (age,
gender, smoking status). It also leverages transfer
learning from the Inception v4 network to predict
all-cause mortality in the PLCO trial.

NLST AUC = 75.50 Classification

[64]

The proposed model is based on the VGG16 2D
CNN architecture using transfer learning which
made it possible to take advantage of a rich and
varied knowledge base for a specific task, thus
improving the accuracy and speed of learning of
the model. The adaptation of this architecture
made it possible to benefit from its 13
convolutional layers and its 4 pooling layers for
efficient extraction of features from lung images.

NLST Accuracy = 90.40,
F1-score = 90.10 Classification

[70]

FDTrans implements a preprocessing process to
convert histopathological images to YCbCr color
space and then to spatial spectrum via DCT. This
step captures relevant frequency information,
essential for distinguishing the subtle details of
cancerous tissue. CSAM reallocates weights
between low- and high-frequency information
channels. CDTB processes features of Y, Cb and Cr
channels, capturing long-term dependencies and
global contextual connections between different
components of images.

TCGA AUC = 93.16 Classification

[69]

Gene Transformer combines multi-head attention
mechanics with 1D layers. Multi-head attention
allows the model to simultaneously process
complex genomic information from thousands of
genes from different patient samples. the attention
mechanism sequentially selects subsets of genes
and reveals a set of scores defining the importance
of each gene for subtype classification, focusing
only on genes relevant to a task.

TCGA
Accuracy = 100,
Precision = 100, Recall = 100,
F1-Score = 100

Classification

[74]

The study explores the use of DenseNet121
combined with transfer learning. The structure of
DenseNet121 solves the problem of the
disappearing gradient. The model also provides
CAMs to identify the location of lung nodules.
This allows visualization of the most salient
regions on the images used to identify the output
class.

JSRT Specificity = 74.96 Classification

[75]

U-Net is used to accurately segment the left and
right lung fields in standard CXRs. This
segmentation allows the lungs to be isolated from
the heart and other parts in the images, thus
leading to a more focused analysis of suspicious
lesions and lung nodules.

JSRT Accuracy = 96.00 Segmentation
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[76]

The study compares the approaches and
performances of award-winning algorithms
developed during the Kaggle Data Science Bowl.
U-Net has been commonly used for lung nodule
segmentation. The study found substantial
performance variations in the public and final test
sets. Transfer learning has been used in most
classification algorithms, highlighting U-Net’s
ability to adapt and learn from pre-existing data,
which is essential when working with limited
datasets or specific.

DSB Logloss = 39.97 Segmentation

[77]

The VGG-like 3D multipath network takes
advantage of multiple paths to process 3D
volumetric data which allows a better
understanding of the spatial structure of lung
nodules. The network is able to distinguish not
only the presence of lung nodules but also classify
their level of malignancy, an essential step in the
early diagnosis and treatment planning of lung
cancer.

LIDC,
LUNA16, DSB

Accuracy = 95.60,
Logloss = 38.77,
DSC = 90.00

Segmentation

[80]

TSFMUNet integrates a transformer module to
process anisotropic data in CT images. This
integration allows the model to more effectively
adapt to variations in slice spacing, a common
challenge in medical images. The model encodes
information along the Z axis by representing the
feature maps of a cut as a weighted sum of these
maps and the feature maps of neighboring cuts.

MSD Dice = 87.17 Segmentation

[78]

The system consists of two main components: a
segmentation part based on UNETR and a
classification part based on a self-supervised
network. UNETR uses transformers as an encoder
to efficiently capture global multiscale information,
thereby learning sequential representations of the
input volume. For the classification of segmented
nodules, the system uses a self-supervised
architecture. This architecture focuses on
predicting the same class for two different
perspectives of the same sample, allowing labels
and representations to be learned simultaneously
in a single end-to-end process.

MSD Accuracy = 98.77,
Accuracy = 97.83

Classification,
Segmentation

[81]

Proposes an integrated framework for the
detection of pulmonary nodules from low-dose CT
scans using a model based on a 3D CNN and a 3D
RPN network. This approach combines the steps
of nodule screening and false positive reduction
into a single jointly trained model. 3D RPN is
adapted from the Faster-RCNN model for
generating nodule candidates.

Tianchi CPM = 86.60 Detection
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[82]

Amalgamated-CNN before segmenting CT images
uses a non-sharpening mask to enhance the signal
from nodules. It includes three separate CNN
networks (CNN-1, CNN-2, CNN-3) with different
input sizes and number of layers. This multi-layer
design allows the model to process and analyze
images at different scales. It uses AdaBoost
classifier to merge the results.

Tianchi,
LUNA16 Sensitivity = 85.10 Segmentation

[83]

DCNN consists of two main steps: detection of
nodule candidates and reduction of false positives.
The model uses a 3D version of the Faster R-CNN
network, inspired by U-Net. A 3D DCNN classifier
is then used to finely discriminate between true
nodules and false positives.

Tianchi CPM = 81.50 Segmentation

[87]

BERT-BTN is used for clinical entity extraction
from Chinese CT reports. BERT is used to learn
deep semantic representations of characters which
is essential for understanding the complex context
of CT reports. A BiLSTM layer is used after BERT
to capture nested structures and latent
dependencies of each character in reports.

PUCH Macro-F1 = 85.96 Named Entity
Recognition

[89]

Clinical Transformer is an adaptation of the
Transformer architecture for precision medicine
aimed at modeling the relationships between
molecular and clinical measurements and survival
of cancer patients. It aims to model how a
biomarker in the context of other clinical or
molecular features can influence patient survival
particularly in immunotherapy treatment.

MSKCC C-Index = 61.00 Predicting survival
in cancer patients

[90]

ANN demonstrated superior ability to model
complex, nonlinear decision boundaries although
it had difficulty clearly distinguishing between
survival classes of less than 6 months and 0.5 to
2 years.

SEER Accuracy = 71.18 Classification

[91]

DETR is based on Transformers and aims to fully
automate the anatomical localization of lung
cancer in PET/CT images. It integrates global
attention to the entire image allowing better
localization and classification of tumors.

TCIA IoU = 80.00,
Accuracy = 97.00

Segmentation
Classification

Table A3. Deep Learning Methods for Lung Cancer Diagnosis in Private Databases.

Ref. Method Dataset Size Performance Metrics Task

[92]

Retina U-Net is suitable for the detection of
primary lung tumors and associated metastases at
all stages on FDG-PET/CT images. it has been
adapted and trained to specifically detect T, N, and
M lesions on these images. It contains additional
branches in the lower levels of the decoder for
end-to-end object classification and bounding box
regression.

364 FDG-PET/CTs Sensitivity = 86.20 Classification
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[93]

DCNN coupled with transfer learning with
VGG16 and finetuning were used by converting
3D images into 2D. The optimization of the
hyperparameters of the DCNN was carried out by
random search which made it possible to identify
the most effective parameters for this specific
classification task.

1236 patients Accuracy = 68.00 Classification

[94]

ODNN combined with LDA was used to extract
deep features from lung CT images and reduce
their dimensionality. It was optimized using
MGSA to improve lung cancer classification. This
optimization made it possible to refine the
structure of the network and improve its
classification performance.

50 lung cancer CT
images Sensitivity = 96.20 Classification

[95]

ResNet is used to analyze exosomes in blood
plasma via SERS. The model was trained to
distinguish between exosomes derived from
normal cells and those from lung cancer cell lines.

2150 cell-derived
exosome data

Accuracy = 95.00
AUC = 91.20 Classification

[96]

A system including a deep learning model is
developed to improve lung cancer screening in
rural China, using mobile CT scanners. The model
was designed to identify suspicious nodule
candidates from LDCT images. After nodule
detection, the model evaluates the probability of
malignancy of each nodule.

12,360 participants Recall = 95.07 Classification

[98]

RCNN combined with transformers is applied to
syndrome differentiation in traditional Chinese
medicine (TCM) for lung cancer diagnosis. The
model was designed to process unstructured
medical records. The use of data augmentation
helped improve the performance of the RCNN
model. The integration of transformers made it
possible to efficiently process long and complex
text sequences.

1206 clinical records F1-score = 86.50 Classification

[99]

3D U-Net with dual inputs is used for both PET
and CT. It features two parallel convolution paths
for independent feature extraction from PET and
CT images at multiple resolution levels, thereby
optimizing the analysis of features specific to each
type of imaging. The features extracted from the
convolution arms were concatenated and fed the
deconvolution path via skip connections.

290 pairs of PET and
CT Mean DSC = 92.00 Segmentation

[100]

Dual-input U-Net implements a two-step
approach. In the first step a global U-Net processes
the 3D PET/CT volume to extract the preliminary
tumor area while in the second step a regional
U-Net refines the segmentation on slices selected
by the global U-Net.

887 patients N/A Segmentation
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[103]

3D MAU-Net is an adaptation of U-Net. At the
bottleneck of the U-Net, a dual attention module
was integrated to model semantic
interdependencies in the spatial and channel
dimensions respectively. The model proposes a
multiple attention module to adaptively
recalibrate and fuse the multi-scale features from
the dual attention module of the previous feature
maps of the decoder and the corresponding
features of the encoder.

322 CT images DSC = 86.67 Segmentation

[105]

3D U-Net is intended for automatic measurement
of bone mineral density (BMD) using LDCT
scanners for opportunistic osteoporosis screening.
Using 3DU-Net combined with dense connections
achieved a balance between performance and
computation.

200 annotated
LDCT scans,
374 indepen-
dent LDCT
scans

AUC = 92.70 Segmentation

[106]

Unlike detection methods that provide a bounding
box or classification methods that determine
malignancy from a single image, this CNN model
is based on an encoder-decoder architecture that
reduces the resolution of the feature map and
improves the robustness of the model to noise and
overfitting.

629
radiographs
with 652 nod-
ules/masses

DSC = 52.00 Segmentation

[107]

Mask-RCNN is an evolution of the Faster-RCNN
model which replaces the ROI pooling layer of
Faster-RCNN with a more efficient ROI Alignment
layer. This modification allows a more precise
correspondence between the output pixels and the
input pixels thus effectively preserving the spatial
data contained in the image.

90 patients Sensitivity = 82.91 Segmentation

[108]

ResNet-50 is used to analyze maximum intensity
projection (MIP) images from PET in lung cancer
patients by extracting features from MIP images of
anterior and lateral views. These MIP images are
generated from 3D PET volumes, ResNet-50 being
a 2D model avoids the difficulty of directly
processing 3D volumetric data.

N/A chi-square = 23.6 Segmentation

[109]

HFFM combines the advantages of 2D and 3D
neural networks. 3D CNN is capable of learning
three-dimensional information from CT images
while 2D CNN focuses on obtaining detailed
semantic information. This combination allows the
model to capture both the complex spatial features
and fine details of CT images.

60 patients Dice = 87.60 Segmentation

[110]

SegNet uses a decoding process that is based on
the pooling indices calculated during the
maximum pooling stage of the corresponding
encoder. This approach allows for efficient
nonlinear sampling and eliminates the need to
learn upsamples.

240 participants Sensitivity = 98.33 Segmentation
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Table A3. Cont.

Ref. Method Dataset Size Performance Metrics Task

[113]

The CNN used provided a significant
improvement in the reproducibility of radiomic
characteristics between the different reconstruction
kernels. While the concordance of the radiomic
features between the B30f and B50f cores was
initially low, the application of the CNN improved
them thus making the radiomic features much
more reliable and comparable between the
different cores.

104 patients CCC = 92.00 Radiomic

[114]

BERT and RoBERTa were developed to extract
information on social and behavioral determinants
of health (SBDoH) from unstructured clinical text
in electronic health records (EHR).

161,933
clinical notes

Strict-F1-score = 87.91
Lenient-F1-score = 89.99 Extract SBDoH

[115]

The deep learning-based CAD system significantly
increased the diagnostic yield for detecting new
visible lung metastases. The actual positive
detection rate was higher in the CAD-assisted
interpretation group than in the conventional
interpretation group.

2916 chest
radiographs
from
1521 patients

80.00
Evaluate deep
learning-based
CAD system
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